
DYSWIS: An Architecture for Automated Diagnosis of Networks

Vishal K. Singh, Henning Schulzrinne

 Dept. of Computer Science, Columbia University

{vs2140, hgs}@columbia.edu

Kai Miao

Intel Corporation, Santa Clara

Kai.miao@intel.com

Abstract
As the complexity of networked systems increases, we

need mechanisms to automatically detect failures in

the network and diagnose the cause of such failures.

To realize true self-healing networks, we also need

mechanisms to fix these failures and ensure service

availability by providing alternative means when a

failure is detected. In this paper, we address detection

and diagnosis of network failures. We introduce

DYSWIS (“Do you see what I see”) which relies on

observing the system from multiple points in the

network. Our system consists of detection nodes and

diagnosis nodes. Detection nodes detect failures by

passive traffic monitoring and active probing.

Diagnosis nodes determine the cause of failures using

historical information about similar failures and by

performing active tests. They are based on a rule

engine and represent network dependency relationship

encoded as rules. We present our prototype system

which considers network components present in a

VoIP network and show the feasibility of our solution.

1. Introduction
Failure diagnosis is one of the major challenges that

home users and network administrators face today. The

problem is more so because there are so many different

components which collaborate to realize a particular

service and these components belong to different

functional domains as well as physical locations. With

increasing number of such services, it is important to

design systems which enable easy diagnosis of

problems encountered and allow determining the root

cause of the failures.

To diagnose network problems, this paper proposes a

system called DYSWIS (“Do you see what I see”).

DYSWIS leverages distributed resources in the

network. It treats each node as a potential source of

network management information, gathering data about

network functionality. The state of the network is

observed by topologically dispersed nodes in the

network. Each node has its own view of the network.

Multiple views of different parts of the network are

aggregated to get an overall view of the network.

Failures seen by different nodes in the network are

correlated, along with historical failure information.

Once a diagnosis node has gathered insights on

whether other systems are experiencing similar

problems, it then combines this information with local

knowledge and tries to estimate root causes. This is

done using a rule based system, where rules represent

the dependencies among various network components.

DYSWIS nodes differ in capability level from basic

failure detection and maintenance of failure history

records to the ability to invoke a set of standardized or

customized network probing tools within the system

(e.g., ranging from versions of ping and traceroute to

more application-specific tools) for specific network

and application layer protocols and the ability to learn

and track network fault behavior, create and manage

diagnostic tests based on dependencies between

network components or protocols. A subset of

DYSWIS nodes in a network possess analytical

capability allowing them to make inferences about a

particular failure condition, perform or request

diagnostic tests towards localizing a specific type of

fault or faults and then draw certain conclusions

regarding the nature and scope of a particular fault. We

use the DROOLS [11] rule engine in our system to

encode the dependency relationship in the form of

probes or tests and queries. There can be lots of

variables in a complex network diagnosis, we found it

quite challenging to simplify the dependency rules as

well as decouple the actual diagnosis functionality

(probes (active tests) and queries (historical failure

information), their implementation. One of our main

goals was clear separation of diagnosis logic (rules)

from the processing part.

The remainder of this paper is organized as follows:

Section 2 presents related work; Section 3 presents the

DYSWIS approach in detail, Section 4 presents a

diagnosis flow example, Section 5 presents

implementation details, types of DYSWIS nodes,

protocol they follow among themselves and rule engine

details, Section 6 describes the probe selection criteria,

Section 7 presents the security consideration followed

by future work in Section 8 and conclusion in Section

9.

2. Related Work
Current fault diagnosis systems derive information

using SNMP [7] and other tools like ping [8],

traceroute [9], dig [10]. However, these tools provide

no assistance to end users or network administrators in

identifying the source of the problem in a multi-

provider systems leading to rather pointless ``try this'',

“re-install” or “reboot that'' exercises that frustrate

users and cause significant costs in technical support.

Other issues with current fault diagnosis systems are

that they are manual, time consuming and centralized.

Centralization of management infrastructure has two

main problems. It makes management vulnerable to

single point of failure and secondly, it considers a

single view of the entity being managed. Also, it

requires a network administrator to monitor the

reported failures. AutoMON [1] uses a P2P-based

framework for distributed network management. It uses

distributed network agents to test the performance and

reliability of network. It addresses the issues with

centralized network management infrastructure.

