Direct product theorem for discrepancy

Troy Lee
Rutgers University
Robert Špalek
Google

Direct product theorems: Why is Go gle interested?

Direct product theorems: Why should Go gle be interested?

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . .

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .
- What is the most effective way to distribute your limited resources to achieve these goals?

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some Rutgers graduates . . .
- What is the most effective way to distribute your limited resources to achieve these goals?
- Is it possible to accomplish all of these tasks while spending less than the sum of the resources required for the individual tasks?

Direct product theorems

- Let f, g be Boolean functions. Say you want to compute $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$.

Direct product theorems

- Let f, g be Boolean functions. Say you want to compute $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$.
- Obviously can compute f and then compute g. Can you do better?

Direct product theorems

- Let f, g be Boolean functions. Say you want to compute $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute F need sum of resources needed for f and g.

Direct product theorems

- Let f, g be Boolean functions. Say you want to compute $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute F need sum of resources needed for f and g.
- With obvious algorithm, if can compute f, g with success probability $1 / 2+\epsilon / 2$, then succeed on F with probability $1 / 2+\epsilon^{2} / 2$.

Direct product theorems

- Let f, g be Boolean functions. Say you want to compute $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute F need sum of resources needed for f and g.
- With obvious algorithm, if can compute f, g with success probability $1 / 2+\epsilon / 2$, then succeed on F with probability $1 / 2+\epsilon^{2} / 2$.
- Direct product theorem: advantage decreases exponentially

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.
- Soundness amplification
- Parallel repetition: if Alice and Bob win game G with probability $\epsilon<1$ then win k independent games with probability $\bar{\epsilon}^{k^{\prime}}<\epsilon$.

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.
- Soundness amplification
- Parallel repetition: if Alice and Bob win game G with probability $\epsilon<1$ then win k independent games with probability $\bar{\epsilon}^{k^{\prime}}<\epsilon$.
- Time-space tradeoffs: Strong DPT for quantum query complexity of OR function [A05, KSW07] gives time-space tradeoffs for sorting with quantum computer.

Background

- Shaltiel [S03] started a systematic study of when direct product theorems might hold.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions

Background

- Shaltiel [S03] started a systematic study of when direct product theorems might hold.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions-say lower bound is shown by a particular method.

Discrepancy

- For a Boolean function $f: X \times Y \rightarrow\{0,1\}$, let M_{f} be sign matrix of f $M_{f}[x, y]=(-1)^{f(x, y)}$. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{\substack{x \in\{0,1\}^{|X|} \\ y \in\{0,1\}^{|Y|}}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C}
$$

Discrepancy

- For a Boolean function $f: X \times Y \rightarrow\{0,1\}$, let M_{f} be sign matrix of f $M_{f}[x, y]=(-1)^{f(x, y)}$. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{\substack{x \in\{0,1\}^{|X|} \\ y \in\{0,1\}^{|Y|}}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C}
$$

- $\operatorname{disc}(f)=\min _{P}\left\|M_{f} \circ P\right\|_{C}$.

Discrepancy

- For a Boolean function $f: X \times Y \rightarrow\{0,1\}$, let M_{f} be sign matrix of f $M_{f}[x, y]=(-1)^{f(x, y)}$. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{\substack{x \in\{0,1\}^{|X|} \\ y \in\{0,1\}^{|Y|}}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C}
$$

- $\operatorname{disc}(f)=\min _{P}\left\|M_{f} \circ P\right\|_{C}$.
- Discrepancy is one of most general techniques available:

$$
D(f) \geq R_{\epsilon}(f) \geq Q_{\epsilon}^{*}(f)=\Omega\left(\log \frac{1}{\operatorname{disc}(f)}\right)
$$

Distributional Complexity

- Let R be a deterministic c-bit protocol, and consider the correlation of R with M_{f} under distribution P. Say that R outputs R_{i} in the $i^{t h}$ rectangle:

$$
\begin{aligned}
\operatorname{cor}_{P}\left(R, M_{f}\right) & =\sum_{x, y} P[x, y] R[x, y] M_{f}[x, y] \\
& =\sum_{i=1}^{2^{c}} R_{i} \chi_{i}^{T}\left(M_{f} \circ P\right) \chi_{i}^{\prime} \\
& \leq 2^{c} \operatorname{disc}_{P}\left(M_{f}\right)
\end{aligned}
$$

