
Distributed Hop by Hop Congestion Control in Wireless
Sensor Networks

By Vishal K. Singh.

1. Introduction

The aim of the project was to develop a distributed hop by hop congestion control
mechanism and incorporate the strategy in CODA[1] to improve the congestion control
mechanism. The distributed hop by hop mechanism to adjust source rate is incorporated
in CODA.

The algorithm changes the source rate at every node in proportion to change in
congestion factor which is calculated based on congestion scenario at this node and
cumulative congestion factor received from nodes downstream.

2. Design

The high level design consists of following:

1. Calculation of congestion factor in a distributed way based on the following factors:
a. Channel Loading Conditions
b. Queue Size.
c. Number of Retransmissions.

Channel load and queue size are traditionally used indicators for congestion in sensor
networks. A high channel load though indicates activity but does not concludes that the
current node is affected because there might be high utilization and the node may be at
the edge listening and register high load. Queue size is also a good measure of number of
packet rate.

We choose to use the amount of time the MAC of sensor nodes spends in
retransmission as more accurate measure of effect of congestion on the node and affects
the energy tax and fidelity given in CODA.

2. Adjusting source rate of nodes based on the value of congestion factor calculated
locally and based on cumulative congestion factor received

3. Propagates the value of congestion factor further upstream towards the source if it is
above a certain threshold.

The design is based on [2] applied to sensor networks.

2.1 Calculation of Congestion factor

Congestion factor at a node is an indicator of congestion seen by the current node which
comprises of local congestion and a distributed view of congestion in some or all portion
of network downstream. The sensor node should receive congestion factor periodically
(where periodicity depends on congestion downstream) and adjust the source rate based
on this factor. A higher value of subsequent congestion factor indicates increase in
congestion and causes source rate adjustment to deal with it.

The following factors can be used in the calculation of the congestion factor locally.

 Channel Load :

As the CODA paper [1] explains, channel load can be a good indicator of
congestion around a node. This value is calculated by sensing the channel` at periodic
intervals and looking at how many times it was found to be busy. This value can then be
used to calculate the congestion factor.

 Queue Size :

Channel load value, though a good indicator of congestion, can be misleading
sometimes. Hence, we also use current Queue size as a metric to calculate the congestion
factor. The decision to include Queue occupancy in the calculation was motivated by the
results of experiments mentioned in another paper [3]

 Retransmission Counter:

The NACK or ACK based retransmission counter and retransmission time over a
unit period of time over which rate regulation happens.

Total congestion factor = Function of (Local congestion factor, Received congestion
factor)

This equation is yet to be established though we implemented giving them 3/4 and ¼
weights and performance was found to be improved. The optimal value has to be
established mathematically as well as experimentally. This Total congestion factor is
propagated upstream, which indicates the weights given to local and received determine
the rate dependency proportion on local congestion or congestion downstream.

2.2. Rate adjustment based on received Congestion Factor

Rate adjustment limits the rate at which packets are sent based on the how it sees the
congestion in entire network. This also decides how much energy is expended in the
network. CODA makes a node sleep for random time when a suppress message is
received. In our approach we adjust the rate instead of making the node sleep.

Based on the difference between the current congestion factor and received congestion
factor, the node adjusts its rate using either an AIMD strategy or a rate control formula as
in [2].

3. Changes from CODA strategy and Implementation Details

 No sleep when suppress message is received
 No Closed loop control

Code level Changes (Functions)
 sendSuppressMsg :

This function was modified to incorporate the congestion factor to be sent
as an indication of the congestion state downstream.

 suppressMsgRcvd :
 calcCongestionFactor :

This function calculates the congestion factor based on the factors above
and is called from 2 places

1. channel sampling code
2. DataMsgRcvd

 sendNakMsg
 rcvdNakMsg
 Channelsense.result :


The values of congestion factor received is updated and used to adjust the rate. It is also
used to make the decision about further propagation of suppress messages.

4. Experiments

We did many experiments to compare the performance of vanilla coda and our coda for
different source rates, different radio models and different topologies. Our varied our
source rates from 5, 7, 10, 13, 15, 17, to 20. We also experimented with different radio
models such as simple, lossy generated using lossy builder generator, and lossy one-hop
models generated manually. We also changed the topology of the nodes to compare how
the systems responded to increasing the number of nodes and sources and congestion
localities in the network.

5. Results and Analysis

As we expected, we got good results and significant improvements over CODA. The
results along with the graph. The following are comparison of coda(VC) with our
coda(EC) for simple model and lossy models.

