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Circuit Complexity

• A million dollar question: Show an explicit function (in NP)

which requires superpolynomial size circuits!

• For functions in NP the best circuit lower bound we know is

5n− o(n) [LR01, IM02]

• The smallest complexity class we know to contain a function

requiring superpolynomial size circuits is MAEXP! [BFT98]



Formula Size

• Weakening of the circuit model—a formula is a binary tree

with internal nodes labelled by AND, OR and leaves labelled

by literals. The size of a formula is its number of leaves.

• PARITY has formula size θ(n2) [Khr71].

• Showing superpolynomial formula size lower bounds for a

function in NP would imply NP 6= NC1.

• The best lower bound for a function in NP is n3−o(1) [Hås98].



A New Technique

• We devise a new lower bound technique based on matrix
rank.

• We exactly determine the formula size of PARITY: if n =
2` + k then

L(PARITY) = 2`(2` + 3k) = n2 + k2` − k2.

• The formula size of many other basic functions remains un-
resolved:

n2

4
≤ L(MAJORITY) ≤ n4.57



A Hierarchy of Techniques
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Karchmer–Wigderson Game [KW88]

• Elegant characterization of formula size in terms of a com-
munication game.

• For a Boolean function f , let X = f−1(0), Y = f−1(1) and

Rf = {(x, y, i) : x ∈ X, y ∈ Y, xi 6= yi}

• The game is then the following: Alice is given x ∈ X, Bob is
given y ∈ Y and they wish to find i such that (x, y, i) ∈ Rf .

• Karchmer–Wigderson Thm: The number of leaves in a best
communication protocol for Rf equals the formula size of f .



Communication complexity of relations
R ⊆ X × Y × Z

ALICEBOB

ALICE

Communication protocol is a binary tree:

z1 z2 z3 z2 z4

bv : Y → {0, 1}

Similarly, Bob’s nodes labelled

Alice’s nodes labelled by a function:

av : X → {0, 1}

Leaves labelled by elements z ∈ Z.

Denote by CP (R) the number of leaves

in a best protocol for R.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

AND

x3 x2x1 ¬x2 ¬x4

General idea: Alice speaks at AND nodes

and Bob speaks at OR nodes.

Initially, f(x) 6= f(y) and we maintain this

disagreement on subformulas as we move

down the tree.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

ALICE

x3 x2x1 ¬x2 ¬x4

First we define Alice’s action at the top node:

If x does not satisfy the left subformula,

then Alice sends the bit 0;

otherwise she sends the bit 1.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

0
ALICE

x3 x2x1 ¬x2 ¬x4

Say that x does not satisfy the left

subformula.



Proof by picture: CP(Rf) ≤ L(f).

0

ALICE

ALICE

BOB

x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(Rf) ≤ L(f).
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ALICE

x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(Rf) ≤ L(f).
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x3 x2x1 ¬x2 ¬x4

We continue down the tree in a similar fashion,

maintaining the property that x and y

take different values on subformulas.

Eventually, we reach a literal `i such that

`i(x) 6= `i(y) and so x and y differ on bit i.



Communication Complexity and the Rectangle

Bound
R ⊆ X × Y × Z
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{z : (x, y, z) ∈ R}
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Communication Complexity and the Rectangle

Bound
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A rectangle S is monochromatic

if there exists z such that

(x, y, z) ∈ S for all (x, y) ∈ S.

A successful protocol partitions

X × Y into monochromatic

rectangles.



Communication Complexity and the Rectangle

Bound
R ⊆ X × Y × Z
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Rectangle Bound

• We denote by CD(R) the size of a smallest partition of X×Y

into monochromatic (with respect to R) rectangles. By the
argument above, CD(R) ≤ CP (R).

• The rectangle bound is a purely combinatorial quantity.

• We can still hope to prove larger lower bounds by focusing
on the rectangle bound:

CD(R) ≤ CP (R) ≤ 2(logCD(R))2

• Major drawback—it is NP hard to compute.



Rectangles and Rank

• Rank is one of the most successful ways to prove lower

bounds on communication complexity of functions

• Let M [x, y] = f(x, y). A monochromatic 1-rectangle has rank

one, thus rk(M) ≤ CD(f).

• It has been difficult to adapt the rank technique to commu-

nication complexity of relations.



Rank for relations

• The key idea is a selection function S : X × Y → Z.

• A selection function turns a relation into a function, by se-

lecting one output.

• Let R|S = {(x, y, z) : S(x, y) = z}. Then

CP (R) = min
S

CP (R|S).



Rank for relations

• With the help of selection functions, we can now apply the

rank method as before.

• Let Sz be a matrix where Sz[x, y] = 1 if S(x, y) = z and 0

otherwise.

min
S

∑
z∈Z

rk(Sz) ≤ CD(R)



Approximating Rank

• In general this bound seems difficult to use because of the

minimization over all selection functions

• We get around this by the following lower bound on rank:⌈
‖M‖2tr
‖M‖2F

⌉
≤ rk(M)

where

– ‖M‖tr =
∑

i λi(M)

– ‖M‖2F =
∑

i λ2
i (M)



Application to Parity

• Selection function: S : 2n−1 × 2n−1 → [n].

• For every i ∈ [n], there are 2n−1 pairs where behavior of

selection function is determined—the sensitive pairs.

• If selection function S only output i where forced to, then

rk(Si) = 2n−1. Thus S must output i in more places to bring

down rank.



Application to Parity

• Because of sensitive pairs ‖Si‖tr ≥ 2n−1 for every i.

• Also, ‖Si‖2F is simply number of ones in Si.

• Putting these observations together:

min
si

∑
i

⌈
(2n−1)2

si

⌉
≤ L(PARITY)

where
∑

i si = (2n−1)2.



Application to Parity

We have

min
si

∑
i

⌈
(2n−1)2

si

⌉
≤ L(PARITY)

where
∑

i si = (2n−1)2.

• Ignoring the ceilings, Jensen’s inequality says minimum at-
tained when all si equal, si = (2n−1)2/n. This is not possible
when n is not a power of two.

• If n = 2` + k, best thing to do, take each si a power of two,
as evenly as possible:

L(PARITY) = 2`(2` + 3k) = n2 + k2` − k2



Open problems

• Application to threshold functions?

n2

4
≤ L(MAJORITY) ≤ n4.57

• More subtle lower bound on rank? Use not just number of

ones in each Si but also their placement.


