Consider the language of bitstrings:
\[L = \{(0 \cup 1)^m0(0 \cup 1)^m0(0 \cup 1)^n0(0 \cup 1)^n | m, n \geq 0\} \]

Consider the grammar \(G \):
\[
S \rightarrow ZZ \\
Z \rightarrow 0 | AZA \\
A \rightarrow 0 | 1
\]

Prove that \(G \) generates the language \(L \):

To prove that \(G \) generates \(L \), i.e. \(L(G) = L \), you have to show two things:

1. Prove \(L(G) \subset L \), i.e. all strings derivable from \(G \) are in \(L \)
2. Prove \(L \subset L(G) \), i.e. every string in \(L \) has a derivation in \(G \)

Notice that the first production of \(G \) generates a concatenation of two \(Z \)'s, each of which will generate a string. Also notice that strings in \(L \) are the concatenation of two strings in the language \(L' = \{(0|1)^i0(0|1)^i\} \), i.e. \(L = L'L' \). Thus it is enough to show that \(L(Z) = L' \) where \(L(Z) \) denotes the set of terminal strings generated from the variable \(Z \).

Lemma 0.1. \(L(Z) \subset L' \)

Proof. For the base case, there is one string with derivation of length 1, that is the string 0. It is generated by the derivation \(Z \Rightarrow 0 \). The string 0 is in \(L' \) because it is of the form \((0|1)^k0(0|1)^k \) with \(k = 0 \).

Now make the inductive hypothesis: If \(Z \Rightarrow^* w \) in less than \(n \) steps, then \(w \in L' \).

Let \(w \) be a string such that \(Z \Rightarrow^* w \) in \(n \) steps. Since the derivation has length greater than 1, it must use the production \(Z \Rightarrow AZA \). The inner \(Z \) generates a string \(w' \) in less than \(n \) steps. By the inductive hypothesis, \(w' \in L' \), i.e. \(w' = (0|1)^k0(0|1)^k \) for some \(k \). Since each \(A \) produces a 0 or 1, the result is that \(Z \Rightarrow AZA \Rightarrow (0|1)w'(0|1) = (0|1)^k+10(0|1)^k+1 \). Therefore \(w \in L' \). \(\square \)

Lemma 0.2. \(L' \subset L(Z) \)

Proof. For the base case, the shortest string in \(L' \) is the string 0. This is generated by \(Z \Rightarrow 0 \).

Now make the inductive hypothesis: If \(|w| \leq n \) and \(w \in L' \), then \(Z \Rightarrow w \).

Let \(w \) be any string of the form \((0|1)^{n/2}0(0|1)^{n/2} \) (here \(n/2 \) denotes integer division). This string can be broken up into \((0|1)(0|1)^{n/2-1}0(0|1)^{n/2-1}(0|1)\). The inner string \(w' \) of the form \((0|1)^{n/2-1}0(0|1)^{n/2-1}\) has length at most \(n - 1 \) and is
of the form $(0|1)^k 0(0|1)^k$, i.e. $w' \in L'$. Thus we may apply the induction hypothesis and assume that w' is generated by Z, i.e. $Z \Rightarrow^* w'$. So $Z \Rightarrow AZA \Rightarrow^* (0|1)w'(0|1) = w$. Thus, we have extended the inductive hypothesis to the next higher length and proved the theorem. \qed