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Abstract 
As the complexity of networked systems increases, we 

need mechanisms to automatically detect failures in 

the network and diagnose the cause of such failures. 

To realize true self-healing networks, we also need 

mechanisms to fix these failures and ensure service 

availability by providing alternative means when a 

failure is detected. In this paper, we address detection 

and diagnosis of network failures. We introduce 

DYSWIS (“Do you see what I see”) which relies on 

observing the system from multiple points in the 

network. Our system consists of detection nodes and 

diagnosis nodes. Detection nodes detect failures by 

passive traffic monitoring and active probing. 

Diagnosis nodes determine the cause of failures using 

historical information about similar failures and by 

performing active tests. They are based on a rule 

engine and represent network dependency relationship 

encoded as rules. We present our prototype system 

which considers network components present in a 

VoIP network and show the feasibility of our solution. 

 

1. Introduction 
Failure diagnosis is one of the major challenges that 

home users and network administrators face today. The 

problem is more so because there are so many different 

components which collaborate to realize a particular 

service and these components belong to different 

functional domains as well as physical locations.  With 

increasing number of such services, it is important to 

design systems which enable easy diagnosis of 

problems encountered and allow determining the root 

cause of the failures. 

 

To diagnose network problems, this paper proposes a 

system called DYSWIS (“Do you see what I see”). 

DYSWIS leverages distributed resources in the 

network. It treats each node as a potential source of 

network management information, gathering data about 

network functionality. The state of the network is 

observed by topologically dispersed nodes in the 

network. Each node has its own view of the network. 

Multiple views of different parts of the network are 

aggregated to get an overall view of the network. 

Failures seen by different nodes in the network are 

correlated, along with historical failure information. 

Once a diagnosis node has gathered insights on 

whether other systems are experiencing similar 

problems, it then combines this information with local 

knowledge and tries to estimate root causes. This is 

done using a rule based system, where rules represent 

the dependencies among various network components. 

 

DYSWIS nodes differ in capability level from basic 

failure detection and maintenance of failure history 

records to the ability to invoke a set of standardized or 

customized network probing tools within the system 

(e.g., ranging from versions of ping and traceroute to 

more application-specific tools) for specific network 

and application layer protocols and the ability to learn 

and track network fault behavior, create and manage 

diagnostic tests based on dependencies between 

network components or protocols. A subset of 

DYSWIS nodes in a network possess analytical 

capability allowing them to make inferences about a 

particular failure condition, perform or request 

diagnostic tests towards localizing a specific type of 

fault or faults and then draw certain conclusions 

regarding the nature and scope of a particular fault. We 

use the DROOLS [11] rule engine in our system to 

encode the dependency relationship in the form of 

probes or tests and queries. There can be lots of 

variables in a complex network diagnosis, we found it 

quite challenging to simplify the dependency rules as 

well as decouple the actual diagnosis functionality 

(probes (active tests) and queries (historical failure 

information), their implementation. One of our main 

goals was clear separation of diagnosis logic (rules) 

from the processing part. 

 

The remainder of this paper is organized as follows: 

Section 2 presents related work; Section 3 presents the 



DYSWIS approach in detail, Section 4 presents a 

diagnosis flow example, Section 5 presents 

implementation details, types of DYSWIS nodes, 

protocol they follow among themselves and rule engine 

details, Section 6 describes the probe selection criteria, 

Section 7 presents the security consideration followed 

by future work in Section 8 and conclusion in Section 

9. 

 

2. Related Work 
Current fault diagnosis systems derive information 

using SNMP [7] and other tools like ping [8], 

traceroute [9], dig [10]. However, these tools provide 

no assistance to end users or network  administrators in 

identifying the source of the problem in a multi-

provider systems leading to rather pointless ``try this'', 

“re-install” or “reboot that'' exercises that frustrate 

users and cause significant costs in technical support.  

Other issues with current fault diagnosis systems are 

that they are manual, time consuming and centralized. 

