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• Two parties Alice and Bob wish to evaluate a function f : X × Y →
{−1,+1} where Alice holds x ∈ X and Bob y ∈ Y .

• How much communication is needed? Many different models have been
studied.

• Randomized complexity Rε(f) with error probability ε.

• Quantum complexity Qε(f) without shared entanglement and Q∗
ε(f)

with shared entanglement.
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Open questions

• Many open questions remain relating the power of these different models.

• Are Rε(f) and Q∗
ε(f) polynomially related for all total functions f?

Largest gap known is a power of 2.

• How much can entanglement help? What is the largest gap between
Qε(f) and Q∗

ε(f). Currently, the only uses of entanglement to save
communication are as a source of shared randomness, and for superdense
coding.
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Lower bound techniques

• Nearly all lower bounds known for Rε also work in the more powerful
model Q∗

ε , up to small factors.

• Exceptions: “Corruption bound” which can show Ω(n) lower bound on
randomized complexity of disjointness [KS87, Raz92].

• “log rank bound” known to work for Qε [BW01] but not Q∗
ε .

• In this talk we focus on the log rank bound.



Log rank lower bound

• To a function f : X × Y → {−1,+1} we associate a X-by-Y
communication matrix Mf , where Mf [x, y] = f(x, y).

• The log rank bound states D(f) ≥ log rk(Mf) [MS82].

• One of the greatest open problems in communication complexity is the
log rank conjecture [LS88], which states that D(f) ≤ (log rk(Mf))k for
some constant k.
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How a protocol partitions communication matrix
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Approximation rank

• For randomized and quantum models, the relevant quantity is no longer
rank, but approximation rank. For a sign matrix A:

rkα(A) = min
B
{rk(B) : 1 ≤ A[i, j]B[i, j] ≤ α}



Approximation rank

• For randomized and quantum models, the relevant quantity is no longer
rank, but approximation rank. For a sign matrix A:

rkα(A) = min
B
{rk(B) : 1 ≤ A[i, j]B[i, j] ≤ α}

• Buhrman and de Wolf show

Rε(f) ≥ Qε(f) ≥ log rkα(Mf)
2

for α = 1/(1− 2ε).
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Main result

• Approximation rank is essentially the strongest technique available to
show lower bounds on quantum communication complexity. But it
suffers from two drawbacks: it is not known to be a lower bound on
complexity with entanglement, and it can be quite difficult to compute
in practice.

• We show
Q∗

ε(f) = Ω(log rkα(Mf))
for α = 1/(1− 2ε).

• We further give a (randomized) polynomial time approximation algorithm
for log rkα(A).
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γ2 norm

• Both results will be obtained by relating approximation rank to a norm
known as γ2 introduced to quantum communication complexity by Linial
and Shraibman [LS07].

• Linial and Shraibman show that γ2 gives a lower bound on quantum
communication complexity with entanglement, and that it generalizes
many other bounds in the literature, including discrepancy [Kre95],
Fourier bounds [Kla01], trace norm method [Raz03].

• On the other hand, rk(A) ≥ γ2(A)2.
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γ2 norm definition

• For a matrix A, define

γ2(A) = min
XT Y =A

c(X)c(Y )

where c(X) is the largest `2 norm of a column of X.

• As with rank, we also consider an approximation version: for a sign
matrix A

γα
2 (A) = min

B
{γ2(B) : 1 ≤ A[i, j]B[i, j] ≤ α}.



γ2 norm remarks

• In matrix analysis known as “Schur/Hadamard product operator/trace
norm,”



γ2 norm remarks

• In matrix analysis known as “Schur/Hadamard product operator/trace
norm,”

• Schur (1911) showed that γ2(A) = maxi Aii if A positive semidefinite.



γ2 norm remarks

• In matrix analysis known as “Schur/Hadamard product operator/trace
norm,”

• Schur (1911) showed that γ2(A) = maxi Aii if A positive semidefinite.

• We will also use the dual norm:

γ∗2(A) = max
B

〈A,B〉
γ2(B)



γ2 norm remarks

• In matrix analysis known as “Schur/Hadamard product operator/trace
norm,”

• Schur (1911) showed that γ2(A) = maxi Aii if A positive semidefinite.

• We will also use the dual norm:

γ∗2(A) = max
B

〈A,B〉
γ2(B)

= max
ui,vj:

‖ui‖=‖vj‖=1

∑
i,j

A[i, j]〈ui, vj〉



Dual norm

• The dual norm γ∗2 shows up in XOR games with entanglement.

• This is a game between a verifier and two provers Alice and Bob. Alice
and Bob share an entangled state. Verifier wants to compute some
function f : X × Y → {−1,+1}.

• Verifier sends questions x to Alice, y to Bob with probability π(x, y).

• Alice/Bob respond with ax, by ∈ {−1,+1} with the aim that axby =
f(x, y).



Tsirelson’s characterization

• Look at the correlation, under π between the function f and the output
of the protocol.

• Tsirelson’s characterization of XOR games gives

max
strategies

∑
x,y

π(x, y)f(x, y)axby = max
ux,vy:

‖ux‖=‖vy‖=1

∑
x,y

π(x, y)Mf [x, y]〈ux, vy〉

= γ∗2(Mf ◦ π).
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γ2 communication complexity lower bound

• Tsirelson’s characterization can give an alternative proof that γ2

lower bounds quantum communication complexity with entanglement
(observed by Harry Buhrman).