However, the nodes are not intelligent, do not co-

operate or use historical information about failures.

The system conducts periodic tests but does not encode

dependency information.

Irina et. al., [2], proposes an architecture for real-time

problem determination using active probing and

proposes a probe selection criteria and algorithm. It

integrates in our architecture as in our approach,

DYSWIS nodes select probes based on past results and

knowledge about dependency relationship.

Beygelzimer et. al. [3] propose algorithms for

representation of knowledge about the system. The

dependency relationship among network components

and services is one such kind of knowledge. In our

system, the knowledge about relationship among

components and services is represented as rules in the

form of tests and queries. Chen et. al., [4], proposes to

use decision tree learning for failure diagnosis.

Distributed fault management in Connected Home [5]

systems does fault diagnosis for connected home

system using an agent-based approach. It uses a set of

tests which test the different internal components and

are pre-defined like rules for each subsystem.

3. DYSWIS Approach
Before we go into describing our approach for

diagnosis, we classify the causes of failures seen in the

network. Some of the main causes of problems in the

networks are configuration problems, software bugs,

transient problems and hardware faults. The main focus

of our approach is to diagnose ‘transient problems’ as

these are most difficult to diagnose. Moreover,

software bugs and configuration problems are

repetitive in nature and disappear once identified and

resolved. Transient problems are run time problems

which go unnoticed and contribute to overall level of

reliability or level of uptime and hence, customer

satisfaction.

3.1 Underlying Model for DYSWIS Approach
We modeled the fault detection mechanism on the

medical diagnosis system and the cooperation between

peer nodes is modeled on human social network

system. A medical diagnosis of a patient by a doctor

where the patient experiences certain symptoms of an

illness, but the cause of these symptoms must be

identified by a trained doctor through a methodology

which may involve certain diagnostic tests to isolate or

confirm possible causes, in addition to leveraging

knowledge (similar medical cases) already available in

the world of medicine and knowledge from tests

already done in the process of diagnosis (medical

history). Similarly, to find the root cause of a service

failure in multimedia services, it requires an

understanding of the network and network components

that embody these services and dynamic relationships

among the networking components and having the right

tools and methodology to find the root cause from the

known or observed symptoms (failures). It also

involves leveraging knowledge about other failures in

the network (past failures) and historical information

obtained by conducting diagnostic tests.

To give an analogy of DYSWIS system with human

social network system, let us consider that a user

encounters a problem, that, he cannot connect to a web

site; he naturally asks his colleagues or other

neighboring users if they are also experiencing similar

problems. He would run some basic tests like a ping

test from his PC to the web server’s address. If the

ping-based reach-ability test succeeds he may ask his

colleague sitting next to him, whether he is able to

browse the site. This will help him to infer if the

problem is specific to him or others are also

encountering the problem. If the colleague can browse

the site, the user deduces that problem is local on

browser or the web site has blocked his IP address or a

possible firewall problem. Similarly, in DYSWIS

system, a node encountering a failure first asks it

neighboring node if they are also experiencing similar

failures before reporting the problem for diagnosis.

DYSWIS nodes try to determine the cause of failure by

asking questions to peer nodes and performing active

tests. The questions or queries encapsulate the

dependency relationship. This iterative process of

isolating cause of failure based on asking questions is

the basis of our approach.

3.2 Steps in DYSWIS Diagnosis
The DYSWIS approach relies on the peer nodes to

determine the root cause of the failure. Upon

encountering a failure a node asks its peer nodes if they

are also observing the failure. The peer nodes, based on

their past experience with the same service or based on

a probe, conclude that that failure is local to the node.

The DYSWIS nodes are described in [18]. In some

cases, the failure can be local to a subnet, access

switch, access point or the domain. In other words,

locality of failure can extend from node itself to the

entire domain. The diagnosis infrastructure may request

multiple peer nodes about a particular service to

localize the problem.

 Figure 1 Flow diagram of diagnostic process

The architecture of the proposed fault diagnosis

framework consists of the following major functional

components: Detection infrastructure and reporting of

failures, pre-diagnostic processing and diagnostic test

selection and finally diagnostic tests, result analysis and

storing historical results.

Figure 1 shows a flow diagram of diagnostic process.

