Optimal quantum adversary lower bounds for ordered search

Andrew Childs
University of Waterloo
Troy Lee
Rutgers University

A mathematical question

A mathematical question

Given a matrix

$$
A_{n}=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & 0 \\
a_{2} & a_{3} & \ldots & a_{n-1} & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
a_{n-2} & a_{n-1} & 0 & 0 & 0 & 0 \\
a_{n-1} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

how large can $\sum_{i} a_{i}$ be while $\left\|A_{n}\right\| \leq 1$?

A mathematical question

Given a matrix

$$
A_{n}=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & 0 \\
a_{2} & a_{3} & \ldots & a_{n-1} & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
a_{n-2} & a_{n-1} & 0 & 0 & 0 & 0 \\
a_{n-1} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

how large can $\sum_{i} a_{i}$ be while $\left\|A_{n}\right\| \leq 1$? Let $\alpha(n)$ denote this optimal value.

A good guess

The "half" Hilbert matrix

$$
Z_{n}=\left(\begin{array}{cccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n & 0 \\
1 / 3 & 1 / 4 & \ldots & 1 / n & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
1 /(n-1) & 1 / n & 0 & 0 & 0 & 0 \\
1 / n & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then $\sum_{i} a_{i} \approx \ln (n)$.

A good guess

The "half" Hilbert matrix

$$
Z_{n}=\left(\begin{array}{cccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 / n & 0 \\
1 / 3 & 1 / 4 & \ldots & 1 / n & 0 & 0 \\
\vdots & \ldots & & & \vdots & \vdots \\
1 /(n-1) & 1 / n & 0 & 0 & 0 & 0 \\
1 / n & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then $\sum_{i} a_{i} \approx \ln (n)$. How to upper bound $\left\|Z_{n}\right\|$?

Hilbert's Inequality

Consider the Hilbert matrix

$$
H=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & \ldots \\
1 / 3 & 1 / 4 & \ldots & & \ldots \\
1 / 4 & \ldots & & & \vdots \\
\vdots & & & \vdots & \ddots
\end{array}\right)
$$

Hilbert showed (with improvement by Schur) that $\|H\| \leq \pi$.

Hilbert's Inequality

Consider the Hilbert matrix

$$
H=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & \ldots \\
1 / 3 & 1 / 4 & \ldots & & \ldots \\
1 / 4 & \ldots & & & \vdots \\
\vdots & & & \vdots & \ddots
\end{array}\right)
$$

Hilbert showed (with improvement by Schur) that $\|H\| \leq \pi$. Thus the (normalized) half Hilbert matrix demonstrates $\alpha(n) \geq \frac{\ln (n)}{\pi}$.

Our main theorem

We show that the "half" Hilbert matrix gives essentially the optimal bound:

$$
\alpha(n)=\frac{\ln (n)}{\pi}+\Theta(1)
$$

Our main theorem

We show that the "half" Hilbert matrix gives essentially the optimal bound:

$$
\alpha(n)=\frac{\ln (n)}{\pi}+\Theta(1)
$$

For the case of non-negative matrices, we are able to give the exact answer:

$$
\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}
$$

Our main theorem

We show that the "half" Hilbert matrix gives essentially the optimal bound:

$$
\alpha(n)=\frac{\ln (n)}{\pi}+\Theta(1)
$$

For the case of non-negative matrices, we are able to give the exact answer:

$$
\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}=\frac{1}{\pi}(\ln n+\gamma+\ln 8)+O(1 / n)
$$

and explicit matrices which realize this bound.

