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Quantum query complexity

• Popular model for study

• Seems to capture power of quantum computing:

– Grover’s search algorithm,
– Period finding of Shor’s algorithm,
– Quantum walks: element distinctness, triangle finding, matrix

multiplication

• And we can also prove lower bounds!

– Polynomial method, Quantum Adversary method
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Adversary method

• Adversary method developed by Ambainis, 2002.

• Many competing formulations: weight schemes [Amb03, Zha05], spectral
norm of matrices [BSS03], and Kolmogorov complexity [LM04].

• All these methods shown equivalent by Špalek and Szegedy, 2006.
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Reinventing the adversary

• We introduce a new adversary method, ADV±.

• ADV±(f) ≥ ADV(f). We show a function where ADV(f) = O(m)
and ADV±(f) = Ω(m1.098).

• We essentially use that a successful algorithm computes a function, not
just that it can distinguish inputs with different function values.

• Our method does not face the limitations of previous adversary methods.



Quantum queries

• In classical query complexity, want to compute f(x) and can make
queries of the form xi =? Complexity is number of queries on worst case
input.

• Quantum query—turn query operator into unitary transformation on
Hilbert Space HI ⊗HQ ⊗HW

O|x〉|i〉|z〉 → (−1)xi|x〉|i〉|z〉.

• Can make queries in superposition.



Query algorithm

• On input x, algorithm proceeds by alternating queries and arbitrary
unitary transformations independent of x

|φt
x〉 = UtOUt−1 . . . U1OU0|x〉|0〉|0〉.

• Output determined by complete set of orthogonal projectors {Π0,Π1}.
A T -query algorithm outputs b on input x with probability ‖Πb|φT

x 〉‖2.

• Q2(f) is number T of queries needed by best algorithm which outputs
f(x) on input x with probability at least 2/3, for all x.



Matrix notation

• We will use matrix formulation of adversary method [BSS03]

• Spectral norm ‖A‖ =
√
λ1(AA∗).

• Hadamard (entrywise) product (A ◦B)[i, j] = A[i, j] ·B[i, j].



Adversary method

Let f : {0, 1}n → {0, 1} be a Boolean function, and Γ a symmetric
2n-by-2n matrix where Γ[x, y] = 0 if f(x) = f(y). Then

ADV(f) = max
Γ≥0
Γ 6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

Di is a zero-one matrix where Di[x, y] = 1 if xi 6= yi and Di[x, y] = 0
otherwise.

Theorem [BSS03]: Q2(f) = Ω(ADV(f)).



The Γ matrix
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Notice that the spectral norm of Γ equals that of A.



The Γ ◦D1 matrix
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The spectral norm of Γ ◦D1 equals max{‖B‖, ‖C‖}.



Example: OR function

We define the matrix:

1000 0100 0010 0001
0000 1 1 1 1

The spectral norm of this matrix is
√

4, and the spectral norm of each
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Example: OR function

We define the matrix:

1000 0100 0010 0001
0000 1 1 1 1

The spectral norm of this matrix is
√

4, and the spectral norm of each
Γ ◦Di is one.

Generalizing this construction we find Q2(ORn) = Ω(
√
n).



New adversary method

We remove the restriction to nonnegative matrices:
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New adversary method

We remove the restriction to nonnegative matrices:

ADV±(f) = max
Γ 6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

Theorem: Q2(f) = Ω(ADV±(f)).

As we maximize over a larger set, ADV±(f) ≥ ADV(f). It turns out
that negative entries can help in giving larger lower bounds!
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Separating the old and new

• Old adversary faces “certificate complexity barrier”: ADV(f) ≤√
C0(f)C1(f), for total function f [Zha05,SS06].

• Given a graph on n vertices, does it contain a triangle? It is known that
ADV(f) ≤

√
3n. Best upper bound n1.3 [MSS05].

• Given a list of n elements in {1, 2, . . . , n}, are they all distinct?
ADV(f) ≤

√
2n, and right answer is Θ(n2/3) [AS04, Amb04].

• We have example where ADV±(f) = Ω((C0(f)C1(f))0.549).
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The difficulty of being negative

Recall that running the algorithm on input x for t queries:

|φt
x〉 = UtOUt−1 . . . U1OU0|x〉|0〉|0〉.

Write this as |φt
x〉 = |x〉|ψt

x〉.

Let Γ be an adversary matrix and δ a principal eigenvector. The
principal eigenvector tells us how to build a hard input— we feed algorithm
the superposition

∑
x δx|x〉|0〉|0〉. State of algorithm after t queries is∑

x δx|x〉|ψt
x〉. Let ρ(t)[x, y] = δ∗xδy〈ψt

x|ψt
y〉 be the reduced density matrix

of this state.



Watch the density matrix. . .

Define a progress function based on ρ(t) as

W (t) = 〈Γ, ρ(t)〉 =
∑
x,y

Γ[x, y]δ∗xδy〈ψt
x|ψt

y〉.
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Watch the density matrix. . .