The first step in diagnostic process is detection and

reporting of failures. The fault diagnosis framework

reports user detected and automatically

(programmatically) detected failures for analysis to the

fault diagnosis system. The failure reports include

detailed context information about the failure, such as,

one hop distance at different OSI layers, e.g., access

point or switch information at layer 2, default router or

subnet information at layer 3, first hop SIP proxy

server at application layer, timestamp when failure is

observed, participating node’s hostname and IP

addresses.

The next step is processing and storage of failure

information. “Failure event correlation” [17] is done to

aggregate multiple common failures. The received

failure information is compared against existing failure

information sent from other sources to remove

duplicated diagnostics for the same root cause. For

example, two different phones can experience call

failure because of DNS failure. Based on this pre-

diagnostic processing, it is determined as what services

need to be tested. Factors considered for pre-diagnostic

processing can include time of failure, locality of

failure, historical data about last seen failure and

historical data about latest successful operation.

Once the pre-diagnostic processing is done, the next

step is diagnostic test selection or “Probe selection”.

This determines which probe/test to run on which

nodes.

The next step is execution of selected diagnostic test or

“probing”. The result of the test is sent back to the

system for further analysis, which may result in

selecting another diagnostic test based on dependency

graph. If the diagnostic test results in finding the root

cause of failure, notification is sent so that repair action

can be taken. The results of the diagnostic tests, both

successes and failures are stored as history information.

The system relies on diagnostic tests and historical data

of other peers. The diagnostic tests can be carried out

by the same node or different nodes depending upon

node’s physical location, capability to perform a test

and other factors. For example, a node running on a PC

can perform a test to check the availability of a DNS

server but may not be able to perform SIP proxy server

availability testing.

4. Example Diagnosis Flow
To explain how our DYSWIS system works, consider a

VoIP system (Figure 4). A failure seen by a user, e.g., a

Failure

Detection

User
Probing

Repairs

Test

Selection

Notification

Passive

tests

Analysis

call set up failure, can be because of access network

failure, mis-behaving NAT or failure on SIP proxy

server or STUN server authentication failure. Each of

these failures could be caused by mis-configuration,

software bugs, server or network overloading or other

transient problems in the network. Additionally, there

is a complete set of supporting services in the network

such as DHCP, ARP, and DNS.

Figure 2 Different network components interacting

Consider a user alice@example.com tries to make a

call to another user bob@destination.com and the call

does not go through. The end point which tried to make

a call to the remote end point triggers the DYSWIS

system to perform diagnosis which takes the following

steps:

- The diagnosis node queries if any other node from

caller’s location has made a call to the user

bob@destination.com. In this case, the location

could mean from the same subnet, VLAN, access

switch/access point or domain.

- The response can be that other nodes have recently

made a call to same destination address or to the

destination domain, not to same destination

address or no node have made any call to

destination address or destination domain. It

should be noted that historical success or failure

information is queried taking into account location

of observed failure (hence using the topology)

along with functional dependencies.

- Based on the response, the diagnosis node may

request another node to send a SIP OPTION

message to the destination address or it may

request to make a call to the test node in the

destination domain. This test is done both from

location of original node which encountered a call

failure as well as another location to see if this

could be a problem specific to the caller’s location.

This will test the availability of remote SIP

endpoint.

- Based on the response from the tests and historical

information from other peer nodes, the location of

failure is isolated. The next step is testing the

proxy server in failure domain.

- The result of above rule based diagnosis is

identification that the problem is present in local

node or remote node or in local domain or remote

domain and possibly in which component. This

also depends on granularity at which rules (tests

and queries) encode the dependencies.

Figure 3, 4 and 5; explain the above described

approach of DYSWIS. The flow charts show the order

of tests based on dependency graph encoded using the

rules in the diagnosis nodes.

Figure 3 Call failure diagnosis

As we can see, Figure 3 shows the rules for ‘call failure

diagnosis’ which in turn may trigger ‘media failure

diagnosis’ (Figure 4) or ‘proxy failure diagnosis’

(Figure 5). The call failure diagnosis involves call

signaling diagnosis which in turn involves testing of

remote SIP end point, local proxy server, STUN server

and DNS server. These may further trigger diagnosis of

network connectivity and availability of supporting

protocols (services). The reports are stored and used to

decide the order of queries for future failures. For

example, if a call failure to the same destination is

reported and diagnosis was already done for that

failure, no more tests will be done.

