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Ordered search problem

• Complexity of finding a given item in an ordered list.

• Given an ordered list x1 ≤ x2 ≤ . . . ≤ xn want to find position of given
item z.

• Ask queries of the form xi ≥ z?

• How many queries are needed in worst case?



Formalization in standard query model

• Say that z is actually the ith item in the list. Then answers to the query
xj ≥ z will look as follows: 0 . . . 01 . . . 1.

• Thus can equivalently represent problem as querying bits of input and
identifying first occurrence of a ‘1’.

• For example, for n = 4, set of inputs would be

S = {1111, 0111, 0011, 0001}.

Note that last bit is always one.

• Problem is to identify the input (oracle identification problem).



Complexity of ordered search

• Classically, can succeed with log n queries by binary search and this is
tight.

• In quantum case, one can do better. But only by a constant!

• Upper bounds: 0.631 log n [HNS01], 0.526 log n [FGGS99], 0.439 log n
[BJL04], 0.433 log n [CLP06], 0.32 log n [B-OH07] (bounded-error)

• Lower bounds:
√

log n/ log log n [BW98], log n/ log log n [FGGS98],
0.0833 log n [Amb99], 1

π lnn ≈ 0.221 log n [HNS01]

• What is this fundamental constant of quantum information?



Apologia

• Now it is clear we are talking about constant factors. But . . .

• Ordered search is a fundamental problem, and natural subroutine for
sorting algorithms.

• On algorithm side, we still lack a good theoretical understanding.

• Lower bounds lead to some nice math.

• Would be really cool if the right answer is 1
π lnn.



This talk

• Describe how the problem can be simplified by symmetry arguments.

• Briefly discuss how current best exact algorithm is obtained.

• Main result: One of the best lower bound techniques, the adversary
method, cannot show lower bounds larger than 1

π lnn+O(1). Holds also

for the “negative” adversary method [HLŠ07].



Symmetrization

• “Whenever you have to deal with a structure endowed entity Σ try to
determine its group of automorphisms . . . you can expect to gain a deep
insight into the constitution of Σ in this way.”

—Hermann Weyl, Symmetry

• For our purposes, an automorphism is a permutation τ that preserves
agreement on the function:

f(x) = f(y) ⇐⇒ f(τ(x)) = f(τ(y))

for all x, y.

• But for original problem: S = {1111, 0111, 0011, 0001} only have trivial
automorphism.



Problem with cyclic structure

• [FGGS99] consider inputs of length 2n “on a circle”:

S′ = {11110000, 01111000, 00111100, 00011110, 00001111, 10000111,
11000011, 11100001}

• Notice here that xi = 1− xn+i. Second half is complement of first half.

• Complexity of this problem differs from that of the original by at most
one query: If can solve problem with 2n inputs can also solve problem
with n inputs as is subset.

• Given algorithm for n input problem, first query xn. If it is one, run
algorithm on first half, otherwise run algorithm on second half.



Upper bounds

• Barnum, Saks, and Szegedy [BSS03] show that existence of a quantum
t-query algorithm can be represented by a semidefinite program.

• Thus in principle we have an efficient way to compute quantum query
complexity. In practice, however, it is often said that the BSS program
is too complicated to be useful.

• In the case of ordered search, however, the symmetry of the problem
allows the BSS program to be simplified greatly.



BSS program for ordered search

Find 2n-by-2n positive semidefinite matrices M
(j)
i such that

2n∑
i=0

M
(0)
i = E0

2n∑
i=0

M
(j)
i =

2n∑
i=0

Ei ◦M
(j−1)
i

2n∑
i=0

M
(t)
i = I

where E0 is the all ones matrix, and Ei[x, y] = (−1)xi+yi.



Example: the matrix E1
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E1 =



1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
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Binary search in the BSS framework

• Set M
(0)
0 ,M

(0)
1 = (1/2)E0 the all ones matrix. All other M

(0)
i matrices

will be zero.

• Then M
(0)
0 + M

(0)
1 = E0, and
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M
(0)
0 + E1 ◦M

(0)
1 =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
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Binary search in the BSS framework

We can continue, in this same way. Call the matrix from the last slide A.

Setting M
(1)
0 ,M

(1)
3 = (1/2)A, and all others zero, then M

(1)
0 + M

(1)
3 = A

as required and
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M
(1)
0 + E3 ◦M

(1)
3 =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
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1110

1100

1000

0000

0001

0011

0111

Finally, with one more query we can reach the identity matrix.



Symmetrized program for ordered search

• The cyclical structure of the problem can be used to reduce the number
of variable matrices to two for each query, one representing the null query

M
(j)
0 , and the other representing the query to the first bit M

(j)
1 . The

matrices M
(j)
i for i > 1 will simply be permutations of M

(j)
1 .

• Childs, Landahl, and Parillo obtain the best exact algorithm by showing
this program is feasible for n = 605 with 4 queries. Applying this
algorithm recursively gives general upper bound of 4 log605 n.



Lower bounds: adversary method

• Main lower bound techniques: polynomial method and adversary method.

• Adversary method developed and improved in long series of works
[BBBV94, Amb00, HNS01, BSS03, Amb03, LM04, Zha04, SŠ06, HLŠ07]

• Relation to BSS program: One can take the dual of the BSS program.
By Farkas’ lemma, the dual will be feasible iff the primal is infeasible.
Thus one can show lower bounds by constructing solutions to the dual.

• The adversary bound implies solutions to the dual of a particular,
restricted form.



Adversary method: matrix formulation

• Adversary bound is an optimization problem which can also be written
as a semidefinite program.

ADV(f) := max
Γ

‖Γ‖
maxi ‖Γ ◦Di‖

where Γ[x, y] = 0 if f(x) = f(y) and Di[x, y] = 1 if xi 6= yi and 0
otherwise.

