Negative weights make adversaries stronger

Troy Lee
LRI, Université Paris-Sud
Joint work with: Peter Høyer and Robert Špalek

Quantum query complexity

- Popular model for study
- Seems to capture power of quantum computing:
- Grover's search algorithm,
- Period finding of Shor's algorithm,
- Quantum walks: element distinctness, triangle finding, matrix multiplication
- And we can also prove lower bounds!
- Polynomial method, Quantum Adversary method

Adversary method

- Adversary method developed by Ambainis, 2002.

Adversary method

- Adversary method developed by Ambainis, 2002.
- Many competing formulations: weight schemes [Amb03, Zha05], spectral norm of matrices [BSS03], and Kolmogorov complexity [LM04].

Adversary method

- Adversary method developed by Ambainis, 2002.
- Many competing formulations: weight schemes [Amb03, Zha05], spectral norm of matrices [BSS03], and Kolmogorov complexity [LM04].
- All these methods shown equivalent by Špalek and Szegedy, 2006.

Reinventing the adversary

- We introduce a new adversary method, $\mathrm{ADV}^{ \pm}$.

Reinventing the adversary

- We introduce a new adversary method, $\mathrm{ADV}^{ \pm}$.
- $\operatorname{ADV}^{ \pm}(f) \geq \operatorname{ADV}(f)$. We show a function where $\operatorname{ADV}(f)=O(m)$ and $\operatorname{ADV}^{ \pm}(f)=\Omega\left(m^{1.098}\right)$.

Reinventing the adversary

- We introduce a new adversary method, $\mathrm{ADV}^{ \pm}$.
- $\operatorname{ADV}^{ \pm}(f) \geq \operatorname{ADV}(f)$. We show a function where $\operatorname{ADV}(f)=O(m)$ and $\mathrm{ADV}^{ \pm}(f)=\Omega\left(m^{1.098}\right)$.
- We essentially use that a successful algorithm computes a function, not just that it can distinguish inputs with different function values.

Reinventing the adversary

- We introduce a new adversary method, $\mathrm{ADV}^{ \pm}$.
- $\operatorname{ADV}^{ \pm}(f) \geq \operatorname{ADV}(f)$. We show a function where $\operatorname{ADV}(f)=O(m)$ and $\mathrm{ADV}^{ \pm}(f)=\Omega\left(m^{1.098}\right)$.
- We essentially use that a successful algorithm computes a function, not just that it can distinguish inputs with different function values.
- Our method does not face the limitations of previous adversary methods.

Quantum queries

- In classical query complexity, want to compute $f(x)$ and can make queries of the form $x_{i}=$? Complexity is number of queries on worst case input.
- Quantum query-turn query operator into unitary transformation on Hilbert Space $H_{I} \otimes H_{Q} \otimes H_{W}$

$$
O|x\rangle|i\rangle|z\rangle \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|z\rangle
$$

- Can make queries in superposition.

Query algorithm

- On input x, algorithm proceeds by alternating queries and arbitrary unitary transformations independent of x

$$
\left|\phi_{x}^{t}\right\rangle=U_{t} O U_{t-1} \ldots U_{1} O U_{0}|x\rangle|0\rangle|0\rangle .
$$

- Output determined by complete set of orthogonal projectors $\left\{\Pi_{0}, \Pi_{1}\right\}$. A T-query algorithm outputs b on input x with probability $\| \Pi_{b}\left|\phi_{x}^{T}\right\rangle \|^{2}$.
- $Q_{2}(f)$ is number T of queries needed by best algorithm which outputs $f(x)$ on input x with probability at least $2 / 3$, for all x.

Matrix notation

- We will use matrix formulation of adversary method [BSS03]
- Spectral norm $\|A\|=\sqrt{\lambda_{1}\left(A A^{*}\right)}$.
- Hadamard (entrywise) product $(A \circ B)[i, j]=A[i, j] \cdot B[i, j]$.

Adversary method

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function, and Γ a symmetric 2^{n}-by- 2^{n} matrix where $\Gamma[x, y]=0$ if $f(x)=f(y)$. Then

$$
\operatorname{ADV}(f)=\max _{\substack{\Gamma \geq 0 \\ \Gamma \neq 0}} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma \circ D_{i}\right\|} .
$$

D_{i} is a zero-one matrix where $D_{i}[x, y]=1$ if $x_{i} \neq y_{i}$ and $D_{i}[x, y]=0$ otherwise.

Theorem $[\mathrm{BSS} 03]: Q_{2}(f)=\Omega(\operatorname{ADV}(f))$.

The Γ matrix

Notice that the spectral norm of Γ equals that of A.