Figure 4 Media failure diagnosis

 Figure 5 Proxy failure diagnosis

5. DYSWIS Implementation
In this section, we describe our implementation of

DYSWIS diagnosis framework, overview of sensor

nodes and diagnosis nodes, discovery of diagnosis

nodes, request-response protocol used between

DYSWIS nodes and finally, dependency

representation. We also present an example diagnosis

flow to illustrate the steps in diagnosis.

5.1 Diagnosis Framework
The whole DYSWIS framework consists of diagnosis

nodes, sensor nodes (probe and failure detection/

reporting nodes), rules in diagnosis node, probe

functionality in sensor nodes, request-response protocol

between the nodes and storage of historical

information. These are described in next sections.

 Figure 6 Diagnosis framework architecture

Figure 6 describes the work flow of DYSWIS

framework. The lowest layer in Figure 6 shows

network components, e.g., SIP Proxy, DNS server,

SMTP server. There is an overlay of probe nodes

which are capable of performing different types of

tests. These nodes pre-register their location as well as

testing capability to the diagnosis node. Diagnosis

nodes are the intelligent nodes that have information

about probe nodes, store historical failure information

and store dependency rules encoded as tests and

queries. When a DYSWIS sensor node detects a failure

it updates the failure information by sending a SIP

PUBLISH [14] request. This triggers a DYSWIS

diagnosis node to start diagnosis which in turn may

request the DYSWIS probe node using SIP

SUBSCRIBE [14] to perform certain tests and submit

the result back. The result is submitted back to the

diagnosis node using SIP NOTIFY [14] request. The

results of tests are used to determine further tests and

also determine which nodes are suitable for performing

which tests.

5.2 Type of DYSWIS Nodes
Now we describe about the various types of DYSWIS

nodes and their interactions.

5.2.1 Sensor nodes
To detect failures in the network, the DYSWIS relies

on sensor nodes which are active and passive nodes

and are distributed in the network.

DYSWIS nodes passively sniff traffic and pro-actively

report any failures. At the application layer, DYSWIS

nodes can operate as “shadow” applications that access

the same servers and services as the real application

and thus help distinguish server and network faults

from implementation failures and other conditions. For

example, many embedded devices will silently ignore

issues such as transient registration failures in SIP as

they have no good way to report those to the user. A

DYSWIS sensor node can monitor such failures by

sniffing traffic (absence of 200 OK for SIP

REGISTER) and alert the DYSWIS system before such

failures result in loss of service, e.g., lost incoming

calls because of registration failure.

DYSWIS sensor nodes also detect non-availability of

service by conducting active tests. These nodes conduct

periodic tests by emulating user action e.g., making a

call. The nodes update the failure information once

detected to a diagnosis node by sending a SIP

PUBLISH message. These nodes are also called as

probe nodes.

In our system which was implemented for VoIP

network, we have implemented the following probes:

- SIP trace route using SIP OPTION message to

determine application level path for SIP requests.

- SIP calls - INVITE tests – This can be used to test

the proxy behavior as well as end point behavior.

- SIP OPTIONS

- NAT test – for one way audio

- Ping – IP layer reach

- Web server availability

- RTP test – jitter and loss for voice quality

- DNS tests – A, AAAA, SRV, MX record tests

5.2.2 Diagnosis Nodes
Diagnosis nodes are intelligent nodes in DYSWIS

system and work based on a rule engine. We used the

DROOL [11] rule engine which is a forward chaining

engine. The logic to choose the probe nodes is

implemented in diagnosis nodes. In addition rules to

determine the tests are specified to them. The SIP

PUBLISH and NOTIFY requests received from sensor

nodes update the historical failure database.

5.2.3 Request-Response Protocol
The DYSWIS nodes use a request response protocol to

communicate among themselves, mainly:

- For notifying about detected failures to a diagnosis

node.

- For requesting a probe to be run and results of the

probe to be sent.

SIP PUBLISH and NOTIFY are used to report about

failures and test results. SIP SUBSCRIBE is used to

request active sensor nodes to perform tests. Other

nodes can subscribe and get notified about diagnosis

nodes available in the network at any point of time. We

used NIST SIP [13] for implementing the request-

response protocol for DYSWIS nodes.

