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Abstract

We describe and experimentally evaluate a method for
automatically clustering words according to their dis-
tribution in particular syntactic contexts. Determinis-
tic annealing is used to find lowest distortion sets of
clusters. As the annealing parameter increases, exist-
ing clusters become unstable and subdivide, yielding a
hierarchical “soft” clustering of the data. Clusters are
used as the basis for class models of word coocurrence,
and the models evaluated with respect to held-out test
data.

INTRODUCTION

Methods for automatically classifying words according
to their contexts of use have both scientific and prac-
tical interest. The scientific questions arise in connec-
tion to distributional views of linguistic (particularly
lexical) structure and also in relation to the question
of lexical acquisition both from psychological and com-
putational learning perspectives. From the practical
point of view, word classification addresses questions
of data sparseness and generalization in statistical lan-
guage models, particularly models for deciding among
alternative analyses proposed by a grammar.

It is well known that a simple tabulation of frequen-
cies of certain words participating in certain configura-
tions, for example of frequencies of pairs of a transitive
main verb and the head noun of its direct object, can-
not be reliably used for comparing the likelihoods of dif-
ferent alternative configurations. The problem is that
for large enough corpora the number of possible joint
events is much larger than the number of event occur-
rences in the corpus, so many events are seen rarely
or never, making their frequency counts unreliable es-
timates of their probabilities.

Hindle (1990) proposed dealing with the sparseness
problem by estimating the likelihood of unseen events
from that of “similar” events that have been seen. For
instance, one may estimate the likelihood of a particular

direct object for a verb from the likelihoods of that di-
rect object for similar verbs. This requires a reasonable
definition of verb similarity and a similarity estimation
method. In Hindle’s proposal, words are similar if we
have strong statistical evidence that they tend to par-
ticipate in the same events. His notion of similarity
seems to agree with our intuitions in many cases, but
it is not clear how it can be used directly to construct
word classes and corresponding models of association.
Our research addresses some of the same questions

and uses similar raw data, but we investigate how to
factor word association tendencies into associations of
words to certain hidden senses classes and associations
between the classes themselves. While it may be worth-
while to base such a model on preexisting sense classes
(Resnik, 1992), in the work described here we look at
how to derive the classes directly from distributional
data. More specifically, we model senses as probabilis-
tic concepts or clusters c with corresponding cluster
membership probabilities p(c|w) for each word w. Most
other class-based modeling techniques for natural lan-
guage rely instead on “hard” Boolean classes (Brown
et al., 1990). Class construction is then combinatori-
ally very demanding and depends on frequency counts
for joint events involving particular words, a potentially
unreliable source of information as we noted above. Our
approach avoids both problems.

Problem Setting

In what follows, we will consider two major word
classes, V and N , for the verbs and nouns in our exper-
iments, and a single relation between them, in our ex-
periments relation between a transitive main verb and
the head noun of its direct object. Our raw knowl-
edge about the relation consists of the frequencies fvn
of occurrence of particular pairs (v, n) in the required
configuration in a training corpus. Some form of text
analysis is required to collect such a collection of pairs.
The corpus used in our first experiment was derived
from newswire text automatically parsed by Hindle’s



parser Fidditch (Hindle, 1993). More recently, we have
constructed similar tables with the help of a statisti-
cal part-of-speech tagger (Church, 1988) and of tools
for regular expression pattern matching on tagged cor-
pora (Yarowsky, 1992). We have not yet compared the
accuracy and coverage of the two methods, or what sys-
tematic biases they might introduce, although we took
care to filter out certain systematic errors, for instance
the misparsing of the subject of a complement clause
as the direct object of a main verb for report verbs like
“say”.
We will consider here only the problem of classifying

nouns according to their distribution as direct objects
of verbs; the converse problem is formally similar. More
generally, the theoretical basis for our method supports
the use of clustering to build models for any n-ary rela-
tion in terms of associations between elements in each
coordinate and appropriate hidden units (cluster cen-
troids) and associations between those hidden units.
For the noun classification problem, the empirical dis-

tribution of a noun n is then given by the conditional
density pn(v) = fvn/

∑

v fvn. The problem we study
is how to use the pn to classify the n ∈ N . Our clas-
sification method will construct a set C of clusters and
cluster membership probabilities p(c|n). Each cluster c
is associated to a cluster centroid pc, which is discrete
density over V obtained by averaging appropriately the
pn.

