Quantum ordered search: Is $\frac{1}{\pi} \ln n$ the right answer?

Andrew Childs
University of Waterloo

Troy Lee
Columbia University

Ordered search problem

- Complexity of finding a given item in an ordered list.
- Given an ordered list $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ want to find position of given item z.
- Ask queries of the form $x_{i} \geq z$?
- How many queries are needed in worst case?

Formalization in standard query model

- Say that z is actually the $i^{\text {th }}$ item in the list. Then answers to the query $x_{j} \geq z$ will look as follows: $0 \ldots 01 \ldots 1$.
- Thus can equivalently represent problem as querying bits of input and identifying first occurrence of a ' 1 '.
- For example, for $n=4$, set of inputs would be

$$
S=\{1111,0111,0011,0001\} .
$$

Note that last bit is always one.

- Problem is to identify the input (oracle identification problem).

Complexity of ordered search

- Classically, can succeed with $\log n$ queries by binary search and this is tight.
- In quantum case, one can do better. But only by a constant! \|
- Upper bounds: $0.631 \log n$ [HNS01], $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], 0. $433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error) ॥
- Lower bounds: $\sqrt{\log n} / \log \log n \quad[\mathrm{BW} 98], \log n / \log \log n$ [FGGS98], 0.0833 $\log n$ [Amb99], $\frac{\operatorname{Le}}{\pi} \ln n \approx 0.221 \log n$ [HNS01]
- What is this fundamental constant of quantum information?

Apologia

- Now it is clear we are talking about constant factors. But . . .
- Ordered search is a fundamental problem, and natural subroutine for sorting algorithms. I
- On algorithm side, we still lack a good theoretical understanding.
- Lower bounds lead to some nice math.
- Would be really cool if the right answer is $\frac{1}{\pi} \ln n$.

This talk

- Describe how the problem can be simplified by symmetry arguments.
- Briefly discuss how current best exact algorithm is obtained.
- Main result: One of the best lower bound techniques, the adversary method, cannot show lower bounds larger than $\frac{1}{\pi} \ln n+O(1)$. Holds also for the "negative" adversary method [HLŠ07].

Symmetrization

- "Whenever you have to deal with a structure endowed entity Σ try to determine its group of automorphisms . . you can expect to gain a deep insight into the constitution of Σ in this way."
—Hermann Weyl, Symmetryl
- For our purposes, an automorphism is a permutation τ that preserves agreement on the function:

$$
f(x)=f(y) \Longleftrightarrow f(\tau(x))=f(\tau(y))
$$

for all x, y.

- But for original problem: $S=\{1111,0111,0011,0001\}$ only have trivial automorphism.

Problem with cyclic structure

- [FGGS99] consider inputs of length $2 n$ "on a circle": $S^{\prime}=\{11110000,01111000,00111100,00011110,00001111,10000111$, 11000011, 11100001\}
- Notice here that $x_{i}=1-x_{n+i}$. Second half is complement of first half.
- Complexity of this problem differs from that of the original by at most one query: If can solve problem with $2 n$ inputs can also solve problem with n inputs as is subset.
- Given algorithm for n input problem, first query x_{n}. If it is one, run algorithm on first half, otherwise run algorithm on second half.

Upper bounds

- Barnum, Saks, and Szegedy [BSS03] show that existence of a quantum t-query algorithm can be represented by a semidefinite program.
- Thus in principle we have an efficient way to compute quantum query complexity. In practice, however, it is often said that the BSS program is too complicated to be useful.
- In the case of ordered search, however, the symmetry of the problem allows the BSS program to be simplified greatly.

BSS program for ordered search

Find $2 n$-by- $2 n$ positive semidefinite matrices $M_{i}^{(j)}$ such that

$$
\begin{aligned}
& \sum_{i=0}^{2 n} M_{i}^{(0)}=E_{0} \\
& \sum_{i=0}^{2 n} M_{i}^{(j)}=\sum_{i=0}^{2 n} E_{i} \circ M_{i}^{(j-1)} \\
& \sum_{i=0}^{2 n} M_{i}^{(t)}=I
\end{aligned}
$$

where E_{0} is the all ones matrix, and $E_{i}[x, y]=(-1)^{x_{i}+y_{i}}$.

