Approximation norms and duality for communication complexity lower bounds

Troy Lee
Columbia University
Adi Shraibman
Weizmann Institute

Communication complexity

- Two parties Alice and Bob wish to evaluate a function $f: X \times Y \rightarrow$ $\{-1,+1\}$ where Alice holds $x \in X$ and Bob $y \in Y$.
- How much communication is needed?

Communication complexity

- Two parties Alice and Bob wish to evaluate a function $f: X \times Y \rightarrow$ $\{-1,+1\}$ where Alice holds $x \in X$ and Bob $y \in Y$.
- How much communication is needed? Many different models have been studied.

Communication complexity

- Two parties Alice and Bob wish to evaluate a function $f: X \times Y \rightarrow$ $\{-1,+1\}$ where Alice holds $x \in X$ and Bob $y \in Y$.
- How much communication is needed? Many different models have been studied.
- Randomized complexity $R_{\epsilon}(f)$ with error probability ϵ.
- Quantum complexity $Q_{\epsilon}(f)$ without shared entanglement and $Q_{\epsilon}^{*}(f)$ with shared entanglement.

Open questions

- Many open questions remain relating the power of these different models.

Open questions

- Many open questions remain relating the power of these different models.
- Are $R_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$ polynomially related for all total functions f ?

Open questions

- Many open questions remain relating the power of these different models.
- Are $R_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$ polynomially related for all total functions f ? Largest gap known is a power of 2 .

Open questions

- Many open questions remain relating the power of these different models.
- Are $R_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$ polynomially related for all total functions f ? Largest gap known is a power of 2 .
- How much can entanglement help? What is the largest gap between $Q_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$.

Open questions

- Many open questions remain relating the power of these different models.
- Are $R_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$ polynomially related for all total functions f ? Largest gap known is a power of 2 .
- How much can entanglement help? What is the largest gap between $Q_{\epsilon}(f)$ and $Q_{\epsilon}^{*}(f)$. Currently, the only uses of entanglement to save communication are as a source of shared randomness, and for superdense coding.

Lower bound techniques

- Nearly all lower bounds known for R_{ϵ} also work in the more powerful model Q_{ϵ}^{*}, up to small factors.
- Exceptions: "Corruption bound" which can show $\Omega(n)$ lower bound on randomized complexity of disjointness [KS87, Raz92].

Lower bound techniques

- Nearly all lower bounds known for R_{ϵ} also work in the more powerful model Q_{ϵ}^{*}, up to small factors.
- Exceptions: "Corruption bound" which can show $\Omega(n)$ lower bound on randomized complexity of disjointness [KS87, Raz92].
- "log rank bound" known to work for $Q_{\epsilon}[\mathrm{BW} 01]$ but not Q_{ϵ}^{*}.

Lower bound techniques

- Nearly all lower bounds known for R_{ϵ} also work in the more powerful model Q_{ϵ}^{*}, up to small factors.
- Exceptions: "Corruption bound" which can show $\Omega(n)$ lower bound on randomized complexity of disjointness [KS87, Raz92].
- "log rank bound" known to work for $Q_{\epsilon}[\mathrm{BW} 01]$ but not Q_{ϵ}^{*}.
- In this talk we focus on the log rank bound.

Log rank lower bound

- To a function $f: X \times Y \rightarrow\{-1,+1\}$ we associate a X-by- Y communication matrix M_{f}, where $M_{f}[x, y]=f(x, y)$.
- The log rank bound states $D(f) \geq \log \operatorname{rk}\left(M_{f}\right)$ [MS82].
- One of the greatest open problems in communication complexity is the log rank conjecture [LS88], which states that $D(f) \leq\left(\log \operatorname{rk}\left(M_{f}\right)\right)^{k}$ for some constant k.