Distributional Similarity

To cluster nouns n according to their conditional verb
distributions pn, we need a measure of similarity be-
tween distributions. We use for this purpose the rela-
tive entropy or Kullback-Leibler (KL) distance between
two distributions

D(p ‖ q) =
∑

x

p(x) log
p(x)

q(x)
.

This is a natural choice for a variety of reasons, which
we will just sketch here.1

First of all, D(p ‖ q) is zero just in case p = q, and it
increases as the probability decreases that p is the rel-
ative frequency distribution of a random sample drawn
according to p. More formally, the probability mass
given by q to the set of all samples of length n with rel-
ative frequency distribution p is bounded by 2−nD(p‖q)

(Cover and Thomas, 1991). Therefore, if we are trying
to distinguish among hypotheses qi when p is the rel-
ative frequency distribution of observations, D(p ‖ qi)
gives the relative weight of evidence in favor of qi. Fur-
thermore, a similar relation holds between D(p ‖ p′) for

1A more formal discussion will appear in our paper Dis-
tributional Clustering, in preparation.

two empirical distributions p and p′ and the probability
that p and p′ are drawn from the same distribution q.
We can thus use the relative entropy between the con-
text distributions for two words to measure how likely
they are to be instances of the same cluster centroid.
From an information theoretic perspective D(p ‖ q)

measures how inefficient on average it would be to use
a code based on q to encode a variable distributed ac-
cording to p. With respect to our problem, D(pn ‖ pc)
thus gives us the loss of information in using cluster
centroid pc instead of the actual distribution for word
pn when modeling the distributional properties of n.
Finally, relative entropy is a natural measure of sim-

ilarity between distributions for clustering because its
minimization leads to cluster centroids that are a simple
weighted average of member distributions.
One technical difficulty is that D(p ‖ p′) is not de-

fined when p′(x) = 0 but p(x) > 0. We could sidestep
this problem (as we did initially) by smoothing zero fre-
quencies appropriately (Church and Gale, 1991). How-
ever, this is not very satisfactory because one of the
goals of our work is precisely to avoid the problems of
data sparseness by grouping words into classes. It turns
out that the problem is avoided by our clustering tech-
nique, since it does not need to compute the KL dis-
tance between individual word distributions, but only
between a word distribution and average distributions,
the current cluster centroids, which are guaranteed to
be nonzero whenever the word distributions are. This
is a useful advantage of our method compared with ag-
glomerative clustering techniques that need to compare
individual objects being considered for grouping.

THEORETICAL BASIS

In general, we are interested on how to organize a set
of linguistic objects such as words according to the con-
texts in which they occur, for instance grammatical con-
structions or n-grams. We will show elsewhere that the
theoretical analysis outlined here applies to that more
general problem, but for now we will only address the
more specific problem in which the objects are nouns
and the contexts are verbs that take the nouns as direct
objects.
Our problem can be seen as that of learning a joint

distribution of pairs from a large sample of pairs. The
pair coordinates come from two large sets N and V,
with no preexisting topological or metric structure, and
the training data is a sequence S of N independently
drawn pairs

Si = (ni, vi) 1 ≤ i ≤ N .

From a learning perspective, this problem falls some-
where in between unsupervised and supervised learn-



ing. As in unsupervised learning, the goal is to learn
the underlying distribution of the data. But in contrast
to most unsupervised learning settings, the objects in-
volved have no internal structure or attributes allowing
them to be compared with each other. Instead, the only
information about the objects is the statistics of their
joint appearance. These statistics can thus be seem as a
weak form of object labelling analogous to supervision.

