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Abstract- We consider how to allocate bandwidth in a
multicast tree so as to optimize some global measure of per-
formance. In our model each receiver has a budget to be
used for bandwidth reservation on links along its path from
the source, and each link has a cost function depending on
the amount of total bandwidth reserved at the link by all re-
ceivers using that link. We formulate and solve a problem of
allocating bandwidth in the multicast tree such that the sum
of link costs is minimized.
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I. INTRODUCTION

Multicasting is under intense research and develop-
ment; see a survey in [2]. In order to provide quality
of service (QoS) to receivers in a multicast session,
mechanisms have been designed to perform resource
reservation on a multicast tree [6], [5]. However al-
gorithms to decide how much resource to reserve and
where are relatively unexplored. In [3] such an al-
gorithm is proposed where each receiver has an end-
to-end QoS requirement that is divided into QoS re-
quirement on each link in the path from the source to
the receiver either evenly or in inverse proportion to
the current load on the link. Bandwidth is then allo-
cated on each link to provide the required link QoS,
with adjustment to account for link sharing with other
receivers. In this paper we propose a different ap-
proach that, instead of distributing QoS requirement
along a receiver’s path evenly or proportionally, di-
rectl y distributes the resource budget of a receiver
along its path.

Suppose we are given a multicast tree where asso-
ciated with each node is a (possibly empty) set of re-
ceivers. Each receiver has a bandwidth budget and the
network’s goal is to distribute these budget in some
globally optimal manner, subject to the constraint that
a receiver’s budget can only be used to reserve band-
width on links in its own path from the source. We
will give two equivalent problem formulations, the
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path formulation (Section 3) and the cut formulation
(Section 4). We outline an iterative algorithm for the
solution of the path formulation that converges to the
optimal solution. We give a finite algorithm to solve
the cut formulation. Using the dual to the cut for-
mulation, we give a distributed algorithm to solve the
resource allocation problem and outline some prelim-
inary ideas on its implementation.

II. MODEL

Let G = (V, E) represent the given directed mul-
ticast tree. We assume that there are n nodes and
hence n – 1 arcs in the tree. Let s c V represent
the source. Let 1 c E denote a directed edge (link)
in the tree. Let t(l) and h(l) represent the tail and
the head nodes of link 1. Each node in the tree has a
sub-tree that is rooted from it. For a given link 1, let
T(l) = (V(I!), L(i)) represent the tree that is rooted at
h(l) where V(l) represents the set of vertices (includ-
ing h(l) ) in T(l) and L(l) represent the set of links
in 2’(1). Note that L(i) does not include the link 1.
We use ~(l) to represent L(l) U {1}. Note that there
is a unique path from s to any node in G. Let P(l)
represent the links in the path from s to h(l). Each
node v c V has associated with it a set of receivers
RV. Each receiver j has a budget bj, The budget at a
given node h(l), represented by I?l, is the sum of the
budgets of the receivers at h(l), i.e., 17 = XjeR~(l) bj.

We will refer to B1 as the budget on link 1. We assume
that B1 can only be used on the path P(l).

111. PATH FORMULATION

Our aim is to allocate resources on the links so that
some global objective function for the tree is opti-
mized. We assume that the objective is to minimize
the sum of some decreasing convex function on the
links. Let ~kl represent the amount of budget from
link k that is allocated to link 1 c P(k). Given a link
1note that this link lies on P(k) for all k c T(l). The
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resource allocation problem formulated below will be
termed the path formulation.

(1)

subject to

x Ukl < Bk, ‘dke E (2)
leP(k)

ak~ > 0, w, 1 e P(k) (3)

Here, each jl represents a cost on link 1, such as delay
through link 1, as a function of the total bandwidth
reserved at link 1. For instance, if each link can be
modeled as a &f/M/l queue, then jl (p) = (p – A)-l
represents the average delay through link 1 that is re-
ceiving at a rate of A (We assume that the receiving
rate A is fixed by quality of service requirement of
the receivers in the subtree fed by link Z). The ob-
jective is to minimize the total cost subject to budget
constraints of the receivers.

There is one constraint corresponding to each link
that dictates that the allocation made from that link
should not exceed the budget of the link. Note that
the constraint set is separable by links. The only in-
teraction between resources occurs in the objective
function. Therefore one can use an iterative scheme
to cc~mpute the optimal solution. In each iteration ev-
ery link individually solves a single-link problem to
distribute its own budget along its path, based on the
allocations by all other links in the last iteration. The
links exchange their results, and the cycle repeats un-
til there is no change in allocations.

To describe the algorithm precisely assume that the
budget for all links except link k has been allocated.
Let O* = (oJ, i, 1 c E) represent the allocation.
The single-link optimization problem PROB(k, CT*),
for link k is the following:

subject to

Note that given o“ this problem only involves link
k’s variable (~hl, 1 c P(k)), and can be solved us-
ing techniques in [7]. The path formulation (l–
3) is solved by cyclically solving the subproblems
PROB(k, o*) for each link, according to algorithm A
below.