How a protocol partitions communication matrix

How a protocol partitions communication matrix

How a protocol partitions communication matrix

Approximation rank

- For randomized and quantum models, the relevant quantity is no longer rank, but approximation rank. For a sign matrix A :

$$
\operatorname{rk}_{\alpha}(A)=\min _{B}\{\operatorname{rk}(B): 1 \leq A[i, j] B[i, j] \leq \alpha\}
$$

Approximation rank

- For randomized and quantum models, the relevant quantity is no longer rank, but approximation rank. For a sign matrix A :

$$
\operatorname{rk}_{\alpha}(A)=\min _{B}\{\operatorname{rk}(B): 1 \leq A[i, j] B[i, j] \leq \alpha\}
$$

- Buhrman and de Wolf show

$$
R_{\epsilon}(f) \geq Q_{\epsilon}(f) \geq \frac{\log \mathrm{rk}_{\alpha}\left(M_{f}\right)}{2}
$$

for $\alpha=1 /(1-2 \epsilon)$.

Main result

- Approximation rank is essentially the strongest technique available to show lower bounds on quantum communication complexity.

Main result

- Approximation rank is essentially the strongest technique available to show lower bounds on quantum communication complexity. But it suffers from two drawbacks: it is not known to be a lower bound on complexity with entanglement, and it can be quite difficult to compute in practice.

Main result

- Approximation rank is essentially the strongest technique available to show lower bounds on quantum communication complexity. But it suffers from two drawbacks: it is not known to be a lower bound on complexity with entanglement, and it can be quite difficult to compute in practice.
- We show

$$
Q_{\epsilon}^{*}(f)=\Omega\left(\log \operatorname{rk}_{\alpha}\left(M_{f}\right)\right)
$$

for $\alpha=1 /(1-2 \epsilon)$.

Main result

- Approximation rank is essentially the strongest technique available to show lower bounds on quantum communication complexity. But it suffers from two drawbacks: it is not known to be a lower bound on complexity with entanglement, and it can be quite difficult to compute in practice.
- We show

$$
Q_{\epsilon}^{*}(f)=\Omega\left(\log \mathrm{rk}_{\alpha}\left(M_{f}\right)\right)
$$

for $\alpha=1 /(1-2 \epsilon)$.

- We further give a (randomized) polynomial time approximation algorithm for $\log \mathrm{rk}_{\alpha}(A)$.

γ_{2} norm

- Both results will be obtained by relating approximation rank to a norm known as γ_{2} introduced to quantum communication complexity by Linial and Shraibman [LS07].
- Linial and Shraibman show that γ_{2} gives a lower bound on quantum communication complexity with entanglement, and that it generalizes many other bounds in the literature, including discrepancy [Kre95], Fourier bounds [Kla01], trace norm method [Raz03].

γ_{2} norm

- Both results will be obtained by relating approximation rank to a norm known as γ_{2} introduced to quantum communication complexity by Linial and Shraibman [LS07].
- Linial and Shraibman show that γ_{2} gives a lower bound on quantum communication complexity with entanglement, and that it generalizes many other bounds in the literature, including discrepancy [Kre95], Fourier bounds [Kla01], trace norm method [Raz03].
- On the other hand, $\operatorname{rk}(A) \geq \gamma_{2}(A)^{2}$.

γ_{2} norm definition

- For a matrix A, define

$$
\gamma_{2}(A)=\min _{X^{T} Y=A} c(X) c(Y)
$$

where $c(X)$ is the largest ℓ_{2} norm of a column of X.

γ_{2} norm definition

- For a matrix A, define

$$
\gamma_{2}(A)=\min _{X^{T} Y=A} c(X) c(Y)
$$

where $c(X)$ is the largest ℓ_{2} norm of a column of X.

- As with rank, we also consider an approximation version: for a sign matrix A

$$
\gamma_{2}^{\alpha}(A)=\min _{B}\left\{\gamma_{2}(B): 1 \leq A[i, j] B[i, j] \leq \alpha\right\}
$$

γ_{2} norm remarks

- In matrix analysis known as "Schur/Hadamard product operator/trace norm,"

γ_{2} norm remarks

- In matrix analysis known as "Schur/Hadamard product operator/trace norm,"
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A positive semidefinite.

