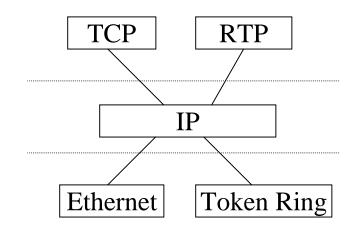
Internet Quality of Service

Weibin Zhao

zwb@cs.columbia.edu


1

Outline

- 1. Background
- 2. Basic concepts
- 3. Supporting mechanisms
- 4. Frameworks
- 5. Policy & resource management
- 6. Conclusion

Background: IP

- Characteristic
 - Connectionless
 - Building block: datagram
- Goals
 - Multiplexing
 - Survivability
 - Multi-ToS
 - Variety of networks

Internet QoS

- Service differentiation & assurance => Internet
- Quality of Service
 - Bandwidth allocation
 - Loss control
 - Delay & jitter control
- Differentiation & assurance
 - deterministic/statistic
 - quantitative/relative

Internet QoS (2)

- Current status
 - IP: best effort
 - TCP: reliable, sequential

	Advocate		Opponent
	Diverse requirements	1.	Provision: enough bandwidth
	ISP: Better service, higher price	2. 3.	Applications adapt Complexity vs.
3.]	Maximize utility		benefit

Best-Effort versus Reservations: A Simple Comparative Analysis

1. Background

- 2. <u>Basic concepts</u>
- 3. Supporting mechanisms
- 4. Frameworks
- 5. Policy & resource management
- 6. Conclusion

Basic Concepts

- Granularity
 - Aggregate class
 - Flow
 - src/dest IP, src/dest port#, protocol ID
- Classification
 - Sorting packets
 - General classification => IntServ, MF
 - Bit-pattern classification => AF

Providing Guaranteed Service Without Per Flow Management

Specification

Traffic	Service
Traffic Profile	Rspec
Temporal properties	Per-flow based
<u>Tspec</u>	<u>SLA</u> (Service Level
Token bucket: token rate	Agreement)
[r], bucket depth [b]	Contract
Peak rate: [p]	
Min policed unit: [m]	
Max packet size: [M]	

General Characterization Parameters for Integrated Service Network Elements

Admission Control

- Control resource allocation
- Decide whether to admit a new traffic stream

	Deterministic	Statistic	Measurement- based	
QoS violation		Small probability	Occasional	
Resource utilization	Low for bursty flows	high	high	

Admission Control for Statistic QoS: Theory and Practice, A Measurement-based Admission Control Algorithm for Integrated Services Packet Networks (Extended Version)

Traffic Control

- Use leaky bucket or token bucket

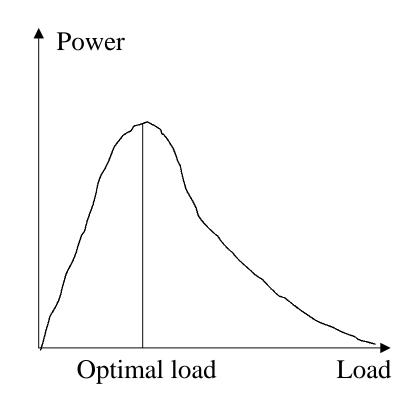
Policing

- Monitoring traffic: dropping or (un)marking out-ofprofile packets
- Never hold arriving packets
- Shaping
 - Provide temporary buffering to make traffic conform to the specified profile

1. Background

- 2. Basic concepts
- 3. <u>Supporting mechanisms</u>
- 4. Frameworks
- 5. Policy & resource management
- 6. Conclusion

Supporting Mechanisms


• Queue Management

- Control queue size by dropping or marking packet
- Control loss
- Scheduling
 - Determine which packet to send out,
 - Allocation of bandwidth
 - Control delay

Quality-of-Service in Packet Networks: Basic Mechanisms and Directions

Queue Management

- Loss
 - Damaged (<<1%)</p>
 - Congestion
- Congestion control
 - End-point
 - Router
 - Goal: high throughput low delay power=throughput/delay

Congestion Avoidance and Control

Queue Management (2)

• Queue:

- absorb short term bursts, small
- Drop on full
 - Two problem: (1) lock-out (2) full-queue
- Active queue management
 - Drop packets before a queue becomes full

Queue Management (3)

- **RED: Random Early Detection**
 - Control average queue size
 - Dropping/marking arriving packets probabilistically
 - Avoid global synchronization
 - No bias against bursty traffic
- RIO
 - Service profile => In/Out packets
 - Preferential dropping

Random Early Detection Gateways for Congestion Avoidance, Explicit Allocation of Best15Effort Packet Delivery Service15

Scheduling

- Delay
 - Propagation + transmit + queuing
- Queuing disciplines
 - FIFO (FCFS)
 - Priority queue
 - WFQ (Weighted Fair Queuing)
 - EDF (Earliest Deadline First)
 - RCS (Rate-Controlled Service): EDF + shaper
 - CBQ (Class Based Queuing)