Algorithm A

1. INITIALIZATION
●t=o, Ojl = o, W,l GE
. Number the links in some arbitrary order from 1

ton.

2.
●

●

3.
●

●

ITERATIVE STEP
t=t+l; o;l=oj;l,
Fori=l,2,... n,
Let o~l = o~l for all k

Vk, 1< E.

< ‘i.
Let oil solve PROB@,o“).

TERMINATION CHECK
If o~~l = o~l, for all i, 1, then stop;
Else go to Step 2.

In practice, the check for equality in the termina-
tion test is replaced by

Iajl – 0::1[ < q W, 1

for some small c.

Theorem 1: Algorithm A solves the path formula-
tion.
Proof:
(Sketch) Associate dual multipliers ~k ~ O, k’k G 1?,
with each constraint (2) and $hl < 0 with the non-
negativity constraints. The Kuhn-Tucker conditions
for optimality for (l-3) are, for all k c ~(l), 1 G E,

fz’( x O;J + J;l(k ~ -w)) + %2= o
jcz(l)

where J; and O&represent the optimal dual multipli-
ers and a~l satisfies (2) and (3) and

‘:zo;=”y ‘+k-lzk)o’z) ‘0

Note that optimality conditions are separable in k.
These conditions are the same, if the budgets for
all links except link k are allocated in an arbitrary
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manner and the budget for link 1 is allocated opti-
mally on the path P(l). Further, note that the ob-
jective function is non-increasing throughout the ex-
ecution of the algorithm. This is because each sub-
problem PROB(k, O*) by link k decreases &P(k) f~

but leaves other costs jl), 1’ # P(k), unchanged, as
the sets of variables (o~,l, k’ G ~(l), 1 c P(k)) and
(o~lll, k’ c ~(1’), 1’ f! P(k)) are disjoint. Therefore,
there can be no cycling in the algorithm. If the solu-
tion does not change one full iteration, then the col-
lection of Kuhn-Tucker conditions for all the individ-
ual subproblems is identical to the Kuhn-Tucker con-
dition given above for the path formulation. Hence
the solution is optimal. ❑

IV. CUT FORMULATION

The path formulation is easier to motivate as noted
in the last section. In this section we present an equiv-
alent cut formulation that leads to a distributed solu-
tion, important for large networks.

In this formulation, instead of considering the re-
source allocation problem one path at a time, we look
at different links in the network and determine how
much resources can be allocated on that link. An up-
per bound on the amount of resources on certain sets
of links can be determined as follows: for each link 1,
the sum of the allocations for all the links in ~(l) has
to be less than the sum of the budgets in that set ~(l).
One can write such a constraint for each cut in the
tree. This formulation will be termed the cut formu-
lation. It can be shown that the path formulation and
the cut formulation are equivalent. Let pl represent
the net amount of resource that is allocated to link Z.
Then the allocation problem is to find pz, 1 c l?, in
order to:

(4)
leE

subject to

We now present two algorithms to solve the optimiza-
tion problem. The first one is a simple (centralized)
greedy algorithm that terminates in a finite number of
steps, and the second one is a distributed algorithm
derived from the dual problem.

Before proceeding to the its solution, we first state
formally without proof the equivalence of the two for-
mulations.

Theorem 2: The path formulation and the cut for-
mulation are equivalent in the following sense. If
(a~l, k, 1 c E) is a solution to the path formula-
tion, then (P;, 1 G -E) defined by p; := ~wz(~j C%
is a solution to the cut formulation. Conversely, if
(p;, 1 E @ is a solution to the cut formulation, then
one can construct a solution (oil, k, 1 G E) to the path
formulation that satisfies p; = ~~~ql) oil.

A. Centralized algorithm

Note that there is one constraint corresponding to
each link and the sum on both sides of the inequality
in the constraints is over the set ~(l). Since the prob-
lem is defined on a directed tree, if L(lI) fl L(12) # @
then L(n, ~ L(Z2) or L(Z2) ~ L(n). Therefore these
sets form a laminar family [4]. As outlined in [4], a
modified greedy algorithm can be used to optimize
any separable convex objective function on a polyhe-
dron described by a laminar family. In the descrip-
tion of the greedy algorithm B below, we assume that
j((0) = c, V 1. It is easy to make modifications to
the algorithm when this condition does not hold. Let

~~-1 denote the inverse of the marginal cost function

f;.

Algorithm B

1. INITIALIZATION
(a) FI = 0, FR = E, /.$=0, VZCE.

2. MINIMUM RATIO TEST
(a) For each 1G E:
● IfT(l) n FR # 0 then determine ~(l) such that

z f;-’(w)=
jCT(l)nFR

~ Bj - ~ /-$
jCT(l)nFR jcT(l)nFI

● If 2“(1)n FR = 0 then set A(l) = oo.