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U \otimes k}\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?
- For any probability distributions P, Q :

$$
\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)
$$

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?
- For any probability distributions P, Q :

$$
\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)
$$

- $\operatorname{Product~theorem~also~holds~for~} \operatorname{disc}(A)=\min _{P} \operatorname{disc}_{P}(A)$:

$$
\frac{1}{64} \operatorname{disc}(A) \operatorname{disc}(B) \leq \operatorname{disc}(A \otimes B) \leq 8 \operatorname{disc}(A) \operatorname{disc}(B)
$$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Uniform distribution, $x=y=\left[\begin{array}{ll}1 & 1\end{array}\right]$, $\operatorname{shows} \operatorname{disc}(H)=1 / 2$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Uniform distribution, $x=y=\left[\begin{array}{ll}11\end{array}\right]$, shows $\operatorname{disc}(H)=1 / 2$
- On the other hand, $\operatorname{disc}\left(H^{\otimes k}\right)=\Theta\left(2^{-k / 2}\right)$.

Some consequences

- Strong direct product theorem for average-case complexity: If correlation of M_{f} with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_{f}^{\otimes k}$ with $k c$-bit protocols is at most $2^{k(-\ell+3)}$

Some consequences

- Strong direct product theorem for average-case complexity: If correlation of M_{f} with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_{f}^{\otimes k}$ with $k c$-bit protocols is at most $2^{k(-\ell+3)}$
- Direct sum theorem for randomized, quantum bounds shown by discrepancy method

Some consequences

- Strong direct product theorem for average-case complexity: If correlation of M_{f} with c-bit protocols is at most $2^{-\ell}$, shown by discrepancy method, then correlation of $M_{f}^{\otimes k}$ with $k c$-bit protocols is at most $2^{k(-\ell+3)}$
- Direct sum theorem for randomized, quantum bounds shown by discrepancy method
- Direct sum theorem for weakly unbounded-error protocols: randomized model where
$-\operatorname{Pr}[R[x, y]=f(x, y)] \geq 1 / 2$ for all x, y
- If always succeed with probability $\geq 1 / 2+\epsilon$, cost is number of bits communicated $+\log (1 / \epsilon)$.

Product theorem: $\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)$

- Let's look at disc_{P} again:

$$
\operatorname{disc}_{P}(A)=\|A \circ P\|_{C}
$$

- This is an example of a quadratic program, in general NP-hard to evaluate.
- In approximation algorithms, great success in looking at semidefinite relaxations of NP-hard problems.
- Semidefinite programs also tend to behave nicely under product!

Proof: first step

- Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
- First step: go from $0 / 1$ vectors to ± 1 vectors. Look at the norm

$$
\|A\|_{\infty \rightarrow 1}=\max _{x, y \in\{-1,1\}^{n}} x^{T} A y
$$

Proof: first step

- Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
- First step: go from $0 / 1$ vectors to ± 1 vectors. Look at the norm

$$
\|A\|_{\infty \rightarrow 1}=\max _{x, y \in\{-1,1\}^{n}} x^{T} A y
$$

- Simple lemma shows these are related.

$$
\|A\|_{C} \leq\|A\|_{\infty \rightarrow 1} \leq 4\|A\|_{C}
$$

- In fact, several discrepancy results proceed by bounding $\|A\|_{\infty \rightarrow 1}$ [Raz00, FG05, She07].

Proof: second step

- Now go to semidefinite relaxation:

$$
\|A\|_{\infty \rightarrow 1} \leq \max _{\substack{u_{i}, v_{j} \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle
$$

Proof: second step

- Now go to semidefinite relaxation:

$$
\|A\|_{\infty \rightarrow 1} \leq \max _{\substack{u_{i}, v_{j} \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle
$$

- Grothendieck's Inequality says

$$
\max _{\substack{u_{i}, v_{j} \\ \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle \leq K_{G}\|A\|_{\infty \rightarrow 1}
$$

where $1.67 \leq K_{G} \leq 1.782 \ldots$

Proof: last step

- Let

$$
\sigma(A)=\max _{\substack{u_{i}, v_{j} \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle
$$