Our main theorem

We show that the "half" Hilbert matrix gives essentially the optimal bound:

$$
\alpha(n)=\frac{\ln (n)}{\pi}+\Theta(1)
$$

For the case of non-negative matrices, we are able to give the exact answer:

$$
\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}=\frac{1}{\pi}(\ln n+\gamma+\ln 8)+O(1 / n)
$$

and explicit matrices which realize this bound.
Note that

$$
\frac{\binom{2 i}{i}}{4^{i}} \approx \frac{4^{i} / \sqrt{\pi i}}{4^{i}}=\frac{1}{\sqrt{\pi i}}
$$

Motivation: quantum query complexity

- In classical query complexity, want to compute some function $f(x)$ and have access to the input x by queries of the form $x_{i}=$? Complexity is number of queries needed on worst case input.
- Model of quantum query complexity is attractive as captures many quantum algorithms
- Grover's search algorithm,
- Period finding of Shor's algorithm,
- Quantum walks: element distinctness, triangle finding, matrix multiplication
- And we can also prove lower bounds!

Ordered search problem

- Complexity of finding a given item in an ordered list.
- Given an ordered list $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ want to find position of given item z.
- Ask queries of the form $x_{i} \geq z$?
- Equivalently can represent problem as querying bits of input and identifying first occurrence of a ' 1 '. For $n=4$, for example $S=\{1111,0111,0011,0001\}$.

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better.

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)
- Lower bounds: $\sqrt{\log n} / \log \log n$ [BW98],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)
- Lower bounds: $\sqrt{\log n} / \log \log n$ [BW98], $\log n / \log \log n$ [FGGS98],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)
- Lower bounds: $\sqrt{\log n} / \log \log n$ [BW98], $\log n / \log \log n$ [FGGS98], $0.0833 \log n$ [Amb99],

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)
- Lower bounds: $\sqrt{\log n} / \log \log n$ [BW98], $\log n / \log \log n$ [FGGS98], $0.0833 \log n$ [Amb99], $\frac{1}{\pi} \ln n \approx 0.221 \log n$ [HNS01]

Complexity of ordered search

- Classically answer is given by binary search: $\log n$ queries.
- In quantum case, one can do better. But only by a constant!
- Upper bounds: $0.526 \log n$ [FGGS99], $0.439 \log n$ [BJL04], $0.433 \log n$ [CLP06], $0.32 \log n$ [B-OH07] (bounded-error)
- Lower bounds: $\sqrt{\log n} / \log \log n$ [BW98], $\log n / \log \log n$ [FGGS98], $0.0833 \log n$ [Amb99], $\frac{1}{\pi} \ln n \approx 0.221 \log n$ [HNS01]
- What is this fundamental constant of quantum information?

Lower bounds: adversary method

- Main lower bound techniques: polynomial method and adversary method.
- Adversary method developed and improved in long series of works [BBBV94, Amb00, HNS01, BSS03, Amb03, LM04, Zha04, SŠ06, HLŠ07]
- Adversary bound is an optimization problem which can be written as a semidefinite program.

$$
\operatorname{ADV}(f):=\max _{\Gamma} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma \circ D_{i}\right\|}
$$

where $\Gamma[x, y]=0$ if $f(x)=f(y)$ and $D_{i}[x, y]=1$ if $x_{i} \neq y_{i}$ and 0 otherwise.

The Γ matrix

Notice that the spectral norm of Γ equals that of A.

The $\Gamma \circ D_{1}$ matrix

The spectral norm of $\Gamma \circ D_{1}$ equals $\max \{\|B\|,\|C\|\}$.

Automorphism principle

- "Whenever you have to deal with a structure endowed entity Σ try to determine its group of automorphisms . . . you can expect to gain a deep insight into the constitution of Σ in this way."
-Hermann Weyl, Symmetry

Automorphism principle

- "Whenever you have to deal with a structure endowed entity Σ try to determine its group of automorphisms . . . you can expect to gain a deep insight into the constitution of Σ in this way."
—Hermann Weyl, Symmetry
- Using symmetry of problem can greatly simplify search for optimal adversary matrices [HLŠ07].
- Input to ordered search (for $n=4) S=\{1111,0111,0011,0001\}$

Automorphism principle

- "Whenever you have to deal with a structure endowed entity Σ try to determine its group of automorphisms . . . you can expect to gain a deep insight into the constitution of Σ in this way."
—Hermann Weyl, Symmetry
- Using symmetry of problem can greatly simplify search for optimal adversary matrices [HLŠ07].
- Input to ordered search (for $n=4$) $S=\{1111,0111,0011,0001\}$ Trivial automorphism group!

Automorphism principle

- [FGGS99] extend inputs "to a circle": $S^{\prime}=\{11110000,01111000,00111100$, 00011110, 00001111, 10000111, 11000011, 11100001\}
- Now have cyclic structure, and query complexity changes by at most 1 .
- Using automorphism principle, can wlog reduce computation of adversary bound to the matrix problem given at beginning of talk.

Automorphism principle

- [FGGS99] extend inputs "to a circle" : $S^{\prime}=\{11110000,01111000,00111100$, 00011110, 00001111, 10000111, 11000011, 11100001\}
- Now have cyclic structure, and query complexity changes by at most 1 .
- Using automorphism principle, can wlog reduce computation of adversary bound to the matrix problem given at beginning of talk.
- We show that the adversary method (even with negative weights) cannot show lower bounds larger than $\frac{1}{\pi} \ln n+O(1)$.

A word about the proof (non-negative case)

- We exhibit solutions to both the primal and dual formulation of adversary bound, and show that they match.
- A key role in both directions is played by the lovely sequence

$$
\beta_{i}=\frac{\binom{2 i}{i}}{4^{i}} .
$$

A word about the proof (non-negative case)

- We exhibit solutions to both the primal and dual formulation of adversary bound, and show that they match.
- A key role in both directions is played by the lovely sequence

$$
\beta_{i}=\frac{\binom{2 i}{i}}{4^{i}} .
$$

- Key property: $\sum_{i=0}^{j} \beta_{i} \beta_{j-i}=1$

A word about the proof (non-negative case)

- We exhibit solutions to both the primal and dual formulation of adversary bound, and show that they match.
- A key role in both directions is played by the lovely sequence

$$
\beta_{i}=\frac{\binom{2 i}{i}}{4^{i}} .
$$

- Key property: $\sum_{i=0}^{j} \beta_{i} \beta_{j-i}=1$
- Proof:

$$
\frac{1}{\sqrt{1-z}}=\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\beta_{3} z^{3}+\ldots
$$

Optimal matrix

Recall we wish to show that $\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}$.

Optimal matrix

Recall we wish to show that $\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}$.
Define $A_{n}(j)=\sum_{i=0}^{n-j-1} \beta_{i} \beta_{i+j}$.

$$
\left(\begin{array}{cccc}
A_{4}(0)-A_{4}(1) & A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) \\
A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 \\
A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 & 0 \\
A_{4}(3) & 0 & 0 & 0
\end{array}\right)
$$

Optimal matrix

Recall we wish to show that $\alpha^{+}(n)=\sum_{i=0}^{n-1}\left(\frac{\binom{2 i}{i}}{4^{i}}\right)^{2}$.
Define $A_{n}(j)=\sum_{i=0}^{n-j-1} \beta_{i} \beta_{i+j}$.

$$
\left(\begin{array}{cccc}
A_{4}(0)-A_{4}(1) & A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) \\
A_{4}(1)-A_{4}(2) & A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 \\
A_{4}(2)-A_{4}(3) & A_{4}(3) & 0 & 0 \\
A_{4}(3) & 0 & 0 & 0
\end{array}\right)
$$

To bound spectral norm, show that $x=\left[\beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}\right]$ is eigenvector with eigenvalue 1 .

Conclusion

- What is the quantum query complexity of ordered search?
- Progress will require new algorithms or new lower bound techniques.
- [BSS03] show quantum query complexity can be written as a semidefinite program. Adversary bound can be viewed as a relaxation of this program.
- Our optimal matrix can be used to give nearly elementary proof of Hilbert's Inequality (need $\Gamma(1 / 2)=\sqrt{\pi}$).