γ_{2} norm remarks

- In matrix analysis known as "Schur/Hadamard product operator/trace norm,"
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A positive semidefinite.
- We will also use the dual norm:

$$
\gamma_{2}^{*}(A)=\max _{B} \frac{\langle A, B\rangle}{\gamma_{2}(B)}
$$

γ_{2} norm remarks

- In matrix analysis known as "Schur/Hadamard product operator/trace norm,"
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A positive semidefinite.
- We will also use the dual norm:

$$
\begin{aligned}
\gamma_{2}^{*}(A) & =\max _{B} \frac{\langle A, B\rangle}{\gamma_{2}(B)} \\
& =\max _{\substack{u_{i}, v_{j} \\
\left\|u_{i}\right\|==\left\|v_{j}\right\|=1}} \sum_{i, j} A[i, j]\left\langle u_{i}, v_{j}\right\rangle
\end{aligned}
$$

Dual norm

- The dual norm γ_{2}^{*} shows up in XOR games with entanglement.
- This is a game between a verifier and two provers Alice and Bob. Alice and Bob share an entangled state. Verifier wants to compute some function $f: X \times Y \rightarrow\{-1,+1\}$.
- Verifier sends questions x to Alice, y to Bob with probability $\pi(x, y)$.
- Alice/Bob respond with $a_{x}, b_{y} \in\{-1,+1\}$ with the aim that $a_{x} b_{y}=$ $f(x, y)$.

Tsirelson's characterization

- Look at the correlation, under π between the function f and the output of the protocol.
- Tsirelson's characterization of XOR games gives

$$
\begin{aligned}
\max _{\text {strategies }} \sum_{x, y} \pi(x, y) f(x, y) a_{x} b_{y} & =\max _{\substack{u_{x}, v_{y}: \\
\left\|u_{x}\right\|=\left\|v_{y}\right\|=1}} \sum_{x, y} \pi(x, y) M_{f}[x, y]\left\langle u_{x}, v_{y}\right\rangle \\
& =\gamma_{2}^{*}\left(M_{f} \circ \pi\right)
\end{aligned}
$$

γ_{2} communication complexity lower bound

- Tsirelson's characterization can give an alternative proof that γ_{2} lower bounds quantum communication complexity with entanglement (observed by Harry Buhrman).

γ_{2} communication complexity lower bound

- Tsirelson's characterization can give an alternative proof that γ_{2} lower bounds quantum communication complexity with entanglement (observed by Harry Buhrman).
- Recall

$$
\gamma_{2}\left(M_{f}\right)=\max _{g, \pi} \frac{\left\langle M_{f}, M_{g} \circ \pi\right\rangle}{\gamma_{2}^{*}\left(M_{g} \circ \pi\right)}
$$

- Consider a c-qubit protocol for f. Using teleportation, we may transform this into a protocol that uses at most $2 c$ classical bits.
- We will now show that $\gamma_{2}^{*}\left(M_{g} \circ \pi\right)$ is large by designing an XOR strategy for the provers.

XOR strategy for provers

- We design an XOR strategy P. Alice and Bob share a random $2 c$ bit string r. Alice and Bob simulate actions of the protocol for f, assuming $i^{\text {th }}$ message sent is r_{i}.
- If Alice/Bob notices inconsistency with protocol outputs a random bit.
- If Alice consistent outputs $f(x, y)$. If Bob consistent outputs 1 .
- Then

$$
\gamma_{2}\left(M_{g} \circ \pi\right) \geq \sum_{x, y} \pi(x, y) g(x, y) P(x, y)=\frac{1}{2^{2 c}} \sum_{x, y} \pi(x, y) g(x, y) f(x, y)
$$

