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Abstract

We study the correlation between low-degree GF (2) polynomials p and explicit
functions. Our main results are the following:

I We prove that the Modm function on n bits has correlation at most exp
(

−Ω
(

n/4d
))

with any GF (2) polynomial of degree d, for any fixed odd integer m. This im-
proves on the previous exp

(

−Ω
(

n/8d
))

bound by Bourgain (C. R. Acad. Sci. Paris,
2005) and Green et al. (C. R. Acad. Sci. Paris, 2005).

II We exhibit a polynomial-time computable function on n bits that has correlation
at most exp

(

−Ω
(

n/2d
))

with any GF (2) polynomial of degree d. Previous to our
work the best correlation bound for an explicit function was exp

(

−Ω
(

n/
(

d · 2d
)))

,
which follows from (Chung and Tetali; SIAM J. Discrete Math., 1993).

III We derive an ‘XOR Lemma’ for low-degree GF (2) polynomials: We show that
if a function f has correlation at most 1 − 4−d with any GF (2) polynomial of
degree d (and Prx[f(x) = 1] ≈ 1/2) then the XOR of m independent copies of f
has correlation at most exp

(

−Ω
(

m/4d
))

with any GF (2) polynomial of degree
d.

Our results rely on a measure of the ‘complexity’ of a function due to Gowers (Geom.
Funct. Anal., 1998 & 2001).
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1 Introduction

In this work we study the correlation between low-degree GF (2) polynomials p and explicit
functions f : {0, 1}n → {+1,−1}, which is defined as

Correlation(p, f) :=

∣

∣

∣

∣

Pr
x:f(x)=1

[p(x) = 1]− Pr
x:f(x)=−1

[p(x) = 1]

∣

∣

∣

∣

.

The study of correlation bounds is motivated, in large part, by their applications to proving
lower bounds on the size of important classes of circuits with parity and majority gates.
We refer the reader to, e.g., [AB, Gre] for a discussion of these applications. Here we
content ourselves with recalling that exhibiting an explicit function which has negligible
correlation with every GF (2) polynomial of polylogarithmic degree would solve the famous
open problem of establishing a superpolynomial lower bound on the size of constant-depth
circuits with parity gates and one majority gate.1 An additional motivation for studying
correlation bounds is that balanced functions with negligible correlation with low-degree
GF (2) polynomials can be used to construct pseudorandom generators that fool polynomial-
size GF (2) polynomials and, more generally, polynomial-size constant-depth circuits with
few parity gates. This follows from the techniques in [Vio1, Han].

Besides the above two motivations, the amount of research devoted to proving correlation
bounds (e.g., [Raz, Smo, AB, Gre, Bou, GRS]), as well as the innovative techniques developed
for this purpose, make the study of correlation bounds interesting in its own right. Finally,
our ability to prove correlation bounds is a fundamental benchmark for our understanding
of complexity theory: Currently no explicit function on n bits is known to have negligible
correlation with GF (2) polynomials of degree log2 n.

Our results. In this work we obtain the following results.

I We prove that the Modm function on n bits has correlation at most exp
(

−Ω
(

n/4d
))

with any GF (2) polynomial of degree d, for any fixed odd integer m. This improves on
a result by Bourgain [Bou] and Green et al. [GRS] that shows that the same correlation
is at most exp

(

−Ω
(

n/8d
))

.2

II We exhibit a polynomial-time computable function on n bits that has correlation at
most exp

(

−Ω
(

n/2d
))

with any GF (2) polynomial of degree d. Previous to our work
the best correlation bound for an explicit function was exp

(

−Ω
(

n/
(

d · 2d
)))

, which
follows from the multiparty communication complexity results by Chung and Tetali
[CT] and the fact that any function computed by a polynomial of degree d can be
computed by a multiparty communication complexity protocol (with d + 1 parties)
exchanging few bits [HG, Proof of Lemma 4].

1This follows by the so-called “ε-discriminator lemma” in [HMP+] and the fact that any function computed
by a polynomial-size constant-depth circuit with parity gates can be approximated by a GF (2) polynomial
of polylogarithmic degree [Raz, Smo].

2Bourgain’s proof [Bou] contains all the main ideas but is slightly incorrect. A correct proof is given by
Green et al. [GRS].
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III We derive an ‘XOR Lemma’ for low-degree GF (2) polynomials: We show that if a
function f : {0, 1}n → {+1,−1} has correlation at most 1 − 4−d with any degree
d GF (2) polynomial (and Prx[f(x) = 1] ≈ 1/2) then the function g : {0, 1}n·m →
{+1,−1} defined as g(x1, x2, . . . , xm) :=

∏

i≤m f(xi) has correlation at most exp
(

−Ω
(

m/4d
))

with any degree d GF (2) polynomial. Previous to our work such a result was not even
known for polynomials of degree d = 2.