Example: the matrix E_{1}

Binary search in the BSS framework

- Set $M_{0}^{(0)}, M_{1}^{(0)}=(1 / 2) E_{0}$ the all ones matrix. All other $M_{i}^{(0)}$ matrices will be zero.
- Then $M_{0}^{(0)}+M_{1}^{(0)}=E_{0}$, and II

Binary search in the BSS framework

We can continue, in this same way. Call the matrix from the last slide A. Setting $M_{0}^{(1)}, M_{3}^{(1)}=(1 / 2) A$, and all others zero, then $M_{0}^{(1)}+M_{3}^{(1)}=A$ as required and

$$
M_{0}^{(1)}+E_{3} \circ M_{3}^{(1)}=\left[\begin{array}{cccccccc}
\overrightarrow{7} & \stackrel{O}{7} & \stackrel{\circ}{7} & \stackrel{\circ}{0} & \stackrel{\circ}{\circ} & \stackrel{\rightharpoonup}{\circ} & \stackrel{\rightharpoonup}{\circ} & \vec{\circ} \\
{\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
1100 \\
1000 \\
0000 \\
0001 \\
0011 \\
0111
\end{array}}
\end{array}\right.
$$

Finally, with one more query we can reach the identity matrix.

Symmetrized program for ordered search

- The cyclical structure of the problem can be used to reduce the number of variable matrices to two for each query, one representing the null query $M_{0}^{(j)}$, and the other representing the query to the first bit $M_{1}^{(j)}$. The matrices $M_{i}^{(j)}$ for $i>1$ will simply be permutations of $M_{1}^{(j)}$.
- Childs, Landahl, and Parillo obtain the best exact algorithm by showing this program is feasible for $n=605$ with 4 queries. Applying this algorithm recursively gives general upper bound of $4 \log _{605} n$.

Lower bounds: adversary method

- Main lower bound techniques: polynomial method and adversary method.
- Adversary method developed and improved in long series of works [BBBV94, Amb00, HNS01, BSS03, Amb03, LM04, Zha04, SŠ06, HLŠ07]
- Relation to BSS program: One can take the dual of the BSS program. By Farkas' lemma, the dual will be feasible iff the primal is infeasible. Thus one can show lower bounds by constructing solutions to the dual.
- The adversary bound implies solutions to the dual of a particular, restricted form.

Adversary method: matrix formulation

- Adversary bound is an optimization problem which can also be written as a semidefinite program.

$$
\operatorname{ADV}(f):=\max _{\Gamma} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma \circ D_{i}\right\|}
$$

where $\Gamma[x, y]=0$ if $f(x)=f(y)$ and $D_{i}[x, y]=1$ if $x_{i} \neq y_{i}$ and 0 otherwise.

- Symmetry also helps simplify the adversary bound. Automorphism principle [HLŠ07]: May assume without loss of generality, that optimal Γ satisfies $\Gamma[x, y]=\Gamma[\tau(x), \tau(y)]$ for every automorphism τ of f. Furthermore, if automorphism group is transitive, the uniform eigenvector will be a principal eigenvector of Γ and all $\left\|\Gamma \circ D_{i}\right\|$ are equal.

Γ matrix for OSP

$$
\begin{aligned}
& \Gamma=\left[\begin{array}{cccccccc}
0 & \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{3} & \gamma_{2} & \gamma_{1} \\
\gamma_{1} & 0 & \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{3} & \gamma_{2}
\end{array}{ }^{11111} 1{ }^{1110}\right.
\end{aligned}
$$

Automorphism principle gives

$$
\|\Gamma\|=\gamma_{n}+2 \sum_{i=1}^{n-1} \gamma_{i}
$$

$\Gamma \circ D_{1}$ matrix for OSP

We see that $\left\|\Gamma \circ D_{1}\right\|=\left\|\operatorname{Toeplitz}\left(\gamma_{n}, \ldots, \gamma_{1}\right)\right\|$.