Quality-of-Service in Packet Networks: Basic Mechanisms and Directions

Scheduling (2)

Link sharing

- Share aggregated bandwidth in a controlled way under overload
- 1. multi-entity
- 2. multi-protocol
- 3. multi-service
- Hierarchical link sharing:
 - GPS (Generalized Processor Sharing)
 - A theoretic reference model

1. Background

- 2. Basic concepts
- 3. Supporting mechanisms
- 4. Frameworks
- 5. Policy & resource management
- 6. Conclusion

IntServ

- <u>Per-flow</u> based QoS framework with dynamic <u>resource reservation</u>
 - Control path: RSVP, admission control
 - Data path: classification, scheduling
- RSVP
 - Signaling protocol: path setup, resource reservation
 - Receiver initiation
 - Soft state for robust

Integrated Service in the Internet Architecture: an Overview

IntServ (2)

• Service models

	Guaranteed	Controlled-load
Goal	Control max queuing delay	Closely equivalent to unloaded best effort service
Deployment	ubiquitous	incremental

- Scalability problem
 - flow state @ router

Specification of Guaranteed Quality of Service, Specification of the Controlled-Load Network 20 Element Service

DiffServ

- A scalable service discrimination framework based on packet tagging
- Design principles
 - Per-aggregate-class based
 - Pushing complexity to network boundary
 - Separating control policy from packet forwarding mechanism

DiffServ (2)

• DS field

– redefine TOS field in IPv4 header

0	1	2	3	4	5	6	7
DSCP				C	U		

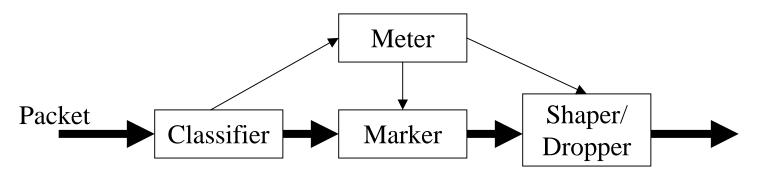
DSCP: Differentiated Services Codepoint

CU: Currently Unused

• PHB

– Per-hop behavior

Definition of the Differentiated Service Field (DS Field) in the IPv4 and IPv6 Headers


DiffServ (3)

• Network boundary

- Edge routers, leaf routers, hosts
- Finer granularity: classification, conditioning

• Core router

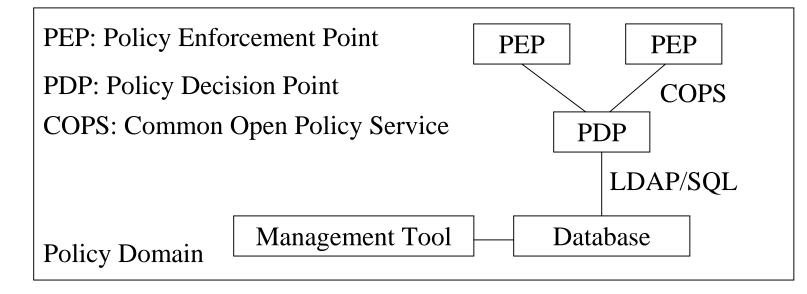
– simple PHB: fast & scalable

An Architecture for Differentiated Services

DiffServ (4)

• Service Models

Assured		
Statistical provisioning		
In: unlikely dropped		
Out: preferential dropping		
Olympic service (relative)		


An Expedited Forwarding PHB, Assured Forwarding PHB Group, A Case for Relative Differentiated Services and the Proportional Differentiation Model

1. Background

- 2. Basic concepts
- 3. Supporting mechanisms
- 4. Frameworks
- 5. <u>Policy & resource management</u>
- 6. Conclusion

Policy

- regulation of access to network resources & services
- <u>Policy infrastructure</u>: administrative intentions differential packet treatment

A Policy Framework for Integrated and Differentiated Services in the Internet

Resource Management

- Configuration
- Signaling protocol + admission control (with policy)
- Bandwidth Broker (BB)
 - Inter-domain: negotiate with adjacent domain
 - Intra-domain: resource allocation
 - Translate SLA => TCA
 - Policy database: if condition then action
 - Send TCA to edge router: COPS

1. Background

- 2. Basic concepts
- 3. Supporting mechanisms
- 4. Frameworks
- 5. Policy & resource management
- 6. <u>Conclusion</u>

Conclusion

- End-to-end QoS delivery
 - Two-tier architecture
 - Inter-domain: bilateral coordination
 - Intra-domain: many choice
 - IntServ, DiffServ, MPLS, Constraint-based routing
- Design principles
 - Separation of mechanism and control policy
 - Pushing complexity to network boundary: scalability