Distributional Clustering

While clusters based on distributional similarity are in-
teresting on their own, they can also be profitably seen
as a means of summarizing a joint distribution. In par-
ticular, we would like to find a set of clusters C such
that each conditional distribution pn(v) can be approx-
imately decomposed as

p̂n(v) =
∑

c∈C

p(c|n)pc(v) ,

where p(c|n) is the membership probability of n in c
and pc(v) = p(v|c) is v’s conditional probability given
by the centroid distribution for cluster c.
The above decomposition can be written in a more

symmetric form as

p̂(n, v) =
∑

c∈C

p(c, n)p(v|c)

=
∑

c∈C

p(c)p(n|c)p(v|c) (1)

assuming that p(n) and p̂(n) coincide. We will take (1)
as our basic clustering model.
To determine this decomposition we need to solve the

two connected problems of finding find suitable forms
for the cluster membership and centroid distributions
p(v|c), and of maximizing the goodness of fit between
the model distribution p̂(n, v) and the observed data
Goodness of fit is determined by the model’s like-

lihood of the observations. The maximum likelihood
(ML) estimation principle is thus the natural tool to
determine the centroid distributions pc(v).
As for the membership probabilities, they must be

determined solely by the relevant measure of object-to-
cluster similarity, which in the present work is the rel-
ative entropy between object and cluster centroid dis-
tributions. Since no other information is available, the
membership is determined by maximizing the config-
uration entropy subject for a fixed average distortion.
With the maximum entropy (ME) membership distri-
bution, ML estimation is equivalent to the minimization
of the average distortion of the data. The combined en-
tropy maximization entropy and distortion minimiza-
tion is carried out by a two-stage iterative process sim-
ilar to the EM method (Dempster et al., 1977). The

first stage of an iteration is a maximum likelihood, or
minimum distortion, estimation of the cluster centroids
given fixed membership probabilities. In the second
iteration stage, the entropy of the membership distri-
bution is maximized with a fixed average distortion.
This joint optimization searches for a saddle point in
the distortion-entropy parameters, which is equivalent
to minimizing a linear combination of the two known
as free energy in statistical mechanics. This analogy
with statistical mechanics is not coincidental, and pro-
vide us with a better understanding of the clustering
procedure.

Maximum Likelihood Cluster Centroids For the
maximum likelihood argument, we start by estimating
the likelihood of the sequence S of N independent ob-
servations of pairs (ni, vi). Using (1), the sequence’s
model log likelihood is

l(S) = log p̂(S) =

N
∑

i=1

log
∑

c∈C

p(c)p(ni|c)p(vi|c) .

Fixing the number of clusters (model size) |C|, we
want to maximize l(S) with respect to the distributions
p(n|c) and p(v|c). The variation of l(S) with respect to
these distributions is

δl(S) =

N
∑

i=1

1

p̂(ni, vi)

∑

c∈C

p(c)





p(vi|c)δp(ni|c)
+

p(ni|c)δp(vi|c)



 (2)

with p(n|c) and p(v|c) kept normalized. Using Bayes’s
formula, we have 2

p(ni|c)p(vi|c) =
p(c|ni, vi)

p(c)
p̂(ni, vi) ,

or
1

p̂(ni, vi)
=

p(c|ni, vi)

p(c)p(ni|c)p(vi|c)

for any c, which we substitute into (2) to obtain

δl(S) =

N
∑

i=1

∑

c∈C

p(c|ni, vi)





δ log p(ni|c)
+

δ log p(vi|c)



 (3)

since δ log p = δp/p. This expression is particularly
useful when the cluster distributions p(n|c) and p(v|c)

2As usual in clustering models (Duda and Hart, 1973),
we assume that the model distribution and the empirical
distribution are interchangeable at the solution of the pa-
rameter estimation equations, since the model is assumed
to be able to represent correctly the data at that solution
point. In practice, the data may not come exactly from the
chosen model class, but the model obtained by solving the
estimation equations may still be the closest one to the data.



are of exponential form, precisely what will be provided
by the ME step described below.
At this point we need to specify the clustering model

in more detail. In the derivation so far we have treated
p(n|c) and p(v|c) symmetrically, corresponding to clus-
ters not of verbs or nouns but of verb-noun associations.
In principle such a symmetric model may be more accu-
rate, but in this paper we will concentrate on asymmet-
ric models in which cluster memberships are associated
to just one of the components of the joint distribution
and the cluster centroids are specified only by the other
component. In particular, the model we use in our ex-
periments has noun clusters with cluster memberships
determined by p(n|c) and centroid distributions deter-
mined by p(v|c).
The asymmetric model simplifies the estimation sig-

nificantly by dealing with a single component, but it has
the disadvantage that the joint distribution, p(n, v) has
two different and not necessarily consistent expressions
in terms of asymmetric models for the two coordinates.

