Distributed Hop by Hop Congestion Control in Wireless Sensor Networks
By Group C Manmohan Voniyadka, Sapna Dixit, Vipul Bhasin, Vishal K Singh,
1. Introduction

The aim of the project was to develop a distributed hop by hop congestion control mechanism and incorporate the strategy in CODA to improve the congestion control mechanism. The distributed hop by hop mechanism to adjust source rate is implemented in CODA.

The algorithm changes the source rate in proportional to change in congestion factor calculated based on congestion scenario at this node and cumulative congestion factor received from nodes downstream.
2. Design

The high level design consists of following:

1. Calculation of congestion factor in a distributed way based on the following factors:

a. Channel Loading Conditions

b. Queue Size.

c. Number of Retransmissions.
2. Adjusting source rate of nodes based on the value of congestion factor calculated locally based on current nodes and cumulative congestion factor received
3. Propagates the value of congestion factor if it is above a certain threshold.
2.1 Calculation of Congestion factor

Congestion factor at a node is an indicator of congestion seen by the current node which comprises of local congestion and a distributed view of congestion in some or all portion of network downstream. A higher value of subsequent congestion factor indicates increase in congestion and causes source rate adjustment to deal with it..

The following factors were used in the calculation of the congestion factor.

· Channel Load :

As the CODA paper points out, channel load can be a good indicator of congestion around a node. This value is calculated by sensing the channel` at periodic intervals and looking at how many times it was found to be busy. This value can then be used to calculate the congestion factor.

· Queue Size :

Channel load value, though a good indicator of congestion, can be misleading sometimes. Hence, we also use current Queue size as a metric to calculate the congestion factor. The decision to include Queue occupancy in the calculation was motivated by the results of experiments mentioned in another paper [Ref. XYZ]

· Retransmission Counter:

The NACK based retransmission was implemented. To simplify the implementation we send NACK messages when a packet is dropped from the queue.

When a NAK message is received we increment the counter and reset the counter after EPOCH time. So, we get both cumulative and per unit time values for NAK counter.
2.2. Rate adjustment based on received Congestion Factor

Rate adjustment is an important part of our approach as it limits the rate at which packets are sent based on the how it sees the congestion in entire network. This also decides how much energy is expended in the network. We decided to control the rate at intermediate nodes as well as the sources. This approach worked out well as we expected and we got good improvements over original CODA.

Using this scheme, the nodes keep track of the congestion factor value received in a suppress message received from downstream. Based on the difference between the two values, they adjust their rate using an AIMD strategy. If need be, they calculate a new congestion factor and propagate it downstream. The details of this are given in the next section.

The formula used for congestion factor is :
CFactor = (myBusyRatio + (100*qOccupancy/QSIZE) + (100*sameNakCtr)/epochCtr)/3;
2.3. Propagation of the value of Congestion Factor

In our strategy rate adjustment at any node in the network does not depend only on the immediate next hop but also the nodes that are more than one hop away on the way to the sink. Thus, the value of congestion factor that is propagated is cumulative and reflects the state of congestion at nodes upstream.

Another thing to be taken into account is that we do not want the suppress message to be sent when there is no congestion in this part of the network. Hence, the congestion factor is propagated, in other words, the suppress message is sent only when there is congestion. It is not propagated beyond the region where there is no congestion. The scheme approximates to closed loop in case of persistent congestion.
A node calculates its congestion factor based on the factors described above. Then it compares this value to a threshold and if this value is greater than this threshold value, it sends a suppress message downstream. Note that if this node receives a suppress message and reduces its rate, its queue lengths would start increasing and hence, it may cause a suppress message to be sent further.

As of now, we use similar thresholds as the original CODA for this.

3. Changes from CODA strategy and Implementation Details
· No sleep when suppress message is received

· No Closed loop control

Code level Changes (Functions)

· sendSuppressMsg :

This function was modified to incorporate the congestion factor to be sent as an indication of the congestion state downstream.
· suppressMsgRcvd :

· calcCongestionFactor :

This function calculates the congestion factor based on the factors above and is called from 2 places

1. channel sampling code
2. DataMsgRcvd
· sendNakMsg
· rcvdNakMsg

· Channelsense.result :

The values of congestion factor received is updated and used to adjust the rate. It is also used to make the decision about further propagation of suppress messages.