Centralization of management infrastructure has two 

main problems. It makes management vulnerable to 

single point of failure and secondly, it considers a 

single view of the entity being managed. Also, it 

requires a network administrator to monitor the 

reported failures. AutoMON [1] uses a P2P-based 

framework for distributed network management. It uses 

distributed network agents to test the performance and 

reliability of network. It addresses the issues with 

centralized network management infrastructure. 

However, the nodes are not intelligent, do not co-

operate or use historical information about failures. 

The system conducts periodic tests but does not encode 

dependency information. 

 

Irina et. al., [2], proposes an architecture for real-time 

problem determination using active probing and 

proposes a probe selection criteria and algorithm. It 

integrates in our architecture as in our approach, 

DYSWIS nodes select probes based on past results and 

knowledge about dependency relationship. 

Beygelzimer et. al. [3] propose algorithms for 

representation of knowledge about the system. The 

dependency relationship among network components 

and services is one such kind of knowledge. In our 

system, the knowledge about relationship among 

components and services is represented as rules in the 

form of tests and queries.  Chen et. al., [4], proposes to 

use decision tree learning for failure diagnosis. 

Distributed fault management in Connected Home [5] 

systems does fault diagnosis for connected home 

system using an agent-based approach. It uses a set of 

tests which test the different internal components and 

are pre-defined like rules for each subsystem. 

 

3. DYSWIS Approach 
Before we go into describing our approach for 

diagnosis, we classify the causes of failures seen in the 

network. Some of the main causes of problems in the 

networks are configuration problems, software bugs, 

transient problems and hardware faults. The main focus 

of our approach is to diagnose ‘transient problems’ as 

these are most difficult to diagnose. Moreover, 

software bugs and configuration problems are 

repetitive in nature and disappear once identified and 

resolved. Transient problems are run time problems 

which go unnoticed and contribute to overall level of 

reliability or level of uptime and hence, customer 

satisfaction. 

 

3.1 Underlying Model for DYSWIS Approach 
We modeled the fault detection mechanism on the 

medical diagnosis system and the cooperation between 

peer nodes is modeled on human social network 

system. A medical diagnosis of a patient by a doctor 

where the patient experiences certain symptoms of an 

illness, but the cause of these symptoms must be 

identified by a trained doctor through a methodology 

which may involve certain diagnostic tests to isolate or 

confirm possible causes, in addition to leveraging 

knowledge (similar medical cases) already available in 

the world of medicine and knowledge from tests 

already done in the process of diagnosis (medical 

history). Similarly, to find the root cause of a service 

failure in multimedia services, it requires an 

understanding of the network and network components 

that embody these services and dynamic relationships 

among the networking components and having the right 

tools and methodology to find the root cause from the 

known or observed symptoms (failures). It also 

involves leveraging knowledge about other failures in 

the network (past failures) and historical information 

obtained by conducting diagnostic tests. 

 

To give an analogy of DYSWIS system with human 

social network system, let us consider that a user 

encounters a problem, that, he cannot connect to a web 

site; he naturally asks his colleagues or other 

neighboring users if they are also experiencing similar 

problems. He would run some basic tests like a ping 

test from his PC to the web server’s address. If the 

ping-based reach-ability test succeeds he may ask his 

colleague sitting next to him, whether he is able to 

browse the site. This will help him to infer if the 

problem is specific to him or others are also 



encountering the problem.  If the colleague can browse 

the site, the user deduces that problem is local on 

browser or the web site has blocked his IP address or a 

possible firewall problem. Similarly, in DYSWIS 

system, a node encountering a failure first asks it 

neighboring node if they are also experiencing similar 

failures before reporting the problem for diagnosis. 

 

DYSWIS nodes try to determine the cause of failure by 

asking questions to peer nodes and performing active 

tests. The questions or queries encapsulate the 

dependency relationship. This iterative process of 

isolating cause of failure based on asking questions is 

the basis of our approach.   