- We now have $\left(1 / 4 K_{G}\right) \sigma(A \circ P) \leq \operatorname{disc}_{P}(A) \leq \sigma(A \circ P)$
- All that remains is to show $\sigma\left(A_{1} \otimes A_{2}\right)=\sigma\left(A_{1}\right) \sigma\left(A_{2}\right)$.
- In fact, this has already been shown in the literature [FL92, CSUU07, MS07]

Connection to XOR games

$\mathrm{P}[\mathrm{s}, \mathrm{t}]$ chooses ($\mathrm{s}, \mathrm{t})$, desires $\mathrm{ab}=\mathrm{V}(\mathrm{s}, \mathrm{t})$

Connection to XOR games

- Let $P[s, t]$ be the probability the verifier asks questions s, t, and $V[s, t] \in$ $\{-1,1\}$ be the desired response. Provers send $a, b \in\{-1,1\}$ trying to achieve $a b=V[s, t]$.

Connection to XOR games

- Let $P[s, t]$ be the probability the verifier asks questions s, t, and $V[s, t] \in$ $\{-1,1\}$ be the desired response. Provers send $a, b \in\{-1,1\}$ trying to achieve $a b=V[s, t]$.
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \rightarrow 1}$

Connection to XOR games

- Let $P[s, t]$ be the probability the verifier asks questions s, t, and $V[s, t] \in$ $\{-1,1\}$ be the desired response. Provers send $a, b \in\{-1,1\}$ trying to achieve $a b=V[s, t]$.
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \rightarrow 1}$
- By characterization of Tsirelson, best correlation of entangled provers is $\sigma(V \circ P)$ [Tsirelson80, CHTW04]

Connection to XOR games

- Let $P[s, t]$ be the probability the verifier asks questions s, t, and $V[s, t] \in$ $\{-1,1\}$ be the desired response. Provers send $a, b \in\{-1,1\}$ trying to achieve $a b=V[s, t]$.
- Best correlation provers can achieve with V is $\|V \circ P\|_{\infty \rightarrow 1}$
- By characterization of Tsirelson, best correlation of entangled provers is $\sigma(V \circ P)$ [Tsirelson80, CHTW04]
- Product theorem for σ gives parallel repetition theorem for classical or entangled games.

Next theorem: Product for $\operatorname{disc}(A)$

- $\operatorname{disc}(A)=\min _{P}\|A \circ P\|_{C}$

Next theorem: Product for $\operatorname{disc}(A)$

- $\operatorname{disc}(A)=\min _{P}\|A \circ P\|_{C}$
- Linial and Shraibman 07 introduce a quantity γ_{2}^{∞}, and show

$$
\frac{1}{8 \gamma_{2}^{\infty}(A)} \leq \operatorname{disc}(A) \leq \frac{1}{\gamma_{2}^{\infty}(A)}
$$

Next theorem: Product for $\operatorname{disc}(A)$

- $\operatorname{disc}(A)=\min _{P}\|A \circ P\|_{C}$
- Linial and Shraibman 07 introduce a quantity γ_{2}^{∞}, and show

$$
\frac{1}{8 \gamma_{2}^{\infty}(A)} \leq \operatorname{disc}(A) \leq \frac{1}{\gamma_{2}^{\infty}(A)}
$$

- Taking this as a black box, just need to show $\gamma_{2}^{\infty}(A \otimes B)=\gamma_{2}^{\infty}(A) \gamma_{2}^{\infty}(B)$

Next theorem: Product for $\operatorname{disc}(A)$

- $\operatorname{disc}(A)=\min _{P}\|A \circ P\|_{C}$
- Linial and Shraibman 07 introduce a quantity γ_{2}^{∞}, and show

$$
\frac{1}{8 \gamma_{2}^{\infty}(A)} \leq \operatorname{disc}(A) \leq \frac{1}{\gamma_{2}^{\infty}(A)}
$$

- Taking this as a black box, just need to show $\gamma_{2}^{\infty}(A \otimes B)=\gamma_{2}^{\infty}(A) \gamma_{2}^{\infty}(B)$
- In fact, $\frac{1}{\gamma_{2}^{\infty}(A)}=\min _{P} \sigma(A \circ P)$.

A communication complexity short story

- For deterministic complexity, rank is all you need . . .

