Advanced Machine Learning & Perception

Instructor: Tony Jebara
Topic 12

• Graphs in Machine Learning
• Graph Min Cut, Ratio Cut, Normalized Cut
• Spectral Clustering
• Stability and Eigengap
• Matching, B-Matching and k-regular graphs
• B-Matching for Spectral Clustering
• B-Matching for Embedding
Graphs in Machine Learning

- Many learning scenarios use graphs
- Classification: k-nearest neighbors
- Clustering: normalized cut spectral clustering
- Inference: Bayesian networks belief propagation
Normalized Cut Clustering

- Better than: kmeans, EM, linkage, etc.
- No local minima or parametric assumptions

- Given graph \((V,E)\) with weight matrix \(A\), normalized cut is

\[
n\text{cut}(B) = \sum_{i \in B, j \in V \setminus B} \frac{A_{ij}}{\sum_{i \in B, j \in V} A_{ij}} + \sum_{i \in V \setminus B, j \in B} \frac{A_{ij}}{\sum_{i \in V \setminus B, j \in B} A_{ij}}
\]

we could fill in \(A\) using pairwise similarities/kernels

\[
A_{ij} = k(x_i, x_j)
\]

- But, this is a hard problem need a relaxation...
Spectral Clustering

- Typically, use EM or k-means to cluster N data points.
- Can imagine clustering the data points only from an NxN matrix capturing their proximity information.
- This is spectral clustering.
- Again compute Gram matrix using, e.g. RBF kernel:
 \[A_{ij} = k(x_i, x_j) = \phi(x_i)^T \phi(x_j) = \exp\left(-\frac{1}{2\sigma^2}\|x_i - x_j\|^2\right) \]

- Example: have N pixels from an image, each \(x = [\text{xcoord}, \text{ycoord}, \text{intensity}] \) of each pixel.
- From eigenvectors of K matrix (or slight variant), these seem to capture some segmentation or clustering of data points.
- Nonparametric form of clustering since we didn’t assume Gaussian distribution...
Spectral Clustering

• Convert data to graph & cut
• Given graph (V,E), weight matrix A, best normalized cut B* is NP

• Define:
 diagonal degree matrix
 volume
 volume of cut B
 unnormalized Laplacian

\[ncut(B) = \frac{\sum_{i \in B, j \in V / B} A_{ij}}{\sum_{i \in B, j \in V} A_{ij}} + \frac{\sum_{i \in V / B, j \in B} A_{ij}}{\sum_{i \in V / B, j \in V} A_{ij}} \]

\[D_{ii} = \sum_{j} A_{ij} \]
\[d = \sum_{i} D_{ii} \]
\[d_{B} = \sum_{i \in B} D_{ii} \]
\[L = D - A \]

• Solve (combinatorial, NP):
 \[\min_{y} \frac{y^{T}L y}{y^{T}D y} \quad \text{such that} \quad y^{T}D \mathbf{1} = 0 \quad \text{and} \quad y(i) = \{1, -b\} \]

• Relax to continuous y (Shi & Malik):
 \[\min_{y} y^{T}L y \quad \text{such that} \quad y^{T}D y = 1 \quad \text{and} \quad y^{T}D \mathbf{1} = 0 \]

• Solve for y as 2nd smallest eigenvector of:
 \[(D - A)y = \lambda Dy \]
Stability in Spectral Clustering

- Standard problem when computing & using eigenvectors:
 - Small changes in data can cause eigenvectors to change wildly
 - Ensure the eigenvectors we keep are distinct & stable: look at eigengap...
 - Some algorithms ensure the eigenvectors are going to have a safe eigengap.

Use normalized Laplacian: \(L = D^{-1/2} A D^{-1/2} \)
Stabilized Spectral Clustering

- Stabilized spectral clustering algorithm:

Given a set of points $S = \{s_1, \ldots, s_n\}$ in \mathbb{R}^d that we want to cluster into k subsets:

1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp(-||s_i - s_j||^2/2\sigma^2)$ if $i \neq j$, and $A_{ii} = 0$.

