Direct product theorem for discrepancy

Troy Lee Rutgers University

> Robert Špalek Google

• Say you want to accomplish k independent tasks. . .

• Say you want to accomplish k independent tasks. . . improve search algorithm,

• Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits,

• Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies,

• Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .
- What is the most effective way to distribute your limited resources to achieve these goals?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .
- What is the most effective way to distribute your limited resources to achieve these goals?
- Is it possible to accomplish all of these tasks while spending less than the sum of the resources required for the individual tasks?

• Let f, g be Boolean functions. Say you want to compute $F(x_1, x_2) = f(x_1) \oplus g(x_2)$.

- Let f, g be Boolean functions. Say you want to compute $F(x_1, x_2) = f(x_1) \oplus g(x_2)$.
- Obviously can compute f and then compute g. Can you do better?

- Let f, g be Boolean functions. Say you want to compute $F(x_1, x_2) = f(x_1) \oplus g(x_2)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute ${\cal F}$ need sum of resources needed for f and g.

- Let f, g be Boolean functions. Say you want to compute $F(x_1, x_2) = f(x_1) \oplus g(x_2)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute ${\cal F}$ need sum of resources needed for f and g.
- With obvious algorithm, if can compute f, g with success probability $1/2 + \epsilon/2$, then succeed on F with probability $1/2 + \epsilon^2/2$.

- Let f, g be Boolean functions. Say you want to compute $F(x_1, x_2) = f(x_1) \oplus g(x_2)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute ${\cal F}$ need sum of resources needed for f and g.
- With obvious algorithm, if can compute f, g with success probability $1/2 + \epsilon/2$, then succeed on F with probability $1/2 + \epsilon^2/2$.
- Direct product theorem: advantage decreases exponentially

Applications

- Hardness amplification
 - Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size s' < s will have small advantage over random guessing on $\bigoplus_{i=1}^{k} f$.

Applications

- Hardness amplification
 - Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size s' < s will have small advantage over random guessing on $\bigoplus_{i=1}^{k} f$.
- Soundness amplification
 - Parallel repetition: if Alice and Bob win game G with probability $\epsilon < 1$ then win k independent games with probability $\overline{\epsilon}^{k'} < \epsilon$.

Applications

- Hardness amplification
 - Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size s' < s will have small advantage over random guessing on $\bigoplus_{i=1}^{k} f$.
- Soundness amplification
 - Parallel repetition: if Alice and Bob win game G with probability $\epsilon < 1$ then win k independent games with probability $\bar{\epsilon}^{k'} < \epsilon$.
- Time-space tradeoffs: Strong DPT for quantum query complexity of OR function [A05, KSW07] gives time-space tradeoffs for sorting with quantum computer.

Background

- Shaltiel [S03] started a systematic study of when direct product theorems might hold.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions

Background

- Shaltiel [S03] started a systematic study of when direct product theorems might hold.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions—say lower bound is shown by a particular method.

Discrepancy

• For a Boolean function $f: X \times Y \to \{0, 1\}$, let M_f be sign matrix of f $M_f[x, y] = (-1)^{f(x, y)}$. Let P be a probability distribution on entries.

$$\operatorname{disc}_{P}(f) = \max_{\substack{x \in \{0,1\}^{|X|} \\ y \in \{0,1\}^{|Y|}}} |x^{T}(M_{f} \circ P)y| = ||M_{f} \circ P||_{C}$$

Discrepancy

• For a Boolean function $f: X \times Y \to \{0, 1\}$, let M_f be sign matrix of f $M_f[x, y] = (-1)^{f(x,y)}$. Let P be a probability distribution on entries.

$$\operatorname{disc}_{P}(f) = \max_{\substack{x \in \{0,1\}^{|X|} \\ y \in \{0,1\}^{|Y|}}} |x^{T}(M_{f} \circ P)y| = ||M_{f} \circ P||_{C}$$

• disc $(f) = \min_P ||M_f \circ P||_C$.

Discrepancy

• For a Boolean function $f: X \times Y \to \{0, 1\}$, let M_f be sign matrix of f $M_f[x, y] = (-1)^{f(x,y)}$. Let P be a probability distribution on entries.

$$\operatorname{disc}_{P}(f) = \max_{\substack{x \in \{0,1\}^{|X|} \\ y \in \{0,1\}^{|Y|}}} |x^{T}(M_{f} \circ P)y| = ||M_{f} \circ P||_{C}$$

- disc $(f) = \min_P ||M_f \circ P||_C$.
- Discrepancy is one of most general techniques available:

$$D(f) \ge R_{\epsilon}(f) \ge Q_{\epsilon}^*(f) = \Omega\left(\log\frac{1}{\operatorname{disc}(f)}\right)$$

Distributional Complexity

• Let R be a deterministic c-bit protocol, and consider the correlation of R with M_f under distribution P. Say that R outputs R_i in the i^{th} rectangle:

$$\operatorname{cor}_{P}(R, M_{f}) = \sum_{x, y} P[x, y] R[x, y] M_{f}[x, y]$$
$$= \sum_{i=1}^{2^{c}} R_{i} \chi_{i}^{T} (M_{f} \circ P) \chi_{i}'$$
$$\leq 2^{c} \operatorname{disc}_{P}(M_{f})$$

• [Shaltiel 03] showed $\operatorname{disc}_{U^{\otimes k}}(M_f^{\otimes k}) = O(\operatorname{disc}_U(M_f))^{k/3}$

• [Shaltiel 03] showed $\operatorname{disc}_{U^{\otimes k}}(M_f^{\otimes k}) = O(\operatorname{disc}_U(M_f))^{k/3}$ Open question: does product theorem hold for general discrepancy?

• [Shaltiel 03] showed $\operatorname{disc}_{U^{\otimes k}}(M_f^{\otimes k}) = O(\operatorname{disc}_U(M_f))^{k/3}$ Open question: does product theorem hold for general discrepancy?

• For any probability distributions *P*, *Q*:

 $\operatorname{disc}_{P\otimes Q}(A\otimes B) \leq 8 \operatorname{disc}_{P}(A)\operatorname{disc}_{Q}(B)$

• [Shaltiel 03] showed $\operatorname{disc}_{U^{\otimes k}}(M_f^{\otimes k}) = O(\operatorname{disc}_U(M_f))^{k/3}$ Open question: does product theorem hold for general discrepancy?

• For any probability distributions *P*, *Q*:

$$\operatorname{disc}_{P\otimes Q}(A\otimes B) \leq 8 \operatorname{disc}_{P}(A)\operatorname{disc}_{Q}(B)$$

• Product theorem also holds for $\operatorname{disc}(A) = \min_P \operatorname{disc}_P(A)$:

$$\frac{1}{64} \operatorname{disc}(A) \operatorname{disc}(B) \le \operatorname{disc}(A \otimes B) \le 8 \operatorname{disc}(A) \operatorname{disc}(B)$$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$H = \left[\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array} \right]$$

• Uniform distribution, $x = y = [1 \ 1]$, shows $\operatorname{disc}(H) = 1/2$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$H = \left[\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array} \right]$$

- Uniform distribution, $x = y = [1 \ 1]$, shows $\operatorname{disc}(H) = 1/2$
- On the other hand, $\operatorname{disc}(H^{\otimes k}) = \Theta(2^{-k/2}).$

Some consequences

• Strong direct product theorem for average-case complexity: If correlation of M_f with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_f^{\otimes k}$ with kc-bit protocols is at most $2^{k(-\ell+3)}$

Some consequences

- Strong direct product theorem for average-case complexity: If correlation of M_f with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_f^{\otimes k}$ with kc-bit protocols is at most $2^{k(-\ell+3)}$
- Direct sum theorem for randomized, quantum bounds shown by discrepancy method

Some consequences

- Strong direct product theorem for average-case complexity: If correlation of M_f with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_f^{\otimes k}$ with kc-bit protocols is at most $2^{k(-\ell+3)}$
- Direct sum theorem for randomized, quantum bounds shown by discrepancy method
- Direct sum theorem for weakly unbounded-error protocols: randomized model where
 - $\Pr[R[x, y] = f(x, y)] \ge 1/2$ for all x, y
 - If always succeed with probability $\geq 1/2 + \epsilon$, cost is number of bits communicated + $\log(1/\epsilon)$.

Product theorem: $\operatorname{disc}_{P\otimes Q}(A\otimes B) \leq 8 \operatorname{disc}_{P}(A)\operatorname{disc}_{Q}(B)$

• Let's look at disc_P again:

$$\operatorname{disc}_P(A) = \|A \circ P\|_C$$

- This is an example of a quadratic program, in general NP-hard to evaluate.
- In approximation algorithms, great success in looking at semidefinite relaxations of NP-hard problems.
- Semidefinite programs also tend to behave nicely under product!

