1. Briefly explain the essential difference between
 a) call-by-value and call-by-reference. How are parameters passed in C and Java?
 In call-by-value, the actual parameter is evaluated or copied; its value is placed in the location of
 the corresponding formal parameter of the called procedure. In call-by-reference, the address of
 the actual parameter is passed to the callee as the value of the corresponding formal parameter.
 C and Java use call-by-value.
 b) static scope and dynamic scope. How is scoping done in C and Java?
 Scope specifies the textual region of a program in which there is an active association (binding)
 between a name and the object it represents. Static scoping associates the use of a name with
 the closest lexically enclosing declaration. Dynamic scoping chooses the most recent active
 declaration at runtime. C and Java use static scoping.

2. Java compilation.
 a) Draw a block diagram showing how programs are compiled and executed in Java.
b) **What is a Java just-in-time compiler?**

The intermediate program from the Java translator is a sequence of architecturally neutral bytecodes that are interpreted by the Java virtual machine. A Java just-in-time compiler translates the bytecodes into an equivalent sequence of native code for the target machine in order to achieve faster run-time performance.

3. Let \(L \) be the set of strings of the form \(abxba \) where \(x \) is a string of \(a \)'s, \(b \)'s, and \(c \)'s that does not contain \(ba \) as a substring.

 a) **Write a regular expression for \(L \).**

 Let \(R = ab(a|b^*c)^*b+a \).

 b) **Show how your regular expression generates the string \(ababcba \).**

 The prefix \(ab \) of \(R \) generates the prefix \(ab \) of the string. Then \((a|b^*c)^* \) generates \(abc \). Finally \(b^+ \) generates \(b \) and the final \(a \) of \(R \) generates the final \(a \) of the string.
c) Construct a deterministic finite automaton for L.

![Deterministic finite automaton](image)

All unspecified transitions are to a dead state.

d) Show how your automaton processes the input $ababcba$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Consider the context-free grammar G: $S \rightarrow S + S \mid S * S \mid a$.

a) Show that G is ambiguous by constructing all parse trees for $a + a * a$.

![Parse trees](image)
b) Construct an unambiguous grammar for $L(G)$ in which $+$ is left associative, $*$ is nonassociative and of higher precedence than $+$.

(1) $S \rightarrow S + T$
(2) $S \rightarrow T$
(3) $T \rightarrow a * a$
(4) $T \rightarrow a$

Draw the parse tree in your grammar for the input string $a + a * a$.

```
  S
 / \   /
S +  T
 /   /   /
T a * a
 /   /
 a a
```

c) Construct an SLR(1) parsing table for your grammar.

The sets of LR(0) items for the augmented grammar are:

$I_0 : S' \rightarrow \cdot S$
$I_1 : S' \rightarrow S$. \hspace{1cm} $I_2 : S \rightarrow T$.

$S \rightarrow \cdot S + T$
$S \rightarrow \cdot T$
$T \rightarrow \cdot a * a$
$T \rightarrow \cdot a$
The parsing table is constructed from these sets of items. Each set of items corresponds to a state. The FOLLOW sets for the nonterminals are

<table>
<thead>
<tr>
<th>NONTERMINAL</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>+ $</td>
</tr>
<tr>
<td>T</td>
<td>+ $</td>
</tr>
</tbody>
</table>

The action and goto tables are shown below. Blank entries are errors. Note all entries are uniquely defined so the grammar is SLR(1), and hence unambiguous.

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s4</td>
<td>acc</td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>3</td>
<td>r4</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>s3</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>7</td>
<td>r3</td>
<td>r3</td>
</tr>
</tbody>
</table>

5. Syntax-directed translation.

a) Construct an SDTS that maps postfix expressions containing the digits 0, 1, … , 9 and the binary operators – and % into equivalent infix expressions.
Here is a SDTS using a synthesized attribute $E.v$ of type string for the nonterminal E. In the semantic rules, we have used juxtaposition as the concatenation operator.

\[
E \rightarrow E_1 E_2 - \quad \{ \text{E.v} = "(\ " E_1.v " - " E_2.v ")"; \} \\
E \rightarrow E_1 E_2 \% \quad \{ \text{E.v} = "(\ " E_1.v " \% " E_2.v ")"; \} \\
E \rightarrow 0 \quad \{ \text{E.v} = "0"; \} \\
E \rightarrow 1 \quad \{ \text{E.v} = "1"; \} \\
E \rightarrow 2 \quad \{ \text{E.v} = "2"; \} \\
E \rightarrow 3 \quad \{ \text{E.v} = "3"; \} \\
E \rightarrow 4 \quad \{ \text{E.v} = "4"; \} \\
E \rightarrow 5 \quad \{ \text{E.v} = "5"; \} \\
E \rightarrow 6 \quad \{ \text{E.v} = "6"; \} \\
E \rightarrow 7 \quad \{ \text{E.v} = "7"; \} \\
E \rightarrow 8 \quad \{ \text{E.v} = "8"; \} \\
E \rightarrow 9 \quad \{ \text{E.v} = "9"; \} \\
\]

b) Show how your SDTS translates the expression 123−%.

Here is an annotated parse tree for 123−% with the value of $E.v$ shown at each node. The output is the infix expression $(1\%(2-3))$, the value of $E.v$ at the root of the tree.
c) Modify your SDTS so that it uses the fewest possible number of parentheses in the output.

Here is a modified SDTS that uses two synthesized attributes, $E.v$ and $E.p$, for the nonterminal E in the productions. $E.v$ is the infix string associated with the nonterminal E and $E.p$ is an integer giving the precedence level of the operator associated with E. We assume the precedence level of $\%$ is 2, and $-$ is 1. For convenience, we set the precedence level of a digit to 3. To determine whether we need to put parentheses around a subexpression operand, we use the following rule. Suppose we have the parse tree node:

```
E
   /\    \
E1  E2  op
```

Then we put parentheses around $E_1.v$ if $E_1.p$ is less than the precedence level of op; we put parentheses around $E_2.v$ if $E_2.p$ is less than or equal to the precedence level of op. Otherwise, we do not add parentheses. The parentheses are there to make sure we evaluate the infix expression in the same order as the postfix expression. Here is the modified SDTS:

```
E → E; E2 −  { if (E2.p == 1)  
             E2.v = "(" E2.v ");
             E.v = E1.v "−" E2.v;
             E.p = 1; }  

E → E; E2 %  { if (E1.p == 1)  
             E1.v = "(" E1.v ");
             if (E2.p ≤ 2)  
                 E2.v = "(" E2.v ");
             E.v = E1.v "%" E2.v;
             E.p = 2; }  

E → 0      { E.v = "0"; E.p = 3; }  
E → 1      { E.v = "1"; E.p = 3; }  
E → 2      { E.v = "2"; E.p = 3; }  
E → 3      { E.v = "3"; E.p = 3; }  
E → 4      { E.v = "4"; E.p = 3; }  
E → 5      { E.v = "5"; E.p = 3; }  
E → 6      { E.v = "6"; E.p = 3; }  
E → 7      { E.v = "7"; E.p = 3; }  
E → 8      { E.v = "8"; E.p = 3; }  
E → 9      { E.v = "9"; E.p = 3; }
```
Here is the annotated parse tree for the input 123-% using the modified SDTS: