Matrix Methods for Formula Size Lower Bounds

Troy Lee

LRI, Université Paris-Sud

Circuit Complexity

- A million dollar question: Show an explicit function (in NP) which requires superpolynomial size circuits!
- For functions in NP the best circuit lower bound we know is $5 n-o(n)$ [LR01, IM02]
- The smallest complexity class we know to contain a function requiring superpolynomial size circuits is MAEXP! [BFT98]

Formula Size

- Weakening of the circuit model-a formula is a binary tree with internal nodes labelled by AND, OR and leaves labelled by literals. The size of a formula is its number of leaves.
- PARITY has formula size $\theta\left(n^{2}\right)$ [Khr71].
- Showing superpolynomial formula size lower bounds for a function in NP would imply NP $\neq \mathrm{NC}^{1}$.
- The best lower bound for a function in NP is $n^{3-o(1)}$ [Hås98].

A New Technique

- We devise a new lower bound technique based on matrix rank.
- We exactly determine the formula size of PARITY: if $n=$ $2^{\ell}+k$ then

$$
L(\text { PARITY })=2^{\ell}\left(2^{\ell}+3 k\right)=n^{2}+k 2^{\ell}-k^{2} .
$$

- The formula size of many other basic functions remains unresolved:

$$
\frac{n^{2}}{4} \leq L(\mathrm{MAJORITY}) \leq n^{4.57}
$$

A Hierarchy of Techniques

Karchmer-Wigderson Game [KW88]

- Elegant characterization of formula size in terms of a communication game.
- For a Boolean function f, let $X=f^{-1}(0), Y=f^{-1}(1)$ and

$$
R_{f}=\left\{(x, y, i): x \in X, y \in Y, x_{i} \neq y_{i}\right\}
$$

- The game is then the following: Alice is given $x \in X, \mathrm{Bob}$ is given $y \in Y$ and they wish to find i such that $(x, y, i) \in R_{f}$.
- Karchmer-Wigderson Thm: The number of leaves in a best communication protocol for R_{f} equals the formula size of f.

Communication complexity of relations $R \subseteq X \times Y \times Z$

Proof by picture: $C^{P}\left(R_{f}\right) \leq \mathrm{L}(f)$.

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Rectangle Bound

- We denote by $C^{D}(R)$ the size of a smallest partition of $X \times Y$ into monochromatic (with respect to R) rectangles. By the argument above, $C^{D}(R) \leq C^{P}(R)$.
- The rectangle bound is a purely combinatorial quantity.
- We can still hope to prove larger lower bounds by focusing on the rectangle bound:

$$
C^{D}(R) \leq C^{P}(R) \leq 2^{\left(\log C^{D}(R)\right)^{2}}
$$

- Major drawback-it is NP hard to compute.

Rectangles and Rank

- Rank is one of the most successful ways to prove lower bounds on communication complexity of functions
- Let $M[x, y]=f(x, y)$. A monochromatic 1-rectangle has rank one, thus $\operatorname{rk}(M) \leq C^{D}(f)$.
- It has been difficult to adapt the rank technique to communication complexity of relations.

Rank for relations

- The key idea is a selection function $S: X \times Y \rightarrow Z$.
- A selection function turns a relation into a function, by selecting one output.
- Let $\left.R\right|_{S}=\{(x, y, z): S(x, y)=z\}$. Then

$$
C^{P}(R)=\min _{S} C^{P}\left(\left.R\right|_{S}\right) .
$$

Rank for relations

- With the help of selection functions, we can now apply the rank method as before.
- Let S_{z} be a matrix where $S_{z}[x, y]=1$ if $S(x, y)=z$ and 0 otherwise.

$$
\min _{S} \sum_{z \in Z} \operatorname{rk}\left(S_{z}\right) \leq C^{D}(R)
$$

Approximating Rank

- In general this bound seems difficult to use because of the minimization over all selection functions
- We get around this by the following lower bound on rank:

$$
\left\lceil\frac{\|M\|_{\mathrm{tr}}^{2}}{\|M\|_{F}^{2}}\right\rceil \leq \operatorname{rk}(M)
$$

where
$-\|M\|_{t r}=\sum_{i} \lambda_{i}(M)$

- $\|M\|_{F}^{2}=\sum_{i} \lambda_{i}^{2}(M)$

Application to Parity

- Selection function: $S: 2^{n-1} \times 2^{n-1} \rightarrow[n]$.
- For every $i \in[n]$, there are 2^{n-1} pairs where behavior of selection function is determined-the sensitive pairs.
- If selection function S only output i where forced to, then $\mathrm{rk}\left(S_{i}\right)=2^{n-1}$. Thus S must output i in more places to bring down rank.

Application to Parity

- Because of sensitive pairs $\left\|S_{i}\right\|_{\mathrm{tr}} \geq 2^{n-1}$ for every i.
- Also, $\left\|S_{i}\right\|_{F}^{2}$ is simply number of ones in S_{i}.
- Putting these observations together:

$$
\min _{s_{i}} \sum_{i}\left\lceil\frac{\left(2^{n-1}\right)^{2}}{s_{i}}\right\rceil \leq L(\text { PARITY })
$$

where $\sum_{i} s_{i}=\left(2^{n-1}\right)^{2}$.

Application to Parity

We have

$$
\min _{s_{i}} \sum_{i}\left\lceil\frac{\left(2^{n-1}\right)^{2}}{s_{i}}\right\rceil \leq L(\text { PARITY })
$$

where $\sum_{i} s_{i}=\left(2^{n-1}\right)^{2}$.

- Ignoring the ceilings, Jensen's inequality says minimum attained when all s_{i} equal, $s_{i}=\left(2^{n-1}\right)^{2} / n$. This is not possible when n is not a power of two.
- If $n=2^{\ell}+k$, best thing to do, take each s_{i} a power of two, as evenly as possible:

$$
L(\mathrm{PARITY})=2^{\ell}\left(2^{\ell}+3 k\right)=n^{2}+k 2^{\ell}-k^{2}
$$

Open problems

- Application to threshold functions?

$$
\frac{n^{2}}{4} \leq L(\text { MAJORITY }) \leq n^{4.57}
$$

- More subtle lower bound on rank? Use not just number of ones in each S_{i} but also their placement.