The $\Gamma \circ D_{1}$ matrix

The spectral norm of $\Gamma \circ D_{1}$ equals $\max \{\|B\|,\|C\|\}$.

Example: OR function

We define the matrix:

	1000	0100	0010	0001
0000	1	1	1	1

The spectral norm of this matrix is $\sqrt{4}$, and the spectral norm of each $\Gamma \circ D_{i}$ is one.

Example: OR function

We define the matrix:

	1000	0100	0010	0001
0000	1	1	1	1

The spectral norm of this matrix is $\sqrt{4}$, and the spectral norm of each $\Gamma \circ D_{i}$ is one.

Generalizing this construction we find $Q_{2}\left(\mathrm{OR}_{n}\right)=\Omega(\sqrt{n})$.

New adversary method

We remove the restriction to nonnegative matrices:

$$
\operatorname{ADV}^{ \pm}(f)=\max _{\Gamma \neq 0} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma \circ D_{i}\right\|}
$$

Theorem: $Q_{2}(f)=\Omega\left(\operatorname{ADV}^{ \pm}(f)\right)$.

New adversary method

We remove the restriction to nonnegative matrices:

$$
\mathrm{ADV}^{ \pm}(f)=\max _{\Gamma \neq 0} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma \circ D_{i}\right\|}
$$

Theorem: $Q_{2}(f)=\Omega\left(\operatorname{ADV}^{ \pm}(f)\right)$.

As we maximize over a larger set, $\operatorname{ADV}^{ \pm}(f) \geq \operatorname{ADV}(f)$. It turns out that negative entries can help in giving larger lower bounds!

Separating the old and new

- Old adversary faces "certificate complexity barrier": $\operatorname{ADV}(f) \leq$ $\sqrt{C_{0}(f) C_{1}(f)}$, for total function f [Zha05,SS06].

Separating the old and new

- Old adversary faces "certificate complexity barrier": $\operatorname{ADV}(f) \leq$ $\sqrt{C_{0}(f) C_{1}(f)}$, for total function f [Zha05,SS06].
- Given a graph on n vertices, does it contain a triangle? It is known that $\operatorname{ADV}(f) \leq \sqrt{3} n$. Best upper bound $n^{1.3}$ [MSS05].

Separating the old and new

- Old adversary faces "certificate complexity barrier": $\operatorname{ADV}(f) \leq$ $\sqrt{C_{0}(f) C_{1}(f)}$, for total function f [Zha05,SS06].
- Given a graph on n vertices, does it contain a triangle? It is known that $\operatorname{ADV}(f) \leq \sqrt{3} n$. Best upper bound $n^{1.3}[\mathrm{MSS} 05]$.
- Given a list of n elements in $\{1,2, \ldots, n\}$, are they all distinct? $\operatorname{ADV}(f) \leq \sqrt{2 n}$, and right answer is $\Theta\left(n^{2 / 3}\right)$ [AS04, Amb04].

Separating the old and new

- Old adversary faces "certificate complexity barrier": $\operatorname{ADV}(f) \leq$ $\sqrt{C_{0}(f) C_{1}(f)}$, for total function f [Zha05,SS06].
- Given a graph on n vertices, does it contain a triangle? It is known that $\operatorname{ADV}(f) \leq \sqrt{3} n$. Best upper bound $n^{1.3}[\mathrm{MSS} 05]$.
- Given a list of n elements in $\{1,2, \ldots, n\}$, are they all distinct? $\operatorname{ADV}(f) \leq \sqrt{2 n}$, and right answer is $\Theta\left(n^{2 / 3}\right)$ [AS04, Amb04].
- We have example where $\mathrm{ADV}^{ \pm}(f)=\Omega\left(\left(C_{0}(f) C_{1}(f)\right)^{0.549}\right)$.

The difficulty of being negative

The difficulty of being negative

Recall that running the algorithm on input x for t queries:

$$
\left|\phi_{x}^{t}\right\rangle=U_{t} O U_{t-1} \ldots U_{1} O U_{0}|x\rangle|0\rangle|0\rangle .
$$

Write this as $\left|\phi_{x}^{t}\right\rangle=|x\rangle\left|\psi_{x}^{t}\right\rangle$.
Let Γ be an adversary matrix and δ a principal eigenvector.

The difficulty of being negative

Recall that running the algorithm on input x for t queries:

$$
\left|\phi_{x}^{t}\right\rangle=U_{t} O U_{t-1} \ldots U_{1} O U_{0}|x\rangle|0\rangle|0\rangle .
$$

Write this as $\left|\phi_{x}^{t}\right\rangle=|x\rangle\left|\psi_{x}^{t}\right\rangle$.
Let Γ be an adversary matrix and δ a principal eigenvector. The principal eigenvector tells us how to build a hard input- we feed algorithm the superposition $\sum_{x} \delta_{x}|x\rangle|0\rangle|0\rangle$.