A communication complexity short story

- For deterministic complexity, rank is all you need ...
- $\log \mathrm{rk}\left(M_{f}\right) \leq D(f)$

A communication complexity short story

- For deterministic complexity, rank is all you need . . .
- $\log \operatorname{rk}\left(M_{f}\right) \leq D(f)$
- $\operatorname{rk}\left(M_{f}\right)$ polynomial time computable in length of truth table of f

A communication complexity short story

- For deterministic complexity, rank is all you need ...
- $\log \operatorname{rk}\left(M_{f}\right) \leq D(f)$
- $\operatorname{rk}\left(M_{f}\right)$ polynomial time computable in length of truth table of f
- Log rank conjecture: $\exists \ell: D(f) \leq\left(\log \operatorname{rk}\left(M_{f}\right)\right)^{\ell}$

Bounded-error models

- Approximate rank: $\widetilde{\operatorname{rk}}(A)=\min _{B}\left\{\operatorname{rk}(B):\|A-B\|_{\infty} \leq \epsilon\right\}$.
- For randomized and quantum complexity

$$
R_{\epsilon}(A) \geq Q_{\epsilon}(A) \geq \frac{\log \widetilde{\mathrm{k}}(A)}{2}
$$

- But these approximate ranks are very hard to work with . . . Borrow ideas from approximation algorithms.

Relaxation of rank

- Instead of working with rank, work with convex relaxation of rank
- Let $i^{\text {th }}$ singular value be $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{T} A\right)}$

Relaxation of rank

- Instead of working with rank, work with convex relaxation of rank
- Let $i^{\text {th }}$ singular value be $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{T} A\right)}$
- Remember, $\|A\|_{t r}=\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A),\|A\|_{F}^{2}=\sum_{i} \sigma_{i}(A)^{2}$

Relaxation of rank

- Instead of working with rank, work with convex relaxation of rank
- Let $i^{t h}$ singular value be $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{T} A\right)}$
- Remember, $\|A\|_{t r}=\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A),\|A\|_{F}^{2}=\sum_{i} \sigma_{i}(A)^{2}$
- By Cauchy-Schwarz inequality we have

$$
\frac{\|A\|_{t r}^{2}}{\|A\|_{F}^{2}} \leq \operatorname{rk}(A)
$$

Relaxation of rank

- Not a good complexity measure as too uniform.
- Since $\operatorname{rk}\left(A \circ u v^{T}\right) \leq \operatorname{rk}(A)$ can remedy this as follows

$$
\max _{u, v:\|u\|=\|v\|=1} \frac{\left\|A \circ u v^{T}\right\|_{t r}^{2}}{\left\|A \circ u v^{T}\right\|_{F}^{2}} \leq \operatorname{rk}(A)
$$

- Simplifies nicely for a sign matrix A

$$
\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{T}\right\|_{t r}^{2} \leq \operatorname{rk}(A)
$$

Also known as . . .

- This bound has many equivalent forms.

Also known as . . .

- This bound has many equivalent forms.
- As $\|A\|=\max _{u, v} \operatorname{Tr}\left(A v u^{T}\right)=\max _{B:\|B\|_{t r} \leq 1} \operatorname{Tr}(A B)$ one can show

$$
\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{T}\right\|_{t r}^{2}=\max _{B:\|B\|_{t r} \leq 1}\|A \circ B\|_{t r}
$$

Also known as . . .

- This bound has many equivalent forms.
- As $\|A\|=\max _{u, v} \operatorname{Tr}\left(A v u^{T}\right)=\max _{B:\|B\|_{t r} \leq 1} \operatorname{Tr}(A B)$ one can show

$$
\begin{aligned}
\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{T}\right\|_{t r}^{2} & =\max _{B:\|B\|_{t r} \leq 1}\|A \circ B\|_{t r} \\
& =\max _{B:\|B\| \leq 1}\|A \circ B\|
\end{aligned}
$$

aka .. Linial and Shraibman's γ_{2}

- Coming from learning theory, Linial and Shraibman define

$$
\gamma_{2}(A)=\min _{X, Y: X Y=A} r(X) c(Y),
$$

$r(X)$ is largest ℓ_{2} norm of a row of X, similarly $c(Y)$ for column of Y

aka .. Linial and Shraibman's γ_{2}

- Coming from learning theory, Linial and Shraibman define

$$
\gamma_{2}(A)=\min _{X, Y: X Y=A} r(X) c(Y),
$$

$r(X)$ is largest ℓ_{2} norm of a row of X, similarly $c(Y)$ for column of Y

- By duality of semidefinite programming

$$
\gamma_{2}(A)=\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{*}\right\|_{t r}
$$