Proof: first step

- Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
- $\bullet\,$ First step: go from 0/1 vectors to ± 1 vectors. Look at the norm

$$||A||_{\infty \to 1} = \max_{x, y \in \{-1, 1\}^n} x^T A y$$

Proof: first step

- Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
- First step: go from 0/1 vectors to ± 1 vectors. Look at the norm

$$||A||_{\infty \to 1} = \max_{x, y \in \{-1, 1\}^n} x^T A y$$

• Simple lemma shows these are related.

$$||A||_C \le ||A||_{\infty \to 1} \le 4||A||_C$$

 In fact, several discrepancy results proceed by bounding ||A||_{∞→1} [Raz00, FG05, She07].

Proof: second step

• Now go to semidefinite relaxation:

$$||A||_{\infty \to 1} \le \max_{\substack{u_i, v_j \\ ||u_i|| = ||v_j|| = 1}} \sum_{i,j} A_{i,j} \langle u_i, v_j \rangle$$

Proof: second step

• Now go to semidefinite relaxation:

$$||A||_{\infty \to 1} \le \max_{\substack{u_i, v_j \\ ||u_i|| = ||v_j|| = 1}} \sum_{i, j} A_{i, j} \langle u_i, v_j \rangle$$

• Grothendieck's Inequality says

$$\max_{\substack{u_i, v_j \\ \|u_i\| = \|v_j\| = 1}} \sum_{i, j} A_{i, j} \langle u_i, v_j \rangle \le K_G \|A\|_{\infty \to 1}$$

where $1.67 \leq K_G \leq 1.782...$

Proof: last step

• Let

$$\sigma(A) = \max_{\substack{u_i, v_j \\ \|u_i\| = \|v_j\| = 1}} \sum_{i,j} A_{i,j} \langle u_i, v_j \rangle$$

- We now have $(1/4K_G) \sigma(A \circ P) \leq \operatorname{disc}_P(A) \leq \sigma(A \circ P)$
- All that remains is to show $\sigma(A_1 \otimes A_2) = \sigma(A_1)\sigma(A_2)$.
- In fact, this has already been shown in the literature [FL92, CSUU07, MS07]

P[s,t] chooses (s,t), desires ab=V(s,t)

• Let P[s,t] be the probability the verifier asks questions s,t, and $V[s,t] \in \{-1,1\}$ be the desired response. Provers send $a,b \in \{-1,1\}$ trying to achieve ab = V[s,t].

- Let P[s,t] be the probability the verifier asks questions s,t, and $V[s,t] \in \{-1,1\}$ be the desired response. Provers send $a,b \in \{-1,1\}$ trying to achieve ab = V[s,t].
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \to 1}$

- Let P[s,t] be the probability the verifier asks questions s,t, and $V[s,t] \in \{-1,1\}$ be the desired response. Provers send $a,b \in \{-1,1\}$ trying to achieve ab = V[s,t].
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \to 1}$
- By characterization of Tsirelson, best correlation of entangled provers is $\sigma(V \circ P)$ [Tsirelson80, CHTW04]

- Let P[s,t] be the probability the verifier asks questions s,t, and $V[s,t] \in \{-1,1\}$ be the desired response. Provers send $a,b \in \{-1,1\}$ trying to achieve ab = V[s,t].
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \to 1}$
- By characterization of Tsirelson, best correlation of entangled provers is $\sigma(V \circ P)$ [Tsirelson80, CHTW04]
- \bullet Product theorem for σ gives parallel repetition theorem for classical or entangled games.