2. Define D to be the diagonal matrix whose (i,i)-element is the sum of A’s i-th row, and construct the matrix $L = D^{-1/2} A D^{-1/2}$.

3. Find x_1, x_2, \ldots, x_k, the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X = [x_1 x_2 \ldots x_k] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.

4. Form the matrix Y from X by renormalizing each of X’s rows to have unit length (i.e. $Y_{ij} = X_{ij} / (\sum_j X_{ij}^2)^{1/2}$).

5. Treating each row of Y as a point in \mathbb{R}^k, cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).

6. Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Stabilized Spectral Clustering

- Example results compared to other clustering algorithms (traditional kmeans, unstable spectral clustering, connected components).

Figure 1: Clustering examples, with clusters indicated by different symbols (and colors, where available). (a-g) Results from our algorithm, where the only parameter varied across runs was k. (h) Rows of Y (jittered, subsampled) for twocircles dataset. (i) K-means. (j) A “connected components” algorithm. (k) Meila and Shi algorithm. (l) Kannan et al. Spectral Algorithm I. (See text.)
Matching and B-Matching

- Matching (or perfect matching) = permutation = assignment
- Maximum Weight Matching = Linear Assignment Problem
 Given weight matrix, find permutation matrix. \(O(N^3)\)

\[
\begin{align*}
\text{wife} &\begin{bmatrix}
$1 & $6 & $3 \\
$4 & $2 & $4 \\
$4 & $2 & $5 \\
\end{bmatrix} \\
\text{husband} &\begin{bmatrix}
\text{Kuhn-Munkres} \\
\text{Hungarian Algorithm} \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\max_p \text{tr} \left(P^T A \right) \\
\sum_i P_{ij} = \sum_j P_{ij} = 1, \quad P_{ij} \in \{0,1\}
\end{align*}
\]

- B-Matching generalizes to multi-matchings (Mormon). \(O(bN^3)\)

\[
\begin{align*}
\max_p \text{tr} \left(P^T A \right) \\
\sum_i P_{ij} = \sum_j P_{ij} = b, \quad P_{ij} \in \{0,1\}
\end{align*}
\]
Matching and B-Matching

- Multi-matchings or b-matchings are also known as k-regular graphs (as opposed to k-nearest neighbor graphs)

0-regular 1-regular 2-regular 3-regular
Matching and B-Matching

- Balanced versions of k-nearest neighbor

$$A = \begin{bmatrix}
27 & 89 & 6 & 43 & 21 & 79 \\
25 & 20 & 99 & 23 & 38 & 6 \\
88 & 30 & 58 & 58 & 78 & 60 \\
74 & 66 & 42 & 76 & 68 & 5 \\
14 & 28 & 52 & 53 & 46 & 42 \\
1 & 47 & 33 & 64 & 57 & 30
\end{bmatrix}$$

$$\max_P \, \text{tr} \left(P^T A \right)$$

where $$P_{ij} \in \{0,1\}$$

<table>
<thead>
<tr>
<th>Neighbors</th>
<th>Matchings</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(bN^2)</td>
<td>O(bN^3)</td>
</tr>
</tbody>
</table>

$$\sum_j P_{ij} = 1$$

$$\sum_i P_{ij} = \sum_j P_{ij} = 1$$

$$\sum_j P_{ij} = 3$$

$$\sum_i P_{ij} = \sum_j P_{ij} = 3$$
B-Matched Spectral Clustering

• Try to improve spectral clustering using B-Matching
• Assume w.l.o.g. two clusters of roughly equal size
• If we knew the labeling \(y = [+1 \ 1 \ 1 \ 1 \ -1 \ -1 \ -1] \)
• the “ideal” affinity matrix \(A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\end{bmatrix} \)

in other words...

\[
A = \frac{1}{2} (yy^T + 1)
\]

and spectral clustering and eigendecomposition is perfect

• The “ideal” affinity is a B-Matching with \(b = \frac{N}{2} \)
• Stabilize affinity by finding the closest B-Matching to it:

\[
\min_P \| A - P \|^2 \text{ such that } \sum_i P_{ij} = \sum_j P_{ij} = \frac{N}{2} \text{ and } P_{ij} \in \{0,1\}
\]