Maximum Entropy Cluster Membership While
variations of p(n|c) and p(v|c) in equation (3 are not
independent, we can treat them separately. First, for
fixed average distortion between the cluster centroid
distributions p(v|c) and the data p(v|n), we find the
cluster membership probabilities, which are the Bayes’s
inverses of the p(n|c), that maximize the entropy of the
cluster distributions. With the membership distribu-
tions thus obtained, we then look for the p(v|c) that
maximize the log likelihood l(S). It turns out that this
will also be the values of p(v|c) that minimize the av-
erage distortion between the asymmetric cluster model
and the data.
Given any similarity measure d(n, c) between nouns

and cluster centroids, the average cluster distortion is

〈D〉 =
∑

n∈N

∑

c∈C

p(c|n)d(n, c) (4)

If we maximize the cluster membership entropy

H = −
∑

n∈N

∑

c∈C

p(c|n) log p(n|c) (5)

subject to normalization of p(n|c) and fixed (4), we ob-
tain the following standard exponential forms for the
class and membership distributions

p(n|c) =
1

Zc
exp−βd(n, c) (6)

p(c|n) =
1

Zn
exp−βd(n, c) (7)

where the normalization sums (partition functions) are
Zc =

∑

n exp−βd(n, c) and Zn =
∑

c exp−βd(n, c).

Notice that d(n, c) does not need to be symmetric for
this derivation, as the two distributions are simply re-
lated by Bayes’s rule.
Returning to the log-likelihood variation (3), we can

now use (6) for p(n|c) and the assumption for the asym-
metric model that the cluster membership stays fixed
as we adjust the centroids, to obtain

δl(S) = −
N
∑

i=1

∑

c∈C

p(c|ni)δβd(ni, c) + δ logZc (8)

where the variation of p(v|c) is now included in the
variation of d(n, c).
For a large enough sample, we may replace the sum

over observations in (8) by the average over N

δl(S) = −
∑

n∈N

p(n)
∑

c∈C

p(c|n)δβd(n, c) + δ logZc

which, applying Bayes’s rule, becomes

δl(S) = −
∑

c∈C

1

p(c)

∑

n∈N

p(n|c)δβd(n, c) + δ logZc (9)

At the log-likelihood maximum, the variation (9) must
vanish. We will see below that the use of relative en-
tropy for similarity measure makes δ logZc vanish at
the maximum as well, so the log likelihood can be max-
imized by minimizing the average distortion with re-
spect to the class centroids while class membership is
kept fixed

∑

c∈C

1

p(c)

∑

n∈N

p(n|c)δd(n, c) = 0 ,

or, sufficiently, if each of the inner sums vanish
∑

c∈C

∑

n∈N

p(n|c)δd(n, c) = 0 (10)

Minimizing the Average KL Distortion We first
show that the minimization of the relative entropy
yields the natural expression for cluster centroids

p(v|c) =
∑

n∈N

p(n|c)p(v|n) (11)

To minimize the average distortion (10), we observe
that the variation of the KL distance between noun
and centroid distributions with respect to the centroid
distribution p(v|c), with each centroid distribution nor-
malized by the Lagrange multiplier λc, is given by

δd(n, c) = δ





−
∑

v∈V p(v|n) log p(v|c)
+

λc(
∑

v∈V p(v|c)− 1)





=
∑

v∈V

(

−
p(v|n)

p(v|c)
+ λc

)

δp(v|c) .



Substituting this expression into (10), we obtain

∑

c

∑

n

∑

v

(

−
p(v|n)p(n|c)

p(v|c)
+ λc

)

δp(v|c) = 0 .

Since the δp(v|c) are now independent, we obtain im-
mediately the desired centroid expression (11), which is
the desired weighted average of noun distributions.
We can now see that the variation δ logZc vanishes

for centroid distributions given by (11), since it follows
from (10) that

δ logZc = −
β

Zc

∑

n

exp−βd(n, c)δd(n, c)

= −β
∑

n

p(n|c)δd(x, c) = 0.