XOR strategy for provers

- From the last slide we have

$$
\gamma_{2}\left(M_{g} \circ \pi\right) \geq \sum_{x, y} \pi(x, y) g(x, y) P(x, y)=\frac{1}{2^{2 c}} \sum_{x, y} \pi(x, y) g(x, y) f(x, y)
$$

- As g, π were arbitrary this gives

$$
\max _{g, \pi} \frac{\left\langle M_{f}, M_{g} \circ \pi\right\rangle}{\gamma_{2}^{*}\left(M_{g} \circ \pi\right)} \leq 2^{2 c}
$$

which implies $Q^{*}(f)=\Omega\left(\log \gamma_{2}\left(M_{f}\right)\right)$.

XOR strategy for provers

- From the last slide we have

$$
\gamma_{2}\left(M_{g} \circ \pi\right) \geq \sum_{x, y} \pi(x, y) g(x, y) P(x, y)=\frac{1}{2^{2 c}} \sum_{x, y} \pi(x, y) g(x, y) f(x, y)
$$

- As g, π were arbitrary this gives

$$
\max _{g, \pi} \frac{\left\langle M_{f}, M_{g} \circ \pi\right\rangle}{\gamma_{2}^{*}\left(M_{g} \circ \pi\right)} \leq 2^{2 c}
$$

which implies $Q^{*}(f)=\Omega\left(\log \gamma_{2}\left(M_{f}\right)\right)$. The proof for bounded-error complexity follows similarly.

Relating γ_{2} and rank

- Now that we have introduced γ_{2}, we can state our main theorem.
- For any M-by- N sign matrix A and constant $\alpha>1$

$$
\frac{\gamma_{2}^{\alpha}(A)^{2}}{\alpha^{2}} \leq \operatorname{rk}_{\alpha}(A)=O\left(\gamma_{2}^{\alpha}(A)^{2} \log (M N)\right)^{3}
$$

Remarks

- When $\alpha=1$ theorem does not hold. For equality function (sign matrix) $\operatorname{rk}\left(2 I_{N}-1_{N}\right) \geq N-1$, but

$$
\gamma_{2}\left(2 I_{N}-1_{N}\right) \leq 2 \gamma_{2}\left(I_{N}\right)+\gamma_{2}\left(1_{N}\right)=3,
$$

by Schur's theorem.

- Equality example also shows that the $\log N$ factor is necessary, as approximation rank of identity matrix is $\Omega(\log N)$ [Alon 08].

Advantages of γ_{2}^{α}

- γ_{2}^{α} can be formulated as a max expression

$$
\gamma_{2}^{\alpha}(A)=\max _{B} \frac{(1+\alpha)\langle A, B\rangle+(1-\alpha) \ell_{1}(B)}{2 \gamma_{2}^{*}(B)}
$$

- γ_{2}^{α} is polynomial time computable by semidefinite programming
- γ_{2}^{α} is also known to lower bound quantum communication with shared entanglement, which was not known for approximation rank.

Proof sketch

- For the proof, we will use the primal formulation of γ_{2} :

$$
\gamma_{2}(A)=\min _{\substack{X, Y: \\ X^{T} Y=A}} c(X) c(Y)
$$

where $c(X)$ is the maximum ℓ_{2} norm of a column of X.

Proof sketch

- For the proof, we will use the primal formulation of γ_{2} :

$$
\gamma_{2}(A)=\min _{\substack{X, Y: \\ X^{T} Y=A}} c(X) c(Y)
$$

where $c(X)$ is the maximum ℓ_{2} norm of a column of X.

- Rank can also be phrased as optimizing over factorizations: the minimum K such that $A=X^{T} Y$ where X, Y are K-by $-N$ matrices.

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{1+\epsilon}(A)$. Say X, Y are K-by- N matrices.

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{1+\epsilon}(A)$. Say X, Y are K-by- N matrices.
- Know that the columns of X, Y have squared ℓ_{2} norm at most $\gamma_{2}\left(A^{\prime}\right)$, but X, Y might still have many rows...