Define a progress function based on ρ(t) as

W (t) = 〈Γ, ρ(t)〉 =
∑
x,y

Γ[x, y]δ∗xδy〈ψt
x|ψt

y〉.

Show three things:

• |W (0)| = ‖Γ‖

• |W (T )| ≤ 2
√
ε(1− ε)‖Γ‖

• |W (t) −W (t+1)| ≤ 2 maxi ‖Γ ◦Di‖



Step Two: Old adversary

• Want to upper bound 〈Γ, ρ(T )〉 ≤ 2
√
ε(1− ε)‖Γ‖.

• Distinguishing principle: Successful algorithm can distinguish 0-inputs
from 1-inputs with error probability ε means

〈ψT
x |ψT

y 〉 ≤ 2
√
ε(1− ε)

• Thus as Γ nonnegative∑
x,y

Γ[x, y]δ∗xδy〈ψT
x |ψT

y 〉 ≤ 2
√
ε(1− ε)

∑
x,y

Γ[x, y]δ∗xδy

= 2
√
ε(1− ε)‖Γ‖



User’s Manual

• Automorphism principle: If π is automorphism of the function then wlog,
Γ[x, y] = Γ[π(x), π(y)] in optimal adversary matrix.

• Composition principle: Let f : {0, 1}n → {0, 1}. Write f1 = f and

fd : {0, 1}nd → {0, 1} be

fd(x) = f(fd−1(x(1)), fd−1(x(2)), . . . , fd−1(x(n))),

where x = (x(1), x(2), . . . , x(n)). Then ADV±(fd) ≥ ADV±(f)d.
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• Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

• Automorphism group isomorphic to Z8, generated by (4321)×(0, 0, 0, 1).

• The zeros: 0000, 0001, 0011, 0111, 1111

1111 · (4321)× (0, 0, 0, 1) = 1110
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Another example: Ambainis function

• Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

• Automorphism group isomorphic to Z8, generated by (4321)×(0, 0, 0, 1).

• The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

• The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100,



Another example: Ambainis function

• Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

• Automorphism group isomorphic to Z8, generated by (4321)×(0, 0, 0, 1).

• The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

• The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1001.
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Another example: Ambainis function
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Another example: Ambainis function
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0000 a c d b
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0011 a c d b
0111 a c d b
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Another example: Ambainis function

0010 0101 1011 0110 1101 1010 0100 1001
0000 a c d b d
0001 a c d b d
0011 a c d b d
0111 a c d b d
1111 d a c d b
1110 b d a c d
1100 d b d a c
1000 c d b d a



Another example: Ambainis function

0010 0101 1011 0110 1101 1010 0100 1001
0000 a c d b d c
0001 a c d b d c
0011 a c d b d c
0111 c a c d b d
1111 d c a c d b
1110 b d c a c d
1100 d b d c a c
1000 c d b d c a



Another example: Ambainis function

0010 0101 1011 0110 1101 1010 0100 1001
0000 a c d b d c a
0001 a c d b d c a
0011 a a c d b d c
0111 c a a c d b d
1111 d c a a c d b
1110 b d c a a c d
1100 d b d c a a c
1000 c d b d c a a



Another example: Ambainis function

0010 0101 1011 0110 1101 1010 0100 1001
0000 a c d b d c a b
0001 b a c d b d c a
0011 a b a c d b d c
0111 c a b a c d b d
1111 d c a b a c d b
1110 b d c a b a c d
1100 d b d c a b a c
1000 c d b d c a b a



The Γ ◦D1 matrix

1001 1010 1011 1101
0011 c b a d
0000 b c d d
0001 a d c b
0111 d d b c



Ambainis function continued

We try to maximize ‖Γ‖ = 2(a+ b+ c+ d) while keeping spectral norm
of Γ ◦Di at most 1.

a b c d ‖Γ‖
ADV 0.75 0.50 0 0 2.5
ADV± 0.5788 0.7065 0.1834 -0.2120 2.5136



Ambainis function continued

We try to maximize ‖Γ‖ = 2(a+ b+ c+ d) while keeping spectral norm
of Γ ◦Di at most 1.

a b c d ‖Γ‖
ADV 0.75 0.50 0 0 2.5
ADV± 0.5788 0.7065 0.1834 -0.2120 2.5136

The Ambainis function has polynomial degree 2. By iterating this function,
we obtain largest known separation between polynomial degree and quantum
query complexity, m vs m1.327.



Open Questions

• Element distinctness: Best bound provable by old method is
√

2n, but
right answer is n2/3, provable by polynomial method. Can new adversary
method prove optimal bound?

• Triangle finding: Best bound provable by old method is n, and best
known algorithm gives n1.3. Can new adversary bound give a superlinear
lower bound?

• ADV±(f)2 is a lower bound on the formula size of f . Conjecture: The
bounded-error quantum query complexity of f squared is, in general, a
lower bound on the formula size of f .