5.2.4 Discovering the DYSWIS node
The probe and diagnosis nodes register themselves to

with their capabilities to the DYSWIS system using

SIP REGISTER request. This information (capability

and location) is used to determine which node will do

which tests. DYSWIS nodes can receive SIP NOTIFY

and get updated about other nodes in the system. The

end nodes can send SIP SUBSCRIBE to server and get

information about diagnosis nodes using SIP NOTIFY.

5.3 Rule Engine – Dependency relationship
In this section, we explain different types of

dependencies and we explain how we represented

dependency in our implementation.

Dependency information can be represented at different

levels. Functional dependency at service level e.g., SIP

proxy depends on database (DB) service and DNS

service. Instance level dependency are runtime

bindings, e.g., the call which failed was using failover

SIP server obtained using DNS SRV was running on a

particular host. Dependencies can be represented at

protocol level also, e.g., SIP depends on DNS. There

can be vertical and lateral dependencies, e.g.,

applications can depend on other application layer

services like SIP service depends on DB and DNS

service. Applications also depend on transport layer

services which in turn depend on network layer

services. There can be topology based dependency:

e.g., calls from a particular domain depends on specific

SIP server and specific switch and routers

5.3.1 Dependency representation
We represent dependencies using rules, using tests and

queries using the DROOL rule engine framework.

Queries are used to find information about past

failures. Tests are probes and are used to conduct

diagnostic tests.

Figure 7 Sample rules for dependency

Figure 7 above is a rule snippet of DROOL rule engine

which we used. The rule says when an event ‘Call

Failed’ occurs, test SIP proxy server, if SIP proxy is

good, test the DNS server, otherwise, start diagnosis

for DNS server. The “doPreprocessing” step queries

for past failures, if the failure is already reported or

diagnosed, it prevents the diagnosis to be started again.

6. Probe selection criteria
Some tests are computationally costlier and create

more load on the network then others. There are also

tests which are very specific to application types vs. a

test which is more generic, e.g., SIP ping vs. IP ping.

The order in which tests are done based on rules can

have a significant impact on the speed of problem

resolution. Most of the times the results from tests and

sometimes statistical information help to determine

which test must be done next. For example, an ICMP

ping test and SIP ping test involve different costs on

the host, the network components etc., and would result

in vastly different results. An ICMP failure would

remove the necessity to perform SIP level ping,

whereas a failure at SIP ping would make the ICMP

test as the next step. Additional factors that the probe

selection algorithm considers are the location of the

node which can perform the test with respect to the

service which needs to be tested and with respect to

service invocation which resulted in failure observed.

For example, it may be useful to conduct a DNS test

from two different subnets to ensure that problem of

DNS failure is not local to the subnet and not local to

the node itself.

7. Security Considerations
In our approach, nodes can ask other nodes to construct

certain requests and send these requests to the target

node. That way, new protocols can be supported

without upgrading every DYSWIS node. However,

such a system may lead to use of DYSWIS nodes as

bot-nets that attack victims and become remote-

controlled denial-of-service tools. Mechanisms must be

built-into the architecture to prevent this. For example,

rate limits and caching of results could ensure that each

type of request, identified by its destination IP address

and port, is only sent once within a time interval

measured in minutes. The system also needs to avoid

becoming a vector for mis-using address-based trust,

allowing a third party to gain access to information that

is restricted based on source IP addresses.

8. Future Work
In our implementation, we encoded dependency

relationship as rules in the form of queries and probes;

however, with networks growing in terms of

components, services and protocols, there is a need to

generate the dependency relation automatically using

statistical mechanisms and using temporal correlation

among failures detected. Secondly, we need

instrumentation of applications to detect and report

failures in order to trigger diagnosis. To detect failures

without requiring software upgrade would require us to

detect network failures using traffic analysis. This in

turn would require specifying protocol details using a

rule language to the traffic analyzer.