• disc $(A) = \min_P ||A \circ P||_C$

- disc $(A) = \min_P ||A \circ P||_C$
- Linial and Shraibman 07 introduce a quantity $\gamma_2^\infty\text{,}$ and show

$$\frac{1}{8\gamma_2^{\infty}(A)} \le \operatorname{disc}(A) \le \frac{1}{\gamma_2^{\infty}(A)}$$

- disc $(A) = \min_P ||A \circ P||_C$
- Linial and Shraibman 07 introduce a quantity $\gamma_2^\infty,$ and show

$$\frac{1}{8\gamma_2^{\infty}(A)} \le \operatorname{disc}(A) \le \frac{1}{\gamma_2^{\infty}(A)}$$

• Taking this as a black box, just need to show $\gamma_2^{\infty}(A \otimes B) = \gamma_2^{\infty}(A) \gamma_2^{\infty}(B)$

- disc $(A) = \min_P ||A \circ P||_C$
- Linial and Shraibman 07 introduce a quantity $\gamma_2^\infty,$ and show

$$\frac{1}{8\gamma_2^{\infty}(A)} \le \operatorname{disc}(A) \le \frac{1}{\gamma_2^{\infty}(A)}$$

• Taking this as a black box, just need to show $\gamma_2^{\infty}(A \otimes B) = \gamma_2^{\infty}(A) \gamma_2^{\infty}(B)$

• In fact,
$$\frac{1}{\gamma_2^{\infty}(A)} = \min_P \sigma(A \circ P).$$

• For deterministic complexity, rank is all you need . . .

- For deterministic complexity, rank is all you need . . .
- $\log \operatorname{rk}(M_f) \le D(f)$

- For deterministic complexity, rank is all you need . . .
- $\log \operatorname{rk}(M_f) \le D(f)$
- $\operatorname{rk}(M_f)$ polynomial time computable in length of truth table of f

- For deterministic complexity, rank is all you need . . .
- $\log \operatorname{rk}(M_f) \le D(f)$
- $\operatorname{rk}(M_f)$ polynomial time computable in length of truth table of f
- Log rank conjecture: $\exists \ell : D(f) \leq (\log \operatorname{rk}(M_f))^{\ell}$

Bounded-error models

- Approximate rank: $\widetilde{\mathrm{rk}}(A) = \min_B \{ \mathrm{rk}(B) : ||A B||_{\infty} \le \epsilon \}.$
- For randomized and quantum complexity

$$R_{\epsilon}(A) \ge Q_{\epsilon}(A) \ge \frac{\log \widetilde{\mathrm{rk}}(A)}{2}$$

• But these approximate ranks are very hard to work with . . . Borrow ideas from approximation algorithms.

- Instead of working with rank, work with convex relaxation of rank
- Let i^{th} singular value be $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$

- Instead of working with rank, work with convex relaxation of rank
- Let i^{th} singular value be $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$
- Remember, $\|A\|_{tr} = \sum_{i=1}^{\mathrm{rk}(A)} \sigma_i(A), \ \|A\|_F^2 = \sum_i \sigma_i(A)^2$

- Instead of working with rank, work with convex relaxation of rank
- Let i^{th} singular value be $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$
- Remember, $||A||_{tr} = \sum_{i=1}^{\mathrm{rk}(A)} \sigma_i(A), ||A||_F^2 = \sum_i \sigma_i(A)^2$
- By Cauchy-Schwarz inequality we have

$$\frac{\|A\|_{tr}^2}{\|A\|_F^2} \le \operatorname{rk}(A)$$

- Not a good complexity measure as too uniform.
- Since $\operatorname{rk}(A \circ uv^T) \leq \operatorname{rk}(A)$ can remedy this as follows

$$\max_{u,v:\|u\|=\|v\|=1} \frac{\|A \circ uv^T\|_{tr}^2}{\|A \circ uv^T\|_F^2} \le \operatorname{rk}(A)$$

• Simplifies nicely for a sign matrix A

$$\max_{u,v:\|u\|=\|v\|=1} \|A \circ uv^T\|_{tr}^2 \le \operatorname{rk}(A)$$

Also known as . . .

• This bound has many equivalent forms.

Also known as . . .

• This bound has many equivalent forms.

• As
$$||A|| = \max_{u,v} \operatorname{Tr}(Avu^T) = \max_{B:||B||_{tr} \leq 1} \operatorname{Tr}(AB)$$
 one can show

$$\max_{u,v:\|u\|=\|v\|=1} \|A \circ uv^T\|_{tr}^2 = \max_{B:\|B\|_{tr} \le 1} \|A \circ B\|_{tr}$$

Also known as . . .

• This bound has many equivalent forms.