The difficulty of being negative

Recall that running the algorithm on input x for t queries:

$$
\left|\phi_{x}^{t}\right\rangle=U_{t} O U_{t-1} \ldots U_{1} O U_{0}|x\rangle|0\rangle|0\rangle .
$$

Write this as $\left|\phi_{x}^{t}\right\rangle=|x\rangle\left|\psi_{x}^{t}\right\rangle$.
Let Γ be an adversary matrix and δ a principal eigenvector. The principal eigenvector tells us how to build a hard input- we feed algorithm the superposition $\sum_{x} \delta_{x}|x\rangle|0\rangle|0\rangle$. State of algorithm after t queries is $\sum_{x} \delta_{x}|x\rangle\left|\psi_{x}^{t}\right\rangle$. Let $\rho^{(t)}[x, y]=\delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle$ be the reduced density matrix of this state.

Watch the density matrix. . .

Define a progress function based on $\rho^{(t)}$ as

$$
W^{(t)}=\left\langle\Gamma, \rho^{(t)}\right\rangle=\sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle .
$$

Watch the density matrix. . .

Define a progress function based on $\rho^{(t)}$ as

$$
W^{(t)}=\left\langle\Gamma, \rho^{(t)}\right\rangle=\sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle .
$$

Show three things:

- $\left|W^{(0)}\right|=\|\Gamma\|$

Watch the density matrix. . .

Define a progress function based on $\rho^{(t)}$ as

$$
W^{(t)}=\left\langle\Gamma, \rho^{(t)}\right\rangle=\sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle
$$

Show three things:

- $\left|W^{(0)}\right|=\|\Gamma\|$
- $\left|W^{(T)}\right| \leq 2 \sqrt{\epsilon(1-\epsilon)}\|\Gamma\|$

Watch the density matrix. . .

Define a progress function based on $\rho^{(t)}$ as

$$
W^{(t)}=\left\langle\Gamma, \rho^{(t)}\right\rangle=\sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle
$$

Show three things:

- $\left|W^{(0)}\right|=\|\Gamma\|$
- $\left|W^{(T)}\right| \leq 2 \sqrt{\epsilon(1-\epsilon)}\|\Gamma\|$
- $\left|W^{(t)}-W^{(t+1)}\right| \leq 2 \max _{i}\left\|\Gamma \circ D_{i}\right\|$

Step Two: Old adversary

- Want to upper bound $\left\langle\Gamma, \rho^{(T)}\right\rangle \leq 2 \sqrt{\epsilon(1-\epsilon)}\|\Gamma\|$.
- Distinguishing principle: Successful algorithm can distinguish 0-inputs from 1 -inputs with error probability ϵ means

$$
\left\langle\psi_{x}^{T} \mid \psi_{y}^{T}\right\rangle \leq 2 \sqrt{\epsilon(1-\epsilon)}
$$

- Thus as Γ nonnegative

$$
\begin{aligned}
\sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y}\left\langle\psi_{x}^{T} \mid \psi_{y}^{T}\right\rangle & \leq 2 \sqrt{\epsilon(1-\epsilon)} \sum_{x, y} \Gamma[x, y] \delta_{x}^{*} \delta_{y} \\
& =2 \sqrt{\epsilon(1-\epsilon)}\|\Gamma\|
\end{aligned}
$$

User's Manual

- Automorphism principle: If π is automorphism of the function then wlog, $\Gamma[x, y]=\Gamma[\pi(x), \pi(y)]$ in optimal adversary matrix.
- Composition principle: Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Write $f^{1}=f$ and $f^{d}:\{0,1\}^{n^{d}} \rightarrow\{0,1\}$ be

$$
f^{d}(x)=f\left(f^{d-1}\left(x^{(1)}\right), f^{d-1}\left(x^{(2)}\right), \ldots, f^{d-1}\left(x^{(n)}\right)\right)
$$

where $x=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$. Then $\operatorname{ADV}^{ \pm}\left(f^{d}\right) \geq \operatorname{ADV}^{ \pm}(f)^{d}$.