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{1+\epsilon}(A)$. Say X, Y are K-by- N matrices.
- Know that the columns of X, Y have squared ℓ_{2} norm at most $\gamma_{2}\left(A^{\prime}\right)$, but X, Y might still have many rows...
- Johnson-Lindenstrauss lemma: let R be a random K^{\prime}-by- K matrix

$$
\underset{R}{\operatorname{Pr}}\left[\langle R u, R v\rangle-\langle u, v\rangle \geq \frac{\delta}{2}\left(\|u\|^{2}+\|v\|^{2}\right)\right] \leq 4 e^{-\delta^{2} K^{\prime} / 8}
$$

First step: dimension reduction

- Consider $R X$ and $R Y$ where R is random matrix of size K^{\prime}-by- K for $K^{\prime}=O\left(\gamma_{2}^{1+\epsilon}(A)^{2} \log N\right)$. By Johnson-Lindenstrauss lemma whp all the inner products $(R X)_{i}^{T}(R Y)_{j} \approx X_{i}^{T} Y_{j}$ will be approximately preserved, up to additive factor of ϵ.

First step: dimension reduction

- Consider $R X$ and $R Y$ where R is random matrix of size K^{\prime}-by- K for $K^{\prime}=O\left(\gamma_{2}^{1+\epsilon}(A)^{2} \log N\right)$. By Johnson-Lindenstrauss lemma whp all the inner products $(R X)_{i}^{T}(R Y)_{j} \approx X_{i}^{T} Y_{j}$ will be approximately preserved, up to additive factor of ϵ.
- This shows there is a matrix $A^{\prime \prime}=(R X)^{T}(R Y)$ which is a $1+2 \epsilon$ approximation to A and has rank $O\left(\gamma_{2}^{1+\epsilon}(A)^{2} \log N\right)$.

Second step: Error reduction

- Now we have a matrix $A^{\prime \prime}=(R X)^{T}(R Y)$ which is of the desired rank, but is only a $1+2 \epsilon$ approximation to A, whereas we wanted an $1+\epsilon$ approximation of A.
- Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of the matrix. Can show $\operatorname{rk}(p(A)) \leq(d+1) \operatorname{rk}(A)^{d}$ for degree d polynomial.
- Taking p to be low degree approximation of sign function makes $p\left(A^{\prime \prime}\right)$ better approximation of A. For our purposes, can get by with degree 3 polynomial.
- Completes the proof $\mathrm{rk}_{\alpha}(A)=O\left(\gamma_{2}^{\alpha}(A)^{2} \log (N)\right)^{3}$

Polynomial for Error Reduction

Open questions

- We have shown a polynomial time algorithm to approximate $\operatorname{rk}_{\alpha}(A)$, but ratio deteriorates as $\alpha \rightarrow \infty$.

$$
\frac{\gamma_{2}^{\alpha}(A)^{2}}{\alpha^{2}} \leq \operatorname{rk}_{\alpha}(A) \leq O\left(\gamma_{2}^{\alpha}(A)^{2} \log (N)\right)^{3}
$$

- For the case of sign rank, lower bound fails! In fact, exponential gaps are known [BVW07, Sherstov07]
- Polynomial time algorithm to approximate sign rank?

Open questions

- Upper bound in terms of γ_{2}^{α} ?

Open questions

- Upper bound in terms of γ_{2}^{α} ? Linial and Shraibman show $R_{\epsilon}(f)=$ $O\left(\gamma_{2}^{\infty}\left(M_{f}\right)^{2}\right)$.

Open questions

- Upper bound in terms of γ_{2}^{α} ? Linial and Shraibman show $R_{\epsilon}(f)=$ $O\left(\gamma_{2}^{\infty}\left(M_{f}\right)^{2}\right)$.
- By showing a relation between γ_{2}^{α} and approximation rank, we have simplified the picture of lower bound techniques. What is relationship between $\log \gamma_{2}^{\alpha}$ and corruption bound?