We identified requirement of a rule language for failure

diagnosis. One of the tradeoffs in developing a rule

language for diagnosis is simplicity vs. capability. An

expert must be able to specify rules with ease without

requiring much knowledge about a programming

language. However, this limits the functionality that

can be expressed in a rule. The system needs to provide

mapping between functionality of the system vs. the

tools available to the expert. Providing a fixed mapping

reduces the enhance-ability of the diagnosis system for

new probes. A more scripting-based approach gives

more flexibility but more complexity to the expert. A

system which gives flexibility by taking external

binaries/scripts and output of such binaries and scripts

back to the rule language as well as provides a fairly

high level way of representing knowledge may be good

approach, a mix of XML and shell script style.

Finally, failure event correlation based on rules is

another area of future work.

9. Conclusion
In this paper, we proposed DYSWIS system to

automatically diagnose network failures and determine

the root cause of failures and presented a reference

implementation for a VoIP system. DYSWIS system

can be implemented for any kind of network as long as

probes can be defined, queries can be implemented and

an expert can define the dependency rules based on

existing probes and queries. We used the DROOL rule

framework to represent the dependency information.

As a part of this work, we came up with requirement

for a rule-based language which would meet the goals

of a rule language for network diagnosis. Our

framework uses SIP event notification framework for

sending requests and receiving responses. The initial

results were obtained by inducing failures manually and

observing how DYSWIS triggers diagnostic

processing.

10. References
[1] Binzenhöfer, A., Tutschku, K,. Graben, B., Fiedler,

M., Arlos, P., “A P2P-Based Framework for

Distributed Network Management”, New Trends in

Network Architectures and Services, LNCS, Loveno di

Menaggio, Como, Italy, 2006.

[2] Rish, I. Brodie, M. Odintsova, N. Sheng Ma

Grabarnik, G., “Real-time problem determination in

distributed systems using active probing”, Network

Operations and Management Symposium, 2004.

NOMS 2004. IEEE/IFIP.

[3] Beygelzimer A., Brodie M., Ma S., Rish I., Test-

based Diagnosis: Tree and Matrix Representations, in

Proceedings of IM 2005.

[4] Chen, M. Zheng, A.X. Lloyd, J. Jordan, M.I.

Brewer, E., “Failure diagnosis using decision trees”,

International Conference on Autonomic Computing,

2004. Proceedings. 17-18 May 2004.

[5] Utton, P.; Scharf, E., “A fault diagnosis system for

the connected home”, Communications Magazine,

IEEE, Volume 42, Issue 11, Nov. 2004, 128 - 134.

[6] Keller, A.; Blumenthal, U.; Kar, G., "Classification

and computation of dependencies for distributed

management", Fifth IEEE Symposium on Computers

and Communications, 2000. Proceedings ISCC 2000.

Volume, Issue, 2000, 78 – 83.

[7] Case, J., Fedor, M., Schoffstall, M., Davin, J.,

"Simple Network Management Protocol", STD 15,

RFC 1157, May 1990.

[8] Ping - http://ftp.arl.mil/~mike/ping.html

[9] Traceroute - http://tools.ietf.org/html/rfc1393

[10] Dig - http://linux.die.net/man/1/dig

[11] DROOL - http://labs.jboss.com/drools/

[12] Jess - http://herzberg.ca.sandia.gov/jess/

[13] NIST SIP - http://snad.ncsl.nist.gov/proj/iptel/

[14] Jennings, C., Peterson, J., and M. Watson,

"Private Extensions to the Session Initiation Protocol

(SIP) for Asserted Identity within Trusted Networks",

RFC 3325, November 2002.

[15] Rosenberg, J., Schulzrinne, H., Camarillo, G.,

Johnston, A., Peterson, J., Sparks, R., Handley, M., and

E. Schooler, "SIP: Session Initiation Protocol", RFC

3261, June 2002.

[16] B. Gruschke.; “A New Approach for Event

Correlation based on Dependency Graphs”. In

Proceedings of the 5th Workshop of the OpenView

University Association: OVUA'98, Rennes, France,

April 1998.

[17] Hasan, M., Sugla, B., Viswanathan, R.,; “A

conceptual framework for network management event

correlation and filtering systems”; Proceedings of the

Sixth IFIP/IEEE International Symposium on

Integrated Network Management, 1999.

[18] Miao, K., Schulzrinne, H., Singh, V., Deng, Q.,

“Distributed Self Fault-Diagnosis for SIP Multimedia

Applications”, To appear in MMNS’2007, 10th

IFIP/IEEE International Conference on Management of

Multimedia and Mobile Networks and Services.