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000

$$
0000 \cdot(4321) \times(0,0,0,1)
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000

$$
0000 \cdot(4321) \times(0,0,0,1)=0001
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001

$$
0001 \cdot(4321) \times(0,0,0,1)
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001

$$
0001 \cdot(4321) \times(0,0,0,1)=0011
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011

$$
0011 \cdot(4321) \times(0,0,0,1)
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011

$$
0011 \cdot(4321) \times(0,0,0,1)=0111
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

$$
0111 \cdot(4321) \times(0,0,0,1)
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

$$
0111 \cdot(4321) \times(0,0,0,1)=1111
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

$$
1111 \cdot(4321) \times(0,0,0,1)
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

$$
1111 \cdot(4321) \times(0,0,0,1)=1110
$$

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: $0010,0101,1011,0110,1101,1010$,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100,

Another example: Ambainis function

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_{8}, generated by $(4321) \times(0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1001.

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000								
0001								
0011								
0111								
1111								
1110								
1100								
1000								

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a							
0001								
0011								
0111								
1111								
1110								
1100								
1000								

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a							
0001		a						
0011			a					
0111				a				
1111					a			
1110						a		
1100							a	
1000								a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c						
0001		a						
0011			a					
0111				a				
1111					a			
1110						a		
1100							a	
1000								a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c						
0001		a	c					
0011			a	c				
0111				a	c			
1111					a	c		
1110						a	c	
1100							a	c
1000	c							a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d					
0001		a	c	d				
0011			a	c	d			
0111				a	c	d		
1111					a	c	d	
1110						a	c	d
1100	d						a	c
1000	c	d						a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d	b				
0001		a	c	d	b			
0011			a	c	d	b		
0111				a	c	d	b	
1111					a	c	d	b
1110	b					a	c	d
1100	d	b					a	c
1000	c	d	b					a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d	b	d			
0001		a	c	d	b	d		
0011			a	c	d	b	d	
0111				a	c	d	b	d
1111	d				a	c	d	b
1110	b	d				a	c	d
1100	d	b	d				a	c
1000	c	d	b	d				a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d	b	d	c		
0001		a	c	d	b	d	c	
0011			a	c	d	b	d	c
0111	c			a	c	d	b	d
1111	d	c			a	c	d	b
1110	b	d	c			a	c	d
1100	d	b	d	c			a	c
1000	c	d	b	d	c			a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d	b	d	c	a	
0001		a	c	d	b	d	c	a
0011	a		a	c	d	b	d	c
0111	c	a		a	c	d	b	d
1111	d	c	a		a	c	d	b
1110	b	d	c	a		a	c	d
1100	d	b	d	c	a		a	c
1000	c	d	b	d	c	a		a

Another example: Ambainis function

	0010	0101	1011	0110	1101	1010	0100	1001
0000	a	c	d	b	d	c	a	b
0001	b	a	c	d	b	d	c	a
0011	a	b	a	c	d	b	d	c
0111	c	a	b	a	c	d	b	d
1111	d	c	a	b	a	c	d	b
1110	b	d	c	a	b	a	c	d
1100	d	b	d	c	a	b	a	c
1000	c	d	b	d	c	a	b	a

The $\Gamma \circ D_{1}$ matrix

	1001	1010	1011	1101
0011	c	b	a	d
0000	b	c	d	d
0001	a	d	c	b
0111	d	d	b	c

Ambainis function continued

We try to maximize $\|\Gamma\|=2(a+b+c+d)$ while keeping spectral norm of $\Gamma \circ D_{i}$ at most 1 .

	a	b	c	d	$\\|\Gamma\\|$
ADV	0.75	0.50	0	0	2.5
$\mathrm{ADV}^{ \pm}$	0.5788	0.7065	0.1834	-0.2120	2.5136

Ambainis function continued

We try to maximize $\|\Gamma\|=2(a+b+c+d)$ while keeping spectral norm of $\Gamma \circ D_{i}$ at most 1 .

	a	b	c	d	$\\|\Gamma\\|$
ADV	0.75	0.50	0	0	2.5
$\mathrm{ADV}^{ \pm}$	0.5788	0.7065	0.1834	-0.2120	2.5136

The Ambainis function has polynomial degree 2. By iterating this function, we obtain largest known separation between polynomial degree and quantum query complexity, m vs $m^{1.327}$.

Open Questions

- Element distinctness: Best bound provable by old method is $\sqrt{2 n}$, but right answer is $n^{2 / 3}$, provable by polynomial method. Can new adversary method prove optimal bound?
- Triangle finding: Best bound provable by old method is n, and best known algorithm gives $n^{1.3}$. Can new adversary bound give a superlinear lower bound?
- $\mathrm{ADV}^{ \pm}(f)^{2}$ is a lower bound on the formula size of f. Conjecture: The bounded-error quantum query complexity of f squared is, in general, a lower bound on the formula size of f.