 

3.2 Steps in DYSWIS Diagnosis 
The DYSWIS approach relies on the peer nodes to 

determine the root cause of the failure. Upon 

encountering a failure a node asks its peer nodes if they 

are also observing the failure. The peer nodes, based on 

their past experience with the same service or based on 

a probe, conclude that that failure is local to the node. 

The DYSWIS nodes are described in [18]. In some 

cases, the failure can be local to a subnet, access 

switch, access point or the domain. In other words, 

locality of failure can extend from node itself to the 

entire domain. The diagnosis infrastructure may request 

multiple peer nodes about a particular service to 

localize the problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 1 Flow diagram of diagnostic process 

The architecture of the proposed fault diagnosis 

framework consists of the following major functional 

components: Detection infrastructure and reporting of 

failures, pre-diagnostic processing and diagnostic test 

selection and finally diagnostic tests, result analysis and 

storing historical results. 

Figure 1 shows a flow diagram of diagnostic process. 

The first step in diagnostic process is detection and 

reporting of failures. The fault diagnosis framework 

reports user detected and automatically 

(programmatically) detected failures for analysis to the 

fault diagnosis system. The failure reports include 

detailed context information about the failure, such as, 

one hop distance at different OSI layers, e.g., access 

point or switch information at layer 2, default router or 

subnet information at layer 3, first hop SIP proxy 

server at application layer, timestamp when failure is 

observed, participating node’s hostname and IP 

addresses. 

 

The next step is processing and storage of failure 

information. “Failure event correlation” [17] is done to 

aggregate multiple common failures. The received 

failure information is compared against existing failure 

information sent from other sources to remove 

duplicated diagnostics for the same root cause. For 

example, two different phones can experience call 

failure because of DNS failure. Based on this pre-

diagnostic processing, it is determined as what services 

need to be tested. Factors considered for pre-diagnostic 

processing can include time of failure, locality of 

failure, historical data about last seen failure and 

historical data about latest successful operation.  

 

Once the pre-diagnostic processing is done, the next 

step is diagnostic test selection or “Probe selection”. 

This determines which probe/test to run on which 

nodes.  

 

The next step is execution of selected diagnostic test or 

“probing”. The result of the test is sent back to the 

system for further analysis, which may result in 

selecting another diagnostic test based on dependency 

graph. If the diagnostic test results in finding the root 

cause of failure, notification is sent so that repair action 

can be taken. The results of the diagnostic tests, both 

successes and failures are stored as history information. 

The system relies on diagnostic tests and historical data 

of other peers. The diagnostic tests can be carried out 

by the same node or different nodes depending upon 

node’s physical location, capability to perform a test 

and other factors. For example, a node running on a PC 

can perform a test to check the availability of a DNS 

server but may not be able to perform SIP proxy server 

availability testing.  

 

4. Example Diagnosis Flow 
To explain how our DYSWIS system works, consider a 

VoIP system (Figure 4). A failure seen by a user, e.g., a 
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call set up failure, can be because of access network 

failure, mis-behaving NAT or failure on SIP proxy 

server or STUN server authentication failure. Each of 

these failures could be caused by mis-configuration, 

software bugs, server or network overloading or other 

transient problems in the network.  Additionally, there 

is a complete set of supporting services in the network 

such as DHCP, ARP, and DNS. 

 

 
Figure 2 Different network components interacting 

Consider a user alice@example.com tries to make a 

call to another user bob@destination.com and the call 

does not go through. The end point which tried to make 

a call to the remote end point triggers the DYSWIS 

system to perform diagnosis which takes the following 

steps: 

- The diagnosis node queries if any other node from 

caller’s location has made a call to the user 

bob@destination.com. In this case, the location 

could mean from the same subnet, VLAN, access 

switch/access point or domain. 

- The response can be that other nodes have recently 

made a call to same destination address or to the 

destination domain, not to same destination 

address or no node have made any call to 

destination address or destination domain. It 

should be noted that historical success or failure 

information is queried taking into account location 

of observed failure (hence using the topology) 

along with functional dependencies. 