• Symmetry also helps simplify the adversary bound. Automorphism
principle [HLŠ07]: May assume without loss of generality, that optimal
Γ satisfies Γ[x, y] = Γ[τ(x), τ(y)] for every automorphism τ of f .
Furthermore, if automorphism group is transitive, the uniform eigenvector
will be a principal eigenvector of Γ and all ‖Γ ◦Di‖ are equal.



Γ matrix for OSP
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Γ =



0 γ1 γ2 γ3 γ4 γ3 γ2 γ1

γ1 0 γ1 γ2 γ3 γ4 γ3 γ2

γ2 γ1 0 γ1 γ2 γ3 γ4 γ3

γ3 γ2 γ1 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 γ1 γ2 γ3

γ3 γ4 γ3 γ2 γ1 0 γ1 γ2

γ2 γ3 γ4 γ3 γ2 γ1 0 γ1

γ1 γ2 γ3 γ4 γ3 γ2 γ1 0
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Automorphism principle gives

‖Γ‖ = γn + 2
n−1∑
i=1

γi.



Γ ◦D1 matrix for OSP
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Γ ◦D1 =



0 0 0 0 γ4 γ3 γ2 γ1

0 0 0 0 γ3 γ4 γ3 γ2

0 0 0 0 γ2 γ3 γ4 γ3

0 0 0 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 0 0 0
γ3 γ4 γ3 γ2 0 0 0 0
γ2 γ3 γ4 γ3 0 0 0 0
γ1 γ2 γ3 γ4 0 0 0 0
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We see that ‖Γ ◦D1‖ = ‖Toeplitz(γn, . . . , γ1)‖.



Høyer, Neerbeck, Shi construction

Assume that n is even. Let γi = 1/i for i = 1, . . . , n/2 and zero
otherwise. Then objective function is

2
n/2∑
i=1

1
i
≈ 2 ln(n/2)

and have to upper bound spectral norm of

0 0 0 0 0 0 1/2 1
0 0 0 0 0 0 0 1/2
0 0 0 0 1/2 0 0 0
0 0 0 0 1 1/2 0 0
0 0 1/2 1 0 0 0 0
0 0 0 1/2 0 0 0 0

1/2 0 0 0 0 0 0 0
1 1/2 0 0 0 0 0 0


.



“Half” Hilbert matrix

In general, spectral norm of Γ2n ◦D1 will be given by spectral norm of

Zn =


1 1/2 1/3 1/4 . . . 1/n

1/2 1/3 1/4 . . . 1/n 0
1/3 1/4 . . . 1/n 0 0
... . . . ... ...

1/(n− 1) 1/n 0 0 0 0
1/n 0 0 0 0 0





Hilbert’s Inequality

Consider the “full” Hilbert matrix

H =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 . . . . . .
1/3 1/4 . . . . . .
1/4 . . . ...
... ... . . .


Hilbert showed (with improvement by Schur) that ‖H‖ ≤ π. Thus HNS
construction gives

ADV(OSPn)) ≥ 2 ln(n/2)
π

.



General question

This construction raises the following question: Given a matrix of the
form

An =


a0 a1 a2 a3 . . . an−1

a1 a2 a3 . . . an−1 0
a2 a3 . . . an−1 0 0
... . . . ... ...

an−2 an−1 0 0 0 0
an−1 0 0 0 0 0


how large can

∑
i ai be while ‖An‖ ≤ 1? Let α(n) represent this optimal

value.



Answer

For the case of non-negative matrices, we are able to give the exact
answer:

α+(n) =
n−1∑
i=0

((
2i
i

)
4i

)2

=
1
π
(lnn + γ + ln 8) + O(1/n)

and explicit matrices which realize this bound.

Note that (
2i
i

)
4i

≈ 4i/
√

πi

4i
=

1√
πi

.



Application to adversary bound

Turns out that this construction is also optimal for the adversary bound.
The dual of the (non-negative) adversary bound is the following:

minTr(P ) subject to P � 0, tri(P ) ≥ 1 for i = 0, . . . , n− 1.

We exhibit a solution of this with the same value to show that

ADV+(OSP2n) = 2α+(n)

In the case of negative entries—with much more work—can show

ADV(OSPn) ≤ ADV+(OSP2n) + 1.



A word about the proof (non-negative case)

• We exhibit solutions to both the primal and dual formulation of adversary
bound, and show that they match.

• A key role in both directions is played by the lovely sequence

βi =

(
2i
i

)
4i

.

• Key property:
∑j

i=0 βiβj−i = 1 for every j.

• Proof:
1√

1− z
= β0 + β1z + β2z

2 + β3z
3 + . . .



Optimal matrix (lower bound)

Recall we wish to show that α+(n) ≥
∑n−1

i=0

(
(2i

i )
4i

)2

.

Define An(j) =
∑n−j−1

i=0 βiβi+j.


A4(0)−A4(1) A4(1)−A4(2) A4(2)−A4(3) A4(3)
A4(1)−A4(2) A4(2)−A4(3) A4(3) 0
A4(2)−A4(3) A4(3) 0 0

A4(3) 0 0 0


To bound spectral norm, show that x = [β3, β2, β1, β0] is eigenvector
with eigenvalue 1. As x is non-negative and matrix is symmetric and
non-negative, this must correspond to largest eigenvalue.
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Conclusion

• Progress on ordered search will require new algorithms or new lower
bound techniques.

• We have a solution to the dual BSS program which (I believe) is
asymptotically optimal. Can one use sufficiency conditions for optimality
of solutions to semidefinite programs to show this is the case?

• Observed with Peter Høyer: Our optimal matrix can be used to give
nearly elementary proof of Hilbert’s Inequality (need Γ(1/2) =

√
π).