4. Experiments
We did many experiments to compare the performance of vanilla coda and our coda for different source rates, different radio models and different topologies. Our varied our source rates from 5, 7, 10, 13, 15, 17, to 20. We also experimented with different radio models such as simple, lossy generated using lossy builder generator, and lossy one-hop models generated manually. We also changed the topology of the nodes to compare how the systems responded to increasing the number of nodes and sources and congestion localities in the network.
5. Results and Analysis
As we expected, we got good results and significant improvements over CODA. The results along with the graph. The following are comparison of coda(VC) with our coda(EC) for simple model and lossy models.
Overall, values for suppression messages sent was counted for all nodes on 30 second intervals. For calculating the average energy tax, the difference was taken between the number of packets sent from the source minus the number of packets received at the sink divided by the total number of packet received at the sink. This number of packets sent and received was calculated over 30 second time intervals and the equation follows that which was used in the CODA paper. For calculating average fidelity penalty for all different models we were using anquation dealing with the total number of packets received at the sink divided by 30 (to compensate for the 30 second time interval). This was also the way fidelity penalty was calculated in the CODA paper.
[image: image1.emf]Energy Tax vs. Time

-50

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Time (seconds)

Energy Tax

VC Simple 10 pkts

EC Simple 10 pkts

EC Average : 28.66815

VC Average : 68.20416

From the above graph, it can is indicated that on average our enhanced CODA model worked better than the vanilla CODA model. This can be attributed to the fact that the average energy tax for vanilla CODA is 68.2 and for enhanced CODA is 28.68 which is significantly smaller than the original model.

[image: image2.emf]Suppressed Messages Sent vs. Time

-100

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000

Time (seconds)

Suppressed Messages Sent

VC Simple 10 pkts

EC Simple 10 pkts

VC Average : 245.182

EC Average :116.836

As can be seen from the above graph, vanilla CODA sent out many more suppress messages than did our enhanced CODA version. Varying values of suppress messages sent can be expected as we are propagating it.
[image: image3.emf]Fidelity Penalty vs. Time

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000

Time (seconds)

Fidelity Penalty

VC Simple 10 pkts

EC Simple 10 pkts

VC Average: 0.00744

EC Average: 1.52465

As can be seen from above, the fidelity value again further proves that our model performs better since we obtained an average fidelity penalty of 1.52 whereas vanilla CODA gave an average of .00744.
The above three graphs represent the simple models at 1 packet/sec for vanilla CODA and enhanced CODA.

[image: image4.emf]Suppression Msgs Sent vs. Time

-100

0

100

200

300

400

500

0 500 1000 1500 2000

Time (seconds)

Suppression Msgs Sent

VC Lossy 10 pkts

EC Lossy 10 pkts

VC Average : 1.807692

EC Average : 37.71739

[image: image5.emf]Energy Tax vs. Time

-50

0

50

100

150

200

0 500 1000 1500 2000

Time (seconds)

Energy Tax

VC Lossy 10 pkts

EC Lossy 10 pkts

VC Average : 21.22942

EC Average : 33.28715

[image: image6.emf]Fidelity Penalty vs. Time

-0.5

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000

Time (seconds)

Fidelity Penalty

VC Lossy 10 pkts

EC Lossy 10 pkts

VC Average : 0.360256

EC Average : 0.302899

The above three graphs represent the lossy models from the lossy model generator at 1 packet/sec for vanilla CODA and enhanced CODA.

[image: image7.emf]Suppression Msgs Sent vs. Time

-50

50

150

250

350

450

550

0 500 1000 1500 2000 2500 3000

Time (seconds)

Supression Msgs Sent

VC Lossy One Hop 10 pkts

EC Lossy One Hop 10 pkts

VC Average : 53.95699

EC Average 218.1556

[image: image8.emf]Energy Tax vs. Time

-50

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Time (seconds)

Energy Tax

VC Lossy One Hop 10 pkts

EC Lossy One Hop 10 pkts

VC Average : 45.53821

EC Average 35.1752

[image: image9.emf]Fidelity Penalty vs. Time

-1

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000

Time (seconds)

Fidelity

VC Lossy One Hop 10 pkts

EC Lossy One Hop 10 pkts

VC Average : 0.105376

EC Average 1.518519

The above three graphs represent the lossy models for the one-hop model at 1 packet/sec for vanilla CODA and enhanced CODA.

6. Conclusion and Future work
The future work is to do it on motes and see the result.
[image: image10.png]g 15 Irs
é P

S u
¢ e &

Topology with 18 nodes

[image: image11.png]

Topology with 10 nodes