- Based on the response, the diagnosis node may 

request another node to send a SIP OPTION 

message to the destination address or it may 

request to make a call to the test node in the 

destination domain. This test is done both from 

location of original node which encountered a call 

failure as well as another location to see if this 

could be a problem specific to the caller’s location. 

This will test the availability of remote SIP 

endpoint. 

- Based on the response from the tests and historical 

information from other peer nodes, the location of 

failure is isolated. The next step is testing the 

proxy server in failure domain. 

- The result of above rule based diagnosis is 

identification that the problem is present in local 

node or remote node or in local domain or remote 

domain and possibly in which component. This 

also depends on granularity at which rules (tests 

and queries) encode the dependencies. 

 

Figure 3, 4 and 5; explain the above described 

approach of DYSWIS. The flow charts show the order 

of tests based on dependency graph encoded using the 

rules in the diagnosis nodes. 

                               

 
Figure 3 Call failure diagnosis 

As we can see, Figure 3 shows the rules for ‘call failure 

diagnosis’ which in turn may trigger ‘media failure 

diagnosis’ (Figure 4) or ‘proxy failure diagnosis’ 

(Figure 5). The call failure diagnosis involves call 

signaling diagnosis which in turn involves testing of 



remote SIP end point, local proxy server, STUN server 

and DNS server. These may further trigger diagnosis of 

network connectivity and availability of supporting 

protocols (services). The reports are stored and used to 

decide the order of queries for future failures. For 

example, if a call failure to the same destination is 

reported and diagnosis was already done for that 

failure, no more tests will be done. 

                
Figure 4 Media failure diagnosis  

 

 
          Figure 5 Proxy failure diagnosis 

 

5. DYSWIS Implementation  
In this section, we describe our implementation of 

DYSWIS diagnosis framework, overview of sensor 

nodes and diagnosis nodes, discovery of diagnosis 

nodes, request-response protocol used between 

DYSWIS nodes and finally, dependency 

representation. We also present an example diagnosis 

flow to illustrate the steps in diagnosis. 

 

5.1 Diagnosis Framework 
The whole DYSWIS framework consists of diagnosis 

nodes, sensor nodes (probe and failure detection/ 

reporting nodes), rules in diagnosis node, probe 

functionality in sensor nodes, request-response protocol 

between the nodes and storage of historical 

information. These are described in next sections. 

 

 
       Figure 6 Diagnosis framework architecture 

Figure 6 describes the work flow of DYSWIS 

framework. The lowest layer in Figure 6 shows 

network components, e.g., SIP Proxy, DNS server, 

SMTP server. There is an overlay of probe nodes 

which are capable of performing different types of 

tests. These nodes pre-register their location as well as 

testing capability to the diagnosis node. Diagnosis 

nodes are the intelligent nodes that have information 

about probe nodes, store historical failure information 

and store dependency rules encoded as tests and 

queries. When a DYSWIS sensor node detects a failure 

it updates the failure information by sending a SIP 

PUBLISH [14] request. This triggers a DYSWIS 

diagnosis node to start diagnosis which in turn may 

request the DYSWIS probe node using SIP 

SUBSCRIBE [14] to perform certain tests and submit 

the result back. The result is submitted back to the 

diagnosis node using SIP NOTIFY [14] request. The 

results of tests are used to determine further tests and 

also determine which nodes are suitable for performing 

which tests. 

 



 

5.2 Type of DYSWIS Nodes 
Now we describe about the various types of DYSWIS 

nodes and their interactions. 

 

5.2.1 Sensor nodes   
To detect failures in the network, the DYSWIS relies 

on sensor nodes which are active and passive nodes 

and are distributed in the network. 