@) Let A = min{~(l)} and L = arg min{~(l)}.

3. UPDATE STEP

(a) P;= fj-l(A), V.i 6 T(L) n FR,
FI = FIu T(L), FR= FR\T(L).

(b) If FR = 0 then stop else go to Step 2.
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Theorem 3: Algorithm B solves the cut formula-
tion,
Proofi
(Sketch) The sets for which there are constraints in
the cut formulation form a laminar family. From [4]
it is known that a polyhedron described by a lami-
nar family can be extended to a submodular polyhe-
dron and therefore a greedy algorithm can be used
to solve separable convex minimization problems on
this polyhedron. •1

B. Decentralized algorithm

Tlhe dual of problem (4–6) is

max D(p) = ~lll(p) – ~pl ~ Bl (7)
p>o

1 1 16z(l)

where

~l(p) = :3 ft(PJ + P1P2 (8)

P1 = x Pk (9)
kcP(l)

Consider the iterative solution of the dual problem (7)
using the gradient projection algorithm:

Pt(~ + 1) = bl(~) – ‘Ygg(P(t))l+ (10)

Here -y >0 is a step size, and (z)+ = max{z, O}. Let

pZ(p) be the unique maximizer in (8). Then ( 10) is

PJ(t + 1) = ~~(t) – Y ~ (PZ(P(t)) – EO]+
kc@)

(11)

By cluality theory there exists a p* ~ O such that the
allocation vector p(p”) that minimizes Dz(p”), 1 G E,
in (8) is indeed primal optimal. The following algo-
rithm C uses the links as processors in a distributed
computation system to solve the dual problem by it-
erating on (11) and (8–9).

Algorithm C

1. i2WTlALlZATION

t=o, p~(t) =

2. BANDRWTH UPDATE

pt (t) = ~ pk(t)
kcP(l)

Pl(q = f;-’(Pi(t))

3. DUAL VARIABLE UPDATE

4. Increment t and go to Step 2.

Algorithm C converges under the following as-
sumptions on the cost functions ~1:
Al: The cost functions jl are strictly convex de-
creasing and twice differentiable on [0, 13], where
B := ~lB1.
A2: O < l/@ s –~(’(pi) for all pl 6 [0, B], for all
1.

Let W = ~1 1~(1)\ where IAI is the number of ele-
ments of set A.

Theorem 4: Suppose A1–A3 hold and the step size
~ satisfies O < ~ < l/@V. Then every limit point
(p”, p”) of the sequence ({pap)} generated by
algorithm C is primal-dual optimal.
Proofi
(Sketch) Focus on solution of the dual problem. The
dual objective function is clearly lower bounded by
the primal objective value. In can be shown under as-
sumptions A 1 and A2 that it is also Lipschitz contin-
uous. Then any limit point p* of the sequence {p(t)}

generated by the gradient projection algorithm for the
dual problem is dual optimal; see [1, pp.214]. Then
x* = x (p*) is primal optimal since x (p) is continuous
in p. •1

Algorithm C can be implemented by periodically
passing signaling messages up and down the mul-
ticast tree, as follows (the description is for syn-
chronous algorithm but it can be extended to an asyn-
chronous version in a straightforward manner). A sig-
naling message contains two fields. The first field m
collects pZ for each link 1 to adjust its allocation pl,
going downward from the source. We will call the
dual variable PJ computed at link 1 accordingto(11)
a ‘price’. The second field A collects the total slack
Al in tree ~(l) for link 1 to adjust its price pl, going
upward towards the source.

Implementation

At timest = 1,3,5,...,
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1. Arnessag eisoriginatedat source and broadcast
towards all leaves with the field m set to zero.
2. Each link 1, on receipt of a forward message from
its parent:
(a) Add its current price pi(t) ton: T ~ n-+ pi(t).
(b) Forward the message with new rr to all its chil-

dren.
(c) Update its allocation: pl(t + 1) = &!-l(T).

At times t = 2,4,6,,..,
1. A.message is originated at every leaf link 1towards
the source with the field A set to link 1’s slack: A ~

P1(t) – BJ.
2. Each link 1,on receipt of backward messages from
all its children:
(a) Generate a backward message to its parent with

the field A set to:

k

where Ak is the value of the field A in the backward
message from link 1’s child link k.
(b) Update its price: pl(t + 1) = ~l(t) + 7A]+.

V. CONCLUSION

In this paper we have presented a model for op-
timal resource allocation in a multicast tree where
the objective is to minimize total link costs sub-
ject to budget constraints at each receiver. We have
presented two formulations and shown that they are
equivalent. The first formulation is easier to motivate
and admits a centralized solution. The advantage of
the second formulation, however, is not only that it
has a centralized finite solution, but also a distributed
and (decentralized solution that is more scalable.
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