As we mentioned at the beginning of this introduction, correlation bounds imply circuit
lower bounds. To briefly illustrate some consequences of our results in this direction, we
remark that by combining the “ε-discriminator lemma” by Hajnal et al. [HMP+] with our
result (I), one obtains the following: Computing the Mod3 function via the majority of s
GF (2) polynomials of degree d requires at least s ≥ exp

(

Ω
(

n/4d
))

polynomials. (Equiv-
alently, using the notation in [AB], computing the Mod3 function via Maj ◦ Parity ◦ And d
circuits requires at least exp

(

Ω
(

n/4d
))

parity gates.) The previous best lower bound was
exp

(

Ω
(

n/8d
))

[GRS]. Similar considerations hold for our result (II).

Techniques. Our results rely on a measure of the ‘complexity’ of a function that has be-
come known as Gowers uniformity. This uniformity was introduced by Gowers [Gow1, Gow2]
and has been studied and applied in computer science in the area of property testing by Alon
et al. [AKK+] (who actually defined Gowers uniformity independently) and Samorodnitsky
and Trevisan [Sam, ST] (who also applied it to probabilistically checkable proofs). The
Gowers uniformity of a function f is parameterized by an integer k, and is denoted here
by Uk (f). When the parameter k is not immediately relevant, we refer to Uk (f) as the
uniformity of f .

Our results rely on the following inequality:

Correlation(f, p) ≤ Ud+1 (f)
1/2d+1

, (1)

for every function f : {0, 1}n → {+1,−1} and every GF (2) polynomial of degree d. Actually,
this is true only when the function f satisfies Prx[f(x) = 1] ≈ 1/2, which is the case in our
results (II) and (III) but not in our result (I). For the result (I) we work with a complex-
valued version of theModm function for which Inequality (1) also holds. We ignore this issue
in this introduction and proceed with the intuition behind our results.

For our result (I), we give an exact calculation of the uniformity of the Modm function:
Ud+1 (Modm) = exp

(

−Θ
(

n/2d
))

. Given some elementary facts about Gowers uniformity,
our proof seems simpler and more modular than the proofs in [Bou, GRS]. However, the
techniques in [Bou, GRS] generalize to polynomials modulo q for arbitrary q relatively prime
to m, as opposed to q = 2 in this work. It is not clear to us how to generalize the techniques
in this work to any q 6= 2.

For our result (II), we note that a random function F : {0, 1}n → {+1,−1} satisfies
Ud (F ) ≤ exp(−Ω(n)) with high probability. We derandomize this probabilistic construction
by showing that the same holds when the truth-table of F (of length 2n) is selected at random
from a small-bias space [NN, AGHP]. Such a sample space Fs can be generated using only
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O(n) random bits s, which we can include as part of the input to our function. Thus, we
obtain that the function f(s, x) := Fs(x) has correlation at most exp

(

−Ω
(

n/2d
))

with any
GF (2) polynomial of degree d. In particular, using a construction in [AGHP], we obtain
that this correlation bound holds for the function (α, β, x) 7→ 〈αx, β〉, where α is an element
of GF (2n) and 〈·, ·〉 denotes inner product modulo 2.

For our result (III), we use a result by Alon et al. [AKK+] that shows that if a function
f : {0, 1}n → {+1,−1} has correlation at most 1 − 4−d with every GF (2) polynomial of
degree d (and Prx[f(x) = 1] ≈ 1/2) then Ud+1 (f) ≤ 1− Ω

(

2−d
)

. We then observe that the
uniformity of the product of functions multiplies.

2 Gowers uniformity

In this section we discuss Gowers uniformity. For our results, we need to work with both
real-valued and complex-valued functions. We denote the complex conjugate of a complex
number a+ ib by a+ ib := a− ib, and its norm by |a+ ib| :=

√
a2 + b2. Although the Gowers

uniformity of a function is syntactically defined as the expectation of a complex-valued
random variable, it is always a non-negative real number (cf. [ST]).