 

DYSWIS nodes passively sniff traffic and pro-actively 

report any failures. At the application layer, DYSWIS 

nodes can operate as “shadow” applications that access 

the same servers and services as the real application 

and thus help distinguish server and network faults 

from implementation failures and other conditions. For 

example, many embedded devices will silently ignore 

issues such as transient registration failures in SIP as 

they have no good way to report those to the user.  A 

DYSWIS sensor node can monitor such failures by 

sniffing traffic (absence of 200 OK for SIP 

REGISTER) and alert the DYSWIS system before such 

failures result in loss of service, e.g., lost incoming 

calls because of registration failure. 

 

DYSWIS sensor nodes also detect non-availability of 

service by conducting active tests. These nodes conduct 

periodic tests by emulating user action e.g., making a 

call. The nodes update the failure information once 

detected to a diagnosis node by sending a SIP 

PUBLISH message. These nodes are also called as 

probe nodes.  

In our system which was implemented for VoIP 

network, we have implemented the following probes: 

 

- SIP trace route using SIP OPTION message to 

determine application level path for SIP requests. 

- SIP calls - INVITE tests – This can be used to test 

the proxy behavior as well as end point behavior. 

- SIP OPTIONS 

- NAT test – for one way audio  

- Ping – IP layer reach 

- Web server availability 

- RTP test – jitter and loss for voice quality 

- DNS tests – A, AAAA, SRV, MX record tests 

5.2.2 Diagnosis Nodes 
Diagnosis nodes are intelligent nodes in DYSWIS 

system and work based on a rule engine. We used the 

DROOL [11] rule engine which is a forward chaining 

engine. The logic to choose the probe nodes is 

implemented in diagnosis nodes.  In addition rules to 

determine the tests are specified to them. The SIP 

PUBLISH and NOTIFY requests received from sensor 

nodes update the historical failure database. 

 

5.2.3 Request-Response Protocol 
The DYSWIS nodes use a request response protocol to 

communicate among themselves, mainly: 

- For notifying about detected failures to a diagnosis 

node. 

- For requesting a probe to be run and results of the 

probe to be sent. 

SIP PUBLISH and NOTIFY are used to report about 

failures and test results. SIP SUBSCRIBE is used to 

request active sensor nodes to perform tests. Other 

nodes can subscribe and get notified about diagnosis 

nodes available in the network at any point of time. We 

used NIST SIP [13] for implementing the request-

response protocol for DYSWIS nodes. 

 

5.2.4 Discovering the DYSWIS node 
The probe and diagnosis nodes register themselves to 

with their capabilities to the DYSWIS system using 

SIP REGISTER request. This information (capability 

and location) is used to determine which node will do 

which tests. DYSWIS nodes can receive SIP NOTIFY 

and get updated about other nodes in the system. The 

end nodes can send SIP SUBSCRIBE to server and get 

information about diagnosis nodes using SIP NOTIFY. 

 

5.3 Rule Engine – Dependency relationship 
In this section, we explain different types of 

dependencies and we explain how we represented 

dependency in our implementation. 

 

Dependency information can be represented at different 

levels. Functional dependency at service level e.g., SIP 

proxy depends on database (DB) service and DNS 

service. Instance level dependency are runtime 

bindings, e.g., the call which failed was using failover 

SIP server obtained using DNS SRV was running on a 

particular host. Dependencies can be represented at 

protocol level also, e.g.,  SIP depends on DNS. There 

can be vertical and lateral dependencies, e.g., 

applications can depend on other application layer 

services like SIP service depends on DB and DNS 

service. Applications also depend on transport layer 

services which in turn depend on network layer 

services. There can be topology based dependency: 



e.g., calls from a particular domain depends on specific 

SIP server and specific switch and routers 

 

5.3.1 Dependency representation 
We represent dependencies using rules, using tests and 

queries using the DROOL rule engine framework. 

Queries are used to find information about past 

failures. Tests are probes and are used to conduct 

diagnostic tests. 

 

 
Figure 7 Sample rules for dependency 

Figure 7 above is a rule snippet of DROOL rule engine 

which we used. The rule says when an event ‘Call 

Failed’ occurs, test SIP proxy server, if SIP proxy is 

good, test the DNS server, otherwise, start diagnosis 

for DNS server. The “doPreprocessing” step queries 

for past failures, if the failure is already reported or 

diagnosed, it prevents the diagnosis to be started again.  