• Then, spectral cluster B-Matching or use it to prune A

\[
A^{new} = P \quad \text{or} \quad A^{new} = P \circ A
\]

• Also, instead of B-Matching, can do kNN (lazy strawman).
B-Matched Spectral Clustering

- Synthetic experiment
- Have 2 S-shaped clusters
- Explore different spreads
- Affinity $A_{ij} = \exp(-||X_i - X_j||^2/\sigma^2)$
- Do spectral clustering on A or P or $P \circ A$
- Evaluate cluster labeling accuracy

(a) Curve separation $c = 1$. (b) Curve separation $c = 5$.

![Graphs showing synthetic datasets and accuracy results.](synthetic_dataset_accuracy.png)
B-Matched Spectral Clustering

- Clustering images from real video with 2 scenes in it.
- Accuracy is how well we classify both scenes (10-fold)
- Evaluated also with kNN
- Only adjacent frames have high affinity
- BMatching does best since it boosts connection to far frames

(a) Maggie vs. Marge Scene
B-Matched Spectral Clustering

- Clustering images from same video but 2 other scenes

(b) Homer vs. Bart Scene
B-Matched Spectral Clustering

- Unlabeled classification via clustering of UCI Optdigits data
B-Matched Spectral Clustering

- Unlabeled classification via clustering of UCI Vote dataset
B-Matched Spectral Clustering

- Classification accuracy via clustering of UCI Pendigits data

- Here, using the B-Matching to just prune A is better

kNN always seems a little worse...
B-Matched Spectral

- Challenge gives many splits of N~100 documents.
- For each split, find NxN matrix saying if documents i & j were authored by same person (1) or different person (0).
- Documents have 8 fields.
- Compute affinity A for each field via text frequency kernel.
- Find B-Matching P.
- Get spectral clustering y and compute $\frac{1}{2} (yy^T+1)$.
B-Matched Spectral Clustering

• Accuracy is evaluated using the labeled true same-author & not-same-author matrices.
• Explored many processings of the A matrices. Best accuracy was by using the spectral clustered values of the P matrix found via B-Matching.
B-Matched Spectral Clustering

- Merge all the 3x8 matrices into a single hypothesis using an SVM and a quadratic kernel. SVM is trained on labeled data (same author, not same author matrices).

- For each split, we get a single matrix of same-author and not-same-author which was uploaded to KDD Challenge anonymously.
B-Matched Spectral Clustering

• Total of 7 funded teams attempted this KDD Challenge task and were evaluated by a rank error

• Double-blind submission and evaluation

• Our method had lowest average error
B-Matched Embedding

- Replace k-nearest-neighbor in machine learning algorithms
- Example: Semidefinite Embedding (Weinberger & Saul)

1) Get matrix A by computing affinities between all pairs of points
2) Find k-nearest neighbors graph
3) Use SDP to find P.D. matrix K which preserves distances on graph yet is as stretched as possible. Eigen-decomposition of K finds embedding of points in low dimension that preserve distance structures in high dimensional data.

Maximize $\text{Tr}(K)$ subject to $K \geq 0$, $\sum_{ij} K_{ij} = 0$, and $\forall i,j$ such that $h_{ij}=1$ or $[h^Th]_{ij}=1$,

$$K_{ii} + K_{jj} - K_{ij} - K_{ji} = A_{ii} + A_{jj} - A_{ij} - A_{ji}.$$
B-Matched Embedding

- Visualization example: images of rotating tea pot.
- Get affinity $A_{ij} = \exp(-||X_i - X_j||^2)$ between pairs of images.
- Should get ring but noisy images confuse kNN. Greedily connects nearby images without balancing in-degree and out-degree. Get folded over ring even for various values of b (k).
- B-Matching gives clean ring for many values of b.

![Reduced Dimensionality (using B-matching)](image)

![Reduced Dimensionality (using K-nearest)](image)
B-Matched Embedding

- AOL data
- BMatching: Growing initial connectivity using b-matching algorithm instead of k-nearest neighbor

B-matching K-nearest neighbors