Different flavors of γ_{2}

- For deterministic complexity

$$
\gamma_{2}(A)=\min _{X, Y: X Y=A} r(X) c(Y)=\max _{Q:\|Q\| t r \leq 1}\|A \circ Q\|_{t r}
$$

- For randomized, quantum complexity with entanglement

$$
\gamma_{2}^{\epsilon}(A)=\min _{X, Y: 1 \leq X Y \circ A \leq 1+\epsilon} r(X) c(Y)
$$

- For unbounded error

$$
\gamma_{2}^{\infty}=\min _{X, Y: 1 \leq X Y \circ A} r(X) c(Y)=\max _{Q:\|Q\|_{t r} \leq 1, Q \circ A \geq 0}\|A \circ Q\|_{t r}
$$

Direct product for $\operatorname{disc}(A)$: Final step

- Using max and min formulations of γ_{2}^{∞} easy to show product theorem

Direct product for $\operatorname{disc}(A)$: Final step

- Using max and min formulations of γ_{2}^{∞} easy to show product theorem
- If Q_{A}, Q_{B} are optimal witnesses for A, B respectively, then

$$
\begin{aligned}
& \gamma_{2}^{\infty}(A \otimes B) \geq\left\|(A \otimes B) \circ\left(Q_{A} \otimes Q_{B}\right)\right\|_{t r}=\left\|\left(A \circ Q_{A}\right) \otimes\left(B \circ Q_{B}\right)\right\|_{t r} \\
& \text { and } Q_{A} \otimes Q_{B} \text { agrees in sign everywhere with } A \otimes B
\end{aligned}
$$

Direct product for $\operatorname{disc}(A)$: Final step

- Using max and min formulations of γ_{2}^{∞} easy to show product theorem
- If Q_{A}, Q_{B} are optimal witnesses for A, B respectively, then

$$
\begin{aligned}
& \gamma_{2}^{\infty}(A \otimes B) \geq\left\|(A \otimes B) \circ\left(Q_{A} \otimes Q_{B}\right)\right\|_{t r}=\left\|\left(A \circ Q_{A}\right) \otimes\left(B \circ Q_{B}\right)\right\|_{t r} \\
& \text { and } Q_{A} \otimes Q_{B} \text { agrees in sign everywhere with } A \otimes B
\end{aligned}
$$

- If $A=X_{A} Y_{A}$ and $B=X_{B} Y_{B}$ are optimal factorizations, then

$$
\gamma_{2}^{\infty}(A \otimes B) \leq r\left(X_{A} \otimes X_{B}\right) c\left(Y_{A} \otimes Y_{B}\right)=r\left(X_{A}\right) c\left(Y_{A}\right) r\left(X_{B}\right) c\left(Y_{B}\right)
$$

Future directions

- Bounded-error version of γ_{2}

$$
\gamma_{2}^{\epsilon}(A)=\min _{B} \max _{u, v}\left\|B \circ v u^{T}\right\|_{t r}
$$

- Lower bounds quantum communication complexity with entanglement [LS07]. Strong enough to reprove Razborov's optimal results for symmetric functions.
- Does γ_{2}^{ϵ} obey product theorem? Would generalize some results of [KSW06]

Composition theorem

- What about functions of the form $f\left(g\left(x_{1}, y_{1}\right), g\left(x_{2}, y_{2}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$?
- When $f \neq \oplus$ lose the tensor product structure . . .
- Recent paper of [Shi and Zhu 07] show some results in this direction-use bound like γ_{2}^{ϵ} on f but need g to be hard.

Open problems

- Optimal $\Omega(n)$ lower bound for disjointness can be shown by one-sided version of discrepancy. Does this obey product theorem?
- [Mittal and Szegedy 07] have begun a systematic theory of when a product theorem holds for a general semidefinite program. γ_{2}, σ fit in their framework, but γ_{2}^{∞} does not seem to. Can we extend this theory to handle such cases?