 

6. Probe selection criteria 
Some tests are computationally costlier and create 

more load on the network then others. There are also 

tests which are very specific to application types vs. a 

test which is more generic, e.g., SIP ping vs. IP ping.  

The order in which tests are done based on rules can 

have a significant impact on the speed of problem 

resolution. Most of the times the results from tests and 

sometimes statistical information help to determine 

which test must be done next. For example, an ICMP 

ping test and SIP ping test involve different costs on 

the host, the network components etc., and would result 

in vastly different results. An ICMP failure would 

remove the necessity to perform SIP level ping, 

whereas a failure at SIP ping would make the ICMP 

test as the next step. Additional factors that the probe 

selection algorithm considers are the location of the 

node which can perform the test with respect to the 

service which needs to be tested and with respect to 

service invocation which resulted in failure observed. 

For example, it may be useful to conduct a DNS test 

from two different subnets to ensure that problem of 

DNS failure is not local to the subnet and not local to 

the node itself. 

 

7. Security Considerations 
In our approach, nodes can ask other nodes to construct 

certain requests and send these requests to the target 

node. That way, new protocols can be supported 

without upgrading every DYSWIS node. However, 

such a system may lead to use of DYSWIS nodes as 

bot-nets that attack victims and become remote-

controlled denial-of-service tools. Mechanisms must be 

built-into the architecture to prevent this.  For example, 

rate limits and caching of results could ensure that each 

type of request, identified by its destination IP address 

and port, is only sent once within a time interval 

measured in minutes. The system also needs to avoid 

becoming a vector for mis-using address-based trust, 

allowing a third party to gain access to information that 

is restricted based on source IP addresses. 

 

8. Future Work 
In our implementation, we encoded dependency 

relationship as rules in the form of queries and probes; 

however, with networks growing in terms of 

components, services and protocols, there is a need to 

generate the dependency relation automatically using 

statistical mechanisms and using temporal correlation 

among failures detected. Secondly, we need 

instrumentation of applications to detect and report 

failures in order to trigger diagnosis. To detect failures 

without requiring software upgrade would require us to 

detect network failures using traffic analysis. This in 

turn would require specifying protocol details using a 

rule language to the traffic analyzer.  

 

We identified requirement of a rule language for failure 

diagnosis. One of the tradeoffs in developing a rule 

language for diagnosis is simplicity vs. capability. An 

expert must be able to specify rules with ease without 

requiring much knowledge about a programming 



language. However, this limits the functionality that 

can be expressed in a rule. The system needs to provide 

mapping between functionality of the system vs. the 

tools available to the expert. Providing a fixed mapping 

reduces the enhance-ability of the diagnosis system for 

new probes. A more scripting-based approach gives 

more flexibility but more complexity to the expert. A 

system which gives flexibility by taking external 

binaries/scripts and output of such binaries and scripts 

back to the rule language as well as provides a fairly 

high level way of representing knowledge may be good 

approach, a mix of XML and shell script style. 

 

Finally, failure event correlation based on rules is 

another area of future work.  

 

9. Conclusion 
In this paper, we proposed DYSWIS system to 

automatically diagnose network failures and determine 

the root cause of failures and presented a reference 

implementation for a VoIP system. DYSWIS system 

can be implemented for any kind of network as long as 

probes can be defined, queries can be implemented and 

an expert can define the dependency rules based on 

existing probes and queries. We used the DROOL rule 

framework to represent the dependency information. 

As a part of this work, we came up with requirement 

for a rule-based language which would meet the goals 

of a rule language for network diagnosis. Our 

framework uses SIP event notification framework for 

sending requests and receiving responses. The initial 

results were obtained by inducing failures manually and 

observing how DYSWIS triggers diagnostic 

processing. 
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