The Free Energy Function The combined mini-
mum distortion and maximum entropy optimization is
equivalent to the minimization of a single function, the
free energy

F = −
1

β

∑

n

logZn

= 〈D〉 −H/β

where 〈D〉 is the average distortion (4) and H is the
cluster membership entropy (5).
The free energy determines both the distortion and

the membership entropy through

〈D〉 =
∂βF

∂β

H = −
∂F

∂T
,

with temperature T = β−1.
The most important property of the free energy is

that its minimum determines the balance between the
“disordering” maximum entropy and “ordering” distor-
tion minimization in which the system is most likely to
be found. In fact the probability to find the system at
a given configuration is exponential in F

P ∝ exp−βF ,

so a system is most likely to be found in its minimal
free energy configuration.

Hierarchical Clustering

The analogy with statistical mechanics suggests a de-
terministic annealing procedure for clustering (Rose et
al., 1990), in which the number of clusters is deter-
mined through a sequence of phase transitions by con-
tinuously increasing the parameter β following an an-
nealing schedule.
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Figure 1: Direct object clusters for fire

The higher β, the more local is the influence of each
noun on the definition of centroids. The dissimilarity
plays here the role of distortion. When the scale pa-
rameter β is close to zero, the dissimilarities are almost
irrelevant, all words contribute about equally to each
centroid, and so the lowest average distortion solution
involves just one cluster which is the average of all word
densities. As β is slowly increased, a point (phase tran-
sition) is eventually reached which the natural solution
involves two distinct centroids. We say then that the
original cluster has split into the two new clusters.

In general, if we take any cluster c and a twin c′ of
c such that the centroid pc′ is a small random pertu-
bation of pc, below the critical β at which c splits the
membership and centroid reestimation procedure given
by equations (7) and (11) will make pc and pc′ converge,
that is, c and c′ are really the same cluster. But with
β above the critical value for c, the two centroids will
diverge, giving rise to two daughters of c.

Our clustering procedure is thus as follows. We start
with very low β and a single cluster whose centroid is
the average of all noun distributions. For any given
β, we have a current set of leaf clusters corresponding
to the current free energy (local) minimum. To refine
such a solution, we search for the lowest β which is the
critical value for some current leaf cluster splits. Ide-
ally, there is just one split at that critical value, but for
practical performance and numerical accuracy reasons
we may have several splits at the new critical point. The
splitting procedure can then be repeated to achieve the
desired number of clusters or model cross-entropy.



CLUSTERING EXAMPLES

All our experiments involve the asymmetric model de-
scribed in the previous section. As explained there, our
clustering procedure yields for each value of β a set
Cβ of clusters minimizing the free energy F , and the
asymmetric model for β estimates the conditional verb
distribution for a noun n by

p̂n =
∑

c∈Cβ

p(c|n)pc

where p(c|n) also depends on β.
As a first experiment, we used our method to clas-

sify the 64 nouns appearing most frequently as heads
of direct objects of the verb “fire” in one year (1988) of
Associated Press newswire. In this corpus, the chosen
nouns appear as direct object heads of a total of 2147
distinct verbs, so each noun is represented by a density
over the 2147 verbs.
Figure 1 shows the five words most similar to the each

cluster centroid for the four clusters resulting from the
first two cluster splits. It can be seen that first split
separates the objects corresponding to the weaponry
sense of “fire” (cluster 1) from the ones corresponding
to the personnel action (cluster 2). The second split
then further refines the weaponry sense into a projectile
sense (cluster 3) and a gun sense (cluster 4). That split
is somewhat less sharp, possibly because not enough
distinguishing contexts occur in the corpus.
Figure 2 shows the four closest nouns to the cen-

troid of each of a set of hierarchical clusters derived
from verb-object pairs involving the 1000 most frequent
nouns in the June 1991 electronic version of Grolier’s
Encyclopedia (10 million words).

MODEL EVALUATION

The preceding qualitative discussion provides some in-
dication of what aspects of distributional relationships
may be discovered by clustering. However, we also need
to evaluate clustering more rigorously as a basis for
models of distributional relationships. So, far, we have
looked at two kinds of measurements of model qual-
ity: (i) relative entropy between held-out data and the
asymmetric model, and (ii) performance on the task
of deciding which of two verbs is more likely to take
a given noun as direct object when the data relating
one of the verbs to the noun has been witheld from the
training data.
The evaluation described below was performed on

the largest data set we have worked with so far, ex-
tracted from 44 million words of 1988 Associated Press
newswire with the pattern matching techniques men-
tioned earlier. This collection process yielded 1112041
verb-object pairs. We selected then the subset involving
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Figure 3: Asymmetric Model Evaluation, AP88 Verb-
Direct Object Pairs

the 1000 most frequent nouns in the corpus for clus-
tering, and randomly divided it into a training set of
756721 pairs and a test set of 81240 pairs.