• As
$$||A|| = \max_{u,v} \operatorname{Tr}(Avu^T) = \max_{B:||B||_{tr} \leq 1} \operatorname{Tr}(AB)$$
 one can show

$$\max_{u,v:\|u\|=\|v\|=1} \|A \circ uv^T\|_{tr}^2 = \max_{B:\|B\|_{tr} \le 1} \|A \circ B\|_{tr}$$
$$= \max_{B:\|B\| \le 1} \|A \circ B\|$$

aka . . . Linial and Shraibman's γ_2

• Coming from learning theory, Linial and Shraibman define

$$\gamma_2(A) = \min_{X,Y:XY=A} r(X)c(Y),$$

r(X) is largest ℓ_2 norm of a row of X, similarly c(Y) for column of Y

aka . . . Linial and Shraibman's γ_2

• Coming from learning theory, Linial and Shraibman define

$$\gamma_2(A) = \min_{X,Y:XY=A} r(X)c(Y),$$

r(X) is largest ℓ_2 norm of a row of X, similarly c(Y) for column of Y

• By duality of semidefinite programming

$$\gamma_2(A) = \max_{u,v:\|u\|=\|v\|=1} \|A \circ uv^*\|_{tr}$$

Different flavors of γ_2

• For deterministic complexity

$$\gamma_2(A) = \min_{X,Y:XY=A} r(X)c(Y) = \max_{Q:\|Q\|_{tr} \le 1} \|A \circ Q\|_{tr}$$

• For randomized, quantum complexity with entanglement

$$\gamma_2^{\epsilon}(A) = \min_{X,Y:1 \le XY \circ A \le 1+\epsilon} r(X)c(Y)$$

• For unbounded error

$$\gamma_2^{\infty} = \min_{X,Y:1 \le XY \circ A} r(X)c(Y) = \max_{Q:\|Q\|_{tr} \le 1, Q \circ A \ge 0} \|A \circ Q\|_{tr}$$

Direct product for disc(A): Final step

- Using max and min formulations of γ_2^∞ easy to show product theorem

Direct product for disc(A): **Final step**

- Using max and min formulations of γ_2^∞ easy to show product theorem
- If Q_A, Q_B are optimal witnesses for A, B respectively, then

 $\gamma_2^{\infty}(A \otimes B) \ge \|(A \otimes B) \circ (Q_A \otimes Q_B)\|_{tr} = \|(A \circ Q_A) \otimes (B \circ Q_B)\|_{tr}$

and $Q_A \otimes Q_B$ agrees in sign everywhere with $A \otimes B$

Direct product for disc(A): **Final step**

- Using max and min formulations of γ_2^∞ easy to show product theorem
- If Q_A, Q_B are optimal witnesses for A, B respectively, then $\gamma_2^{\infty}(A \otimes B) \ge \|(A \otimes B) \circ (Q_A \otimes Q_B)\|_{tr} = \|(A \circ Q_A) \otimes (B \circ Q_B)\|_{tr}$

and $Q_A \otimes Q_B$ agrees in sign everywhere with $A \otimes B$

• If $A = X_A Y_A$ and $B = X_B Y_B$ are optimal factorizations, then

 $\gamma_2^{\infty}(A \otimes B) \le r(X_A \otimes X_B)c(Y_A \otimes Y_B) = r(X_A)c(Y_A)r(X_B)c(Y_B)$

Future directions

• Bounded-error version of γ_2

$$\gamma_2^{\epsilon}(A) = \min_{\substack{B\\1 \le A \circ B[i,j] \le 1+\epsilon}} \max_{u,v} \|B \circ vu^T\|_{tr}$$

- Lower bounds quantum communication complexity with entanglement [LS07]. Strong enough to reprove Razborov's optimal results for symmetric functions.
- Does γ_2^ϵ obey product theorem? Would generalize some results of [KSW06]

Composition theorem

- What about functions of the form $f(g(x_1, y_1), g(x_2, y_2), \dots, g(x_n, y_n))$?
- When $f \neq \oplus$ lose the tensor product structure . . .
- Recent paper of [Shi and Zhu 07] show some results in this direction—use bound like γ_2^{ϵ} on f but need g to be hard.

Open problems

- Optimal $\Omega(n)$ lower bound for disjointness can be shown by one-sided version of discrepancy. Does this obey product theorem?
- [Mittal and Szegedy 07] have begun a systematic theory of when a product theorem holds for a general semidefinite program. γ_2, σ fit in their framework, but γ_2^{∞} does not seem to. Can we extend this theory to handle such cases?