Overall, values for suppression messages sent was counted for all nodes on 30 second
intervals. For calculating the average energy tax, the difference was taken between the
number of packets sent from the source minus the number of packets received at the sink
divided by the total number of packet received at the sink. This number of packets sent
and received was calculated over 30 second time intervals and the equation follows that
which was used in the CODA paper. For calculating average fidelity penalty for all
different models we were using anquation dealing with the total number of packets
received at the sink divided by 30 (to compensate for the 30 second time interval). This
was also the way fidelity penalty was calculated in the CODA paper.

Energy Tax vs. Time

-50

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000
Time (seconds)

E
n

er
g

y
 T

a
x

VC Simple 10 pkts

EC Simple 10 pkts

EC Average : 28.66815
VC Average : 68.20416

From the above graph, it can is indicated that on average our enhanced CODA model
worked better than the vanilla CODA model. This can be attributed to the fact that the
average energy tax for vanilla CODA is 68.2 and for enhanced CODA is 28.68 which is
significantly smaller than the original model.

Suppressed Messages Sent vs. Time

-100

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000

Time (seconds)

S
u

p
p

re
ss

e
d

 M
e

ss
ag

es
 S

en
t

VC Simple 10 pkts

EC Simple 10 pkts

VC Average : 245.182

EC Average :116.836

As can be seen from the above graph, vanilla CODA sent out many more suppress
messages than did our enhanced CODA version. Varying values of suppress messages
sent can be expected as we are propagating it.

Fidelity Penalty vs. Time

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000

Time (seconds)

F
id

el
it

y
P

en
al

ty

VC Simple 10 pkts
EC Simple 10 pkts
VC Average: 0.00744
EC Average: 1.52465

As can be seen from above, the fidelity value again further proves that our model
performs better since we obtained an average fidelity penalty of 1.52 whereas vanilla
CODA gave an average of .00744.

The above three graphs represent the simple models at 1 packet/sec for vanilla CODA
and enhanced CODA.

Suppression Msgs Sent vs. Time

-100

0

100

200

300

400

500

0 500 1000 1500 2000
Time (seconds)

S
u

p
p

re
ss

io
n

 M
sg

s
S

en
t

VC Lossy 10 pkts
EC Lossy 10 pkts
VC Average : 1.807692
EC Average : 37.71739

Energy Tax vs. Time

-50

0

50

100

150

200

0 500 1000 1500 2000

Time (seconds)

E
n

er
g

y
T

ax

VC Lossy 10 pkts
EC Lossy 10 pkts
VC Average : 21.22942
EC Average : 33.28715

Fidelity Penalty vs. Time

-0.5

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000
Time (seconds)

F
id

el
it

y
P

en
al

ty
VC Lossy 10 pkts
EC Lossy 10 pkts
VC Average : 0.360256
EC Average : 0.302899

The above three graphs represent the lossy models from the lossy model generator at 1
packet/sec for vanilla CODA and enhanced CODA.

Suppression Msgs Sent vs. Time

-50

50

150

250

350

450

550

0 500 1000 1500 2000 2500 3000Time (seconds)

S
u

p
re

ss
io

n
 M

sg
s

S
en

t

VC Lossy One Hop 10 pkts
EC Lossy One Hop 10 pkts
VC Average : 53.95699
EC Average 218.1556

Energy Tax vs. Time

-50

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Time (seconds)

E
n

er
g

y
T

ax
VC Lossy One Hop 10 pkts
EC Lossy One Hop 10 pkts
VC Average : 45.53821
EC Average 35.1752

Fidelity Penalty vs. Time

-1

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000

Time (seconds)

F
id

el
it

y

VC Lossy One Hop 10 pkts
EC Lossy One Hop 10 pkts
VC Average : 0.105376
EC Average 1.518519

The above three graphs represent the lossy models for the one-hop model at 1 packet/sec
for vanilla CODA and enhanced CODA.

6. Conclusion and Future work

The future work is to do it on motes and see the result.

Topology with 18 nodes

Topology with 10 nodes

References:
1) Chieh-Yih Wan, Shane B. Eisenman and Andrew T. Campbell, “CODA:

Congestion Detection and Avoidance in Sensor Networks”, ACM SenSys
2003, November 2003.

2) “Hop-by-hop Congestion Control over a Wireless Multi-hop Network," Y. Yi and
S. Shakkottai. Proceedings of IEEE Infocom, Hong Kong, March, 2004.

3) Bret Hull, Kyle Jamieson, Hari Balakrishnan, "Techniques for Mitigating
Congestion in Sensor Networks" ACM SenSys 2004, November 2004.