• Recall

γ2(Mf) = max
g,π

〈Mf ,Mg ◦ π〉
γ∗2(Mg ◦ π)

• Consider a c-qubit protocol for f . Using teleportation, we may transform
this into a protocol that uses at most 2c classical bits.

• We will now show that γ∗2(Mg ◦π) is large by designing an XOR strategy
for the provers.



XOR strategy for provers

• We design an XOR strategy P . Alice and Bob share a random 2c bit
string r. Alice and Bob simulate actions of the protocol for f , assuming
ith message sent is ri.

• If Alice/Bob notices inconsistency with protocol outputs a random bit.

• If Alice consistent outputs f(x, y). If Bob consistent outputs 1.

• Then

γ2(Mg ◦ π) ≥
∑
x,y

π(x, y)g(x, y)P (x, y) =
1

22c

∑
x,y

π(x, y)g(x, y)f(x, y)
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XOR strategy for provers

• From the last slide we have

γ2(Mg ◦ π) ≥
∑
x,y

π(x, y)g(x, y)P (x, y) =
1

22c

∑
x,y

π(x, y)g(x, y)f(x, y)

• As g, π were arbitrary this gives

max
g,π

〈Mf ,Mg ◦ π〉
γ∗2(Mg ◦ π)

≤ 22c

which implies Q∗(f) = Ω(log γ2(Mf)).The proof for bounded-error
complexity follows similarly.



Relating γ2 and rank

• Now that we have introduced γ2, we can state our main theorem.

• For any M -by-N sign matrix A and constant α > 1

γα
2 (A)2

α2
≤ rkα(A) = O

(
γα
2 (A)2 log(MN)

)3



Remarks

• When α = 1 theorem does not hold. For equality function (sign matrix)
rk(2IN − 1N) ≥ N − 1, but

γ2(2IN − 1N) ≤ 2γ2(IN) + γ2(1N) = 3,

by Schur’s theorem.

• Equality example also shows that the log N factor is necessary, as
approximation rank of identity matrix is Ω(log N) [Alon 08].



Advantages of γα
2

• γα
2 can be formulated as a max expression

γα
2 (A) = max

B

(1 + α)〈A,B〉+ (1− α)`1(B)
2γ∗2(B)

• γα
2 is polynomial time computable by semidefinite programming

• γα
2 is also known to lower bound quantum communication with shared

entanglement, which was not known for approximation rank.
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Proof sketch

• For the proof, we will use the primal formulation of γ2:

γ2(A) = min
X,Y :

XT Y =A

c(X)c(Y )

where c(X) is the maximum `2 norm of a column of X.

• Rank can also be phrased as optimizing over factorizations: the minimum
K such that A = XTY where X, Y are K-by-N matrices.



First step: dimension reduction

• Look at XTY = A′ factorization realizing γ1+ε
2 (A). Say X, Y are

K-by-N matrices.



First step: dimension reduction

• Look at XTY = A′ factorization realizing γ1+ε
2 (A). Say X, Y are

K-by-N matrices.

• Know that the columns of X, Y have squared `2 norm at most γ2(A′),
but X, Y might still have many rows...



First step: dimension reduction

• Look at XTY = A′ factorization realizing γ1+ε
2 (A). Say X, Y are

K-by-N matrices.

• Know that the columns of X, Y have squared `2 norm at most γ2(A′),
but X, Y might still have many rows...

• Johnson-Lindenstrauss lemma: let R be a random K ′-by-K matrix

Pr
R

[
〈Ru, Rv〉 − 〈u, v〉 ≥ δ

2
(‖u‖2 + ‖v‖2)

]
≤ 4e−δ2K′/8



First step: dimension reduction

• Consider RX and RY where R is random matrix of size K ′-by-K for
K ′ = O(γ1+ε

2 (A)2 log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX)T

i (RY )j ≈ XT
i Yj will be approximately preserved,

up to additive factor of ε.



First step: dimension reduction

• Consider RX and RY where R is random matrix of size K ′-by-K for
K ′ = O(γ1+ε

2 (A)2 log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX)T

i (RY )j ≈ XT
i Yj will be approximately preserved,

up to additive factor of ε.

• This shows there is a matrix A′′ = (RX)T (RY ) which is a 1 + 2ε
approximation to A and has rank O(γ1+ε

2 (A)2 log N).



Second step: Error reduction

• Now we have a matrix A′′ = (RX)T (RY ) which is of the desired rank,
but is only a 1 + 2ε approximation to A, whereas we wanted an 1 + ε
approximation of A.

• Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of
the matrix. Can show rk(p(A)) ≤ (d+1)rk(A)d for degree d polynomial.

• Taking p to be low degree approximation of sign function makes p(A′′)
better approximation of A. For our purposes, can get by with degree 3
polynomial.

• Completes the proof rkα(A) = O
(
γα
2 (A)2 log(N)

)3



Polynomial for Error Reduction
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Open questions

• We have shown a polynomial time algorithm to approximate rkα(A), but
ratio deteriorates as α →∞.

γα
2 (A)2

α2
≤ rkα(A) ≤ O

(
γα
2 (A)2 log(N)

)3

• For the case of sign rank, lower bound fails! In fact, exponential gaps
are known [BVW07, Sherstov07]

• Polynomial time algorithm to approximate sign rank?
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Open questions

• Upper bound in terms of γα
2 ? Linial and Shraibman show Rε(f) =

O(γ∞2 (Mf)2).

• By showing a relation between γα
2 and approximation rank, we have

simplified the picture of lower bound techniques. What is relationship
between log γα

2 and corruption bound?