Relative Entropy

Figure 3 plots the average relative entropy of several
data sets to asymmetric clustered models of different
sizes, given by

∑

n

D(tn||p̂n)

where tn is the relative frequency distribution of verbs
taking n as direct object in the test set. For each critical
value of β, we show the relative entropy with respect
to the asymmetric model based on Cβ of the training
set (set train), of randomly selected held-out test set
(set test), and of held-out data for a further 1000 nouns
that were not clustered (set new). Unsurprisingly, the
training set relative entropy decreases monotonically.
The test set relative entropy decreases to a minimum
at 206 clusters, and then starts increasing, suggesting
that larger models are overtrained.
The new noun test set is intended to test whether

clusters based on the 1000 most frequent nouns are use-
ful classifiers for the selectional properties of nouns in
general. As the figure shows, the cluster model provides
over one bit of information about the selectional prop-
erties of the new nouns, but the overtraining effect is
even sharper than for the held-out data involving the
1000 clustered nouns.

Decision Task

We also evaluated asymmetric cluster models on a verb
decision task closer to possible applications to disam-
biguation in language analysis. The task consists judg-
ing which of two verbs v and v′ is more likely to take a
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recognition
acclaim
renown
nomination

0.874
1.026
1.079
1.104

Figure 2: Noun Clusters for Grolier’s Encyclopedia
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Figure 4: Pairwise Verb Comparisons, AP88 Verb-
Direct Object Pairs

given noun n as object, when all occurrences of (v, n)
in the training set were deliberately deleted. Thus this
test evaluates how well the models reconstruct missing
data in the verb distribution for n from the cluster cen-
troids close to n.

The data for this test was built from the training
data for the previous one in the following way, based on
a suggestion by Dagan et al. (1992). A small number
(104) of (v, n) pairs with a fairly frequent verb (between
500 and 5000 occurrences) was randomly picked, and all
occurrences of each pair in the training set were deleted.
The resulting training set was used to build a sequence
of cluster models as before. Each model was used to
decide which of two verbs v and v′ are more likely to
appear with a noun n where the (v, n) data was deleted
from the training set, and the decisions compared with
the corresponding ones derived from the original event
frequencies in the initial data set. More specifically, for
each deleted pair (v, n) and each verb v′ that occurred
with n in the initial data either at least twice as fre-
quently or at most half as frequently as v, we compared
the sign of log p̂n(v)/p̂n(v

′) with that of log pn(v)/pn(v
′)

for the initial data set. The error rate for each model
is simply the proportion of sign disagreements in the
selected (v, n, v′) triples. Figure 4 shows the error rates
for each model for all the selected (v, n, v′) (all) and for
just those exceptional triples in which the log frequency
ratio of (n, v) and (n, v′) differs from the log marginal
frequency ratio of v and v′. In other words, the excep-
tional cases are those in which predictions based just on
the marginal frequencies, which the initial one-cluster
model represents, would be consistently wrong.

Here too we see some overtraining for the largest
models considered, although not for the exceptional
verbs.

CONCLUSIONS

We have demonstrated that a general divisive cluster-
ing procedure for probability distributions can be used
to group words according to their participation in par-
ticular grammatical relations with other words. The re-
sulting clusters are intuitively informative, and can be
used to construct class-based word coocurrence models
with substantial predictive power.
While the clusters derived by the proposed method

seem in many cases semantically significant, this intu-
ition needs to be grounded in a more rigorous assess-
ment. In addition to predictive power evaluations of
the kind we have already carried out, it might be worth
comparing automatically-derived clusters with human
judgements in a suitable experimental setting.
Moving further in the direction of class-based lan-

guage models, we plan to consider additional distribu-
tional relations (for instance, adjective-noun) and ap-
ply the results of clustering to the grouping of lexi-
cal associations in lexicalized grammar frameworks such
as stochastic lexicalized tree-adjoining grammars (Sch-
abes, 1992).
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