Definition 1 (Gowers uniformity). Let f : {0, 1}n → C be a function and k ≥ 1 an
integer. The k-uniformity of f is defined as

Uk (f) := Ey1,y2,...,yk,x∈{0,1}n





∏

S⊆[k],|S| even

f

(

x+
∑

j∈S

yj

)

·
∏

S⊆[k],|S| odd

f

(

x+
∑

j∈S

yj

)



 ,

where ‘+’ denotes bit-wise XOR.

The following crucial lemma essentially lets us upper bound the correlation of f with any
low-degree polynomial by the uniformity of f .

Lemma 2 ([GT]). For every function f : {0, 1}n → C and every GF (2) polynomial p :
{0, 1}n → {0, 1} of degree at most d,

∣

∣Ex∈{0,1}n

[

f(x) · (−1)p(x)
]∣

∣ ≤ Ud+1 (f)
1/2d+1

.

Proof sketch of Lemma 2. The lemma follows readily from the following facts, which hold
for every function f : {0, 1}n → C:

1
∣

∣Ex∈{0,1}n [f(x)]
∣

∣ =
√

U1 (f),

2 for every k, Uk (f) ≤
√

Uk+1 (f),

3 for every GF (2) polynomial p of degree at most d, Ud+1 (f · (−1)p) = Ud+1 (f).
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Above, (1) and (2) follow easily from the definition. (3) follows from the fact that for every
GF (2) polynomial p(x) of degree d and every fixed y ∈ {0, 1}n, the polynomial q(x) :=
p(x) + p(x+ y) has degree d− 1. The same three facts above are stated in [GT, Equations
1.1, 1.2, and 2.1], for a definition of uniformity that corresponds to our Ud (f) raised to the
power of 1/2d.

We make use of the fact, formally stated next, that the uniformity of the product of two
functions defined on disjoint input bits is the product of the uniformity of the two functions.
The proof of this fact is immediate from the definition.

Fact 3. For functions f, f ′ : {0, 1}n → C, define the function (f · f ′) : {0, 1}2n → C by
(f · f ′) (x, y) := f(x) · f ′(y). Then

Uk (f · f ′) = Uk (f) · Uk (f
′) .

3 The correlation of the Modm function with GF(2)

polynomials

In this section we study the correlation of low-degree GF (2) polynomials with the function
Modm : {0, 1}n → {0, 1}, for odd m ≥ 3, where Modm(x1, x2, . . . , xn) equals 1 if and only if
∑

i xi is divisible by m.

Theorem 4. For any odd m, the correlation between the Modm function on n bits and any
GF (2) polynomial of degree d is at most exp

(

−α · n/4d
)

, where α > 0 is a constant that
depends on m only.

Proof. To model theModm function, define f : {0, 1}n → C as f(x1, . . . , xn) := em (
∑

i xi) =
∏

i em (xi), where em (x) := e2π·i·x/m. As shown in [Bou], the correlation between aGF (2) poly-
nomial p(x) of degree d and the Modm function can be bound from above by the maximum
over a ∈ {1, . . . ,m− 1} of

∣

∣Ex∈{0,1}n

[

f(x)a · (−1)p(x)
]∣

∣ , (2)

up to a factor O(m) and a term 2−ε·n for a constant ε > 0 which depends only on m. To
bound the above norm (2), we use Lemma 2 to relate it to the (d+ 1)-uniformity of f , and
then we use the fact that the uniformity of the product of functions on disjoint input bits
multiplies (Fact 3). Formally, letting k := d+ 1, we obtain:

∣

∣Ex∈{0,1}n

[

f(x)a · (−1)p(x)
]∣

∣ ≤ Uk (f
a)1/2

k

= Uk (e
a
m)

n/2k

.

Thus, we are left with the task of bounding

Uk (e
a
m) = Ey1,...,yk,x∈{0,1}



em



a ·
∑

S⊆[k]

(−1)|S| ·
(

x⊕
(

⊕

j∈S

yi

))







 .
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To bound Uk (e
a
m), note that whenever y1 = y2 = . . . = yk = 1, we have that

Ex∈{0,1}



em



a ·
∑

S⊆[k]

(−1)|S| ·
(

x⊕
(

⊕

j∈S

yi

))









= Ex∈{0,1}



em



a ·
∑

S⊆[k]

(−1)|S| ·
(

x⊕
(

⊕

j∈S

1

))









=
em
(

a · 2k−1
)

+ em
(

−a · 2k−1
)

2
= <

(

em
(

a · 2k−1
))

< 1,

where < (·) denotes the real part, and the last inequality holds because m is odd and a ∈
{1, . . . ,m − 1}. It is also easy to see that the expectation is 0 whenever yj = 0 for some j
(though we do not need this for the upper bound). Since it is the case that y1 = y2 = . . . =
yk = 1 with probability 2

−k, we have, letting δ := <
(

em
(

a · 2k−1
))

:

Uk (e
a
m) =

(

δ · 2−k + 1− 2−k
)

.