Høyer, Neerbeck, Shi construction

Assume that n is even. Let $\gamma_{i}=1 / i$ for $i=1, \ldots, n / 2$ and zero otherwise. Then objective function is

$$
2 \sum_{i=1}^{n / 2} \frac{1}{i} \approx 2 \ln (n / 2)
$$

and have to upper bound spectral norm of

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

"Half" Hilbert matrix

In general, spectral norm of $\Gamma_{2 n} \circ D_{1}$ will be given by spectral norm of

$$
Z_{n}=\left(\begin{array}{cccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n & 0 \\
1 / 3 & 1 / 4 & \ldots & 1 / n & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
1 /(n-1) & 1 / n & 0 & 0 & 0 & 0 \\
1 / n & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hilbert's Inequality

Consider the "full" Hilbert matrix

$$
H=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & \ldots \\
1 / 3 & 1 / 4 & \ldots & & \ldots \\
1 / 4 & \ldots & & & \vdots \\
\vdots & & & \vdots & \ddots
\end{array}\right)
$$

Hilbert showed (with improvement by Schur) that $\|H\| \leq \pi$. Thus HNS construction gives

$$
\left.\operatorname{ADV}\left(\mathrm{OSP}_{n}\right)\right) \geq \frac{2 \ln (n / 2)}{\pi}
$$

General question

This construction raises the following question: Given a matrix of the form

$$
A_{n}=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & 0 \\
a_{2} & a_{3} & \ldots & a_{n-1} & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
a_{n-2} & a_{n-1} & 0 & 0 & 0 & 0 \\
a_{n-1} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

how large can $\sum_{i} a_{i}$ be while $\left\|A_{n}\right\| \leq 1$? Let $\alpha(n)$ represent this optimal value.

Answer

For the case of non-negative matrices, we are able to give the exact answer:

$$
\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2} \|=\frac{1}{\pi}(\ln n+\gamma+\ln 8)+O(1 / n)
$$

and explicit matrices which realize this bound.
Note that

$$
\frac{\binom{2 i}{i}}{4^{i}} \approx \frac{4^{i} / \sqrt{\pi i}}{4^{i}}=\frac{1}{\sqrt{\pi i}} .
$$

Application to adversary bound

Turns out that this construction is also optimal for the adversary bound. The dual of the (non-negative) adversary bound is the following:

$$
\min \operatorname{Tr}(P) \text { subject to } P \succeq 0, \operatorname{tr}_{i}(P) \geq 1 \text { for } i=0, \ldots, n-1
$$

We exhibit a solution of this with the same value to show that

$$
\mathrm{ADV}^{+}\left(\mathrm{OSP}_{2 n}\right)=2 \alpha^{+}(n)
$$

In the case of negative entries-with much more work-can show

$$
\operatorname{ADV}\left(\mathrm{OSP}_{n}\right) \leq \mathrm{ADV}^{+}\left(\mathrm{OSP}_{2 n}\right)+1
$$

A word about the proof (non-negative case)

- We exhibit solutions to both the primal and dual formulation of adversary bound, and show that they match.
- A key role in both directions is played by the lovely sequence

$$
\beta_{i}=\frac{\binom{2 i}{i}}{4^{i}}
$$

- Key property: $\sum_{i=0}^{j} \beta_{i} \beta_{j-i}=1$ for every j. II
- Proof:

$$
\frac{1}{\sqrt{1-z}}=\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\beta_{3} z^{3}+\ldots
$$

Optimal matrix (lower bound)

Recall we wish to show that $\alpha^{+}(n) \geq \sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}$.

Define $A_{n}(j)=\sum_{i=0}^{n-j-1} \beta_{i} \beta_{i+j}$.

$$
\left(\begin{array}{cccc}
A_{4}(0)-A_{4}(1) & A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) \\
A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 \\
A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 & 0 \\
A_{4}(3) & 0 & 0 & 0
\end{array}\right)
$$

To bound spectral norm, show that $x=\left[\beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}\right]$ is eigenvector with eigenvalue 1. As x is non-negative and matrix is symmetric and non-negative, this must correspond to largest eigenvalue.

Conclusion

- Progress on ordered search will require new algorithms or new lower bound techniques.
- We have a solution to the dual BSS program which (I believe) is asymptotically optimal. Can one use sufficiency conditions for optimality of solutions to semidefinite programs to show this is the case?
- Observed with Peter Høyer: Our optimal matrix can be used to give nearly elementary proof of Hilbert's Inequality (need $\Gamma(1 / 2)=\sqrt{\pi})$.