Putting everything together, we obtain

∣

∣Ex∈{0,1}n

[

f(x)a · (−1)p(x)
]∣

∣ ≤
(

1− 1− δ

2k

)n/2k

< e−(1−δ)n/2
2k

,

which concludes our proof. (Recall that δ < 1 and that k = d+ 1.)

4 A function with correlation exp
(

−
(

n/2d
))

In this section we exhibit a polynomial-time computable function on n bits that has correla-
tion exp

(

−Ω
(

n/2d
))

with any GF (2) polynomial of degree d. Rather than working directly
with the correlation, in the next theorem we exhibit a function f : {0, 1}n → {+1,−1} that
satisfies Ex

[

f(x) · (−1)p(x)
]

≤ exp
(

−Ω
(

n/2d
))

for every GF (2) polynomial p of degree d.
This in particular implies that |Prx[f(x) = 1]− 0.5| ≤ exp

(

−Ω
(

n/2d
))

(e.g. by considering
p = 0 and p = 1), from which the bound on the correlation follows.

Theorem 5. There is a polynomial-time computable function f : {0, 1}n → {+1,−1} such
that for every d < n/2 and every GF (2) polynomial p : {0, 1}n → {0, 1} of degree d we have:

Ex

[

f(x) · (−1)p(x)
]

≤ exp
(

−α · n/2d
)

,

where α > 0 is a universal constant.

Proof. It is sufficient and more convenient to prove the theorem for a function with input
length O(n) rather than n. We prove that the theorem holds for the function that on input
(σ, x) equals the x-th output bit of a small-bias generator on seed σ. The following lemma
summarizes the definition and the existence of small-bias generators.
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Lemma 6 ([NN, AGHP]3). There is a polynomial-time computable function f : {0, 1}O(n)×
{0, 1}n → {+1,−1} such that for every T ⊆ {0, 1}n, we have:

Eσ

[

∏

x∈T

f(σ, x)

]

≤ 2−n.

Let f be the function in Lemma 6 and write fσ for the function that maps x to f(σ, x).
We now show that, over the choice of σ, we expect fσ to have small uniformity.

Claim 7. Eσ [Uk (fσ)] ≤ 2−α·n, for every k ≤ n/2, where α > 0 is a universal constant.

Proof. Let D be the event that for every S, S ′ ⊆ [k] we have ∑j∈S yj 6=
∑

j∈S′ yj (over the
choice of y1, . . . , yk). We have:

Eσ [Uk (fσ)] = Ex,y1,...,yk



Eσ





∏

S⊆[k]

fσ

(

x+
∑

j∈S

yj

)









≤ Ex,y1,...,yk



Eσ





∏

S⊆[k]

fσ

(

x+
∑

j∈S

yj

)





∣

∣

∣

∣

∣

∣

D



+ Pr[¬D] ≤ 2−α·n,

where in the last inequality the first term is at most 2−n by the property of f in Lemma 6,
and the second term is

Pr[¬D] = 1−
(

1− 2−n
) (

1− 2−n+1
)

· · ·
(

1− 2−n+k−1
)

≤ 1−
(

1− 2−n+k−1
)k−1 ≤ 2−α·n

for a universal constant α > 0, using that k ≤ n/2.

To conclude the proof of the theorem, let p : {0, 1}n → {0, 1} be any GF (2) polynomial
of degree d, and notice that

Eσ,x

[

f(σ, x) · (−1)p(σ,x)
]

= Eσ

[

Ex

[

fσ(x) · (−1)p(σ,x)
]]

≤ Eσ

[

Ud+1 (fσ)
1/2d+1

]

≤ Eσ [Ud+1 (fσ)]
1/2d+1 ≤ 2−α·n/2d

,

where α > 0 is a universal constant, the first inequality holds by Lemma 2, the second is
Jensen’s inequality, and the last holds by Claim 7.

Remark 8 (On the tightness of Theorem 5). It is natural to ask whether the exp
(

−Ω
(

n/2d
))

correlation bound is tight for the particular function f given by Theorem 5, which recall com-
putes the x-th bit of a small-bias generator, given the seed and x. We observe that this
bound is tight in the sense that, for some small-bias generator, the associated function f
has correlation 1 − o(1) with some GF (2) polynomial of degree d = logO(1) n. This follows

3Our presentation is syntactically different from the one in [AGHP], which is in terms of sample spaces.
The lemma stated here follows from the results in [AGHP] by considering a small bias sample space over
{0, 1}N , where N := 2n, and defining f(α, x) to be the x-th bit of the sample that corresponds to α.
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from the fact that, for some small-bias generator, the associated function f is computable
by polynomial-size constant-depth circuits with parity gates [GV, Hea]4 and the well-known
fact that any such function has correlation at least 1− o(1) with some GF (2) polynomial of
degree logO(1) n [Raz, Smo].

5 An XOR Lemma for low-degree GF (2) polynomials

Yao’s XOR lemma [GNW] states that if a function x 7→ f(x) ∈ {+1,−1} is somewhat hard
to compute by small circuits, then the function (x1, x2, . . . , xk) 7→

∏

i≤k f(x) ∈ {+1,−1} is
very hard to compute by small circuits, where hardness is measured (up to normalization)
by the minimum, over any small circuit, of the fraction of inputs on which the circuit fails
to compute the function correctly. Although many proofs of the XOR lemma have been
obtained (see, e.g., [GNW]), none of them can be applied to the computational models for
which we actually can establish the existence of hard functions (i.e. prove lower bounds), such
as constant-depth circuits or low-degree GF (2) polynomials (cf. [Vio2, Chapter 6]). This
naturally raises the question of whether one can prove XOR lemmas for these computational
models.

In this section we show how Gowers uniformity can be used to obtain the following XOR
Lemma for low-degree GF (2) polynomials.

Theorem 9. Let f : {0, 1}n → {+1,−1} be a function that satisfies Ex

[

f(x) · (−1)p(x)
]

≤
1 − 4−d for every GF (2) polynomial p of degree d. Consider the function g : {0, 1}n·m →
{+1,−1} defined as g(x1, x2, . . . , xm) :=

∏

i≤m f(xi). Then, for every GF (2) polynomial p

of degree d, Ex

[

g(x) · (−1)p(x)
]

≤ exp
(

−Ω
(

m/4d
))

.

To prove Theorem 9 we need to bound the uniformity of a function f such that, for every
low-degree polynomial p, we have Ex

[

f(x) · (−1)p(x)
]

≤ 1 − 4−d. Such a bound arose from
the study of testing of low-degree polynomials. Specifically, Alon et al. [AKK+] define, for a
given function f : {0, 1}n → {+1,−1}, a probabilistic procedure and essentially show that
if the function satisfies Ex

[

f(x) · (−1)p(x)
]

≤ 1 − 4−d for every degree-d polynomial p then
their procedure rejects with probability Ω

(

2−d
)

. As noted in [Sam], the rejection probability
of their procedure is (1− Ud+1 (f)) /2. Thus we have the following lemma (stated in [JPRZ,
Theorem 4.1] but essentially proved in [AKK+]).

Lemma 10 ([AKK+, JPRZ]). Let f : {0, 1}n → {+1,−1} be a function such that,
for every GF (2) polynomial p of degree d, we have Ex

[

f(x) · (−1)p(x)
]

≤ 1 − 4−d. Then
Ud+1 (f) ≤ 1− Ω

(

2−d
)

.

Proof of Theorem 9. We have

Ex

[

g(x) · (−1)p(x)
]

≤ Ud+1 (g)
1/2d+1

= Ud+1 (f)
m/2d+1 ≤

(

1− Ω
(

2−d
))m/2d+1

≤ 2−Ω(m/4d),

4There exist simpler non-uniform constructions which would suffice for the point made here, but we do
not have a reference for that.
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where the first inequality holds by Lemma 2, the next equality by Fact 3, and the next
inequality by Lemma 10.

Theorem 9 can be generalized to the setting where we start with a function that satisfies,
for every GF (2) polynomial of degree d, Ex

[

f(x) · (−1)p(x)
]

≤ 1 − ε for some arbitrary ε
(as opposed to ε = 4−d in the formulation above). For small ε ≤ 4−d, one can replace the
conclusion of Theorem 9 with Ex

[

g(x) · (−1)p(x)
]

≤ exp (−Ω (m · ε)). For big ε ≥ 4−d, one
does not get a bound on Ex

[

g(x) · (−1)p(x)
]

that is better than what stated in Theorem 9
(i.e., exp

(

−Ω
(

m/4d
))

), see [JPRZ, Theorem 4.1].

Acknowledgments. We thank Salil Vadhan for his helpful reading of this paper.
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