
Negative weights make adversaries stronger

Peter Høyer∗

hoyer@cpsc.ucalgary.ca
Troy Lee†

lee@lri.fr
Robert Špalek‡

spalek@eecs.berkeley.edu

Abstract

The quantum adversary method is one of the most successful techniques for proving lower bounds on
quantum query complexity. It gives optimal lower bounds for many problems, has application to classical
complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight
schemes, eigenvalues, and Kolmogorov complexity. All these formulations are information-theoretic and
rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to
distinguish between inputs which map to different values.

We present a stronger version of the adversary method which goes beyond this principle to make
explicit use of the existence of a measurement in a successful algorithm which gives the correct answer,
with high probability. We show that this new method, which we call ADV±, has all the advantages of
the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound
on formula size, and it behaves well with respect to function composition. Moreover ADV± is always
at least as large as the adversary method ADV, and we show an example of a monotone function for
which ADV±(f) = Ω(ADV(f)1.098). We also give examples showing that ADV± does not face
limitations of ADV such as the certificate complexity barrier and the property testing barrier. Breaking
these barriers opens the possibility that ADV± can prove better lower bounds where ADV cannot,
notably for problems like element distinctness and triangle finding.

∗Department of Computer Science, University of Calgary. Supported by Canada’s Natural Sciences and Engineering Research
Council (NSERC), the Canadian Institute for Advanced Research (CIAR), and The Mathematics of Information Technology and
Complex Systems (MITACS).

†LRI, Université Paris-Sud. Supported by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO)
and by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST directorate as Contract
Number 015848. Part of this work conducted while at CWI, Amsterdam.

‡University of California, Berkeley. Supported by NSF Grant CCF-0524837 and ARO Grant DAAD 19-03-1-0082. Work
conducted in part while at CWI and the University of Amsterdam, supported by the European Commission under project QAP,
IST-015848, and while visiting the University of Calgary.

1

1 Introduction

Quantum query complexity is a popular model for study as it seems to capture much of the power of quantum
computing—in particular, the search algorithm of Grover [Gro96] and the period finding routine of Shor’s
factoring algorithm [Sho97] can be formulated in this model—yet is still simple enough that we can often
hope to prove tight lower bounds. In this model, complexity is measured by the number of queries made
to the input, and other operations are for free. For most known quantum algorithms, the time complexity is
bigger than the query complexity by only a polylogarithmic factor.

The two most successful techniques for proving lower bounds on quantum query complexity are the
polynomial method [BBC+01] and the quantum adversary method [Amb02]. The adversary method gives
tight lower bounds for many problems and is quite versatile with formulations in terms of weight schemes
[Amb03, Zha05], eigenvalues [BSS03], and Kolmogorov complexity [LM04]. Špalek and Szegedy [ŠS06]
show that in fact all these formulations are equivalent. All these versions of the adversary method rest on
the principle that, if an algorithm is able to compute a function f , then in particular it is able to distinguish
inputs which map to different values. The method actually bounds the difficulty of this distinguishing task.

We present a stronger version of the adversary method which goes beyond this principle to essentially
make use of the stronger condition that the algorithm actually computes the function—namely, we make
use of the existence of a measurement which gives the correct answer with high probability from the final
state of the algorithm. This new method, which we call ADV±, is always at least as large as the adversary
bound ADV, and we show an example of a monotone function f for which ADV±(f) = Ω(ADV(f)1.098).
Moreover, ADV± possesses all the nice properties of the old adversary method: it is a lower bound on
bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well
with respect to function composition. Using this last property, and the fact that our bound is larger than the
adversary bound for the base function of Ambainis, we improve the best known separation between quantum
query complexity and polynomial degree giving an f such that Qε(f) = Ω(deg(f)1.329).

The limitations of the adversary method are fairly well understood. One limitation is the “certificate
complexity barrier.” This says that ADV(f) ≤

√
C0(f)C1(f) for a total function f [Zha05, ŠS06], where

C0(f) is the certificate complexity of the inputs x which evaluate to zero on f , and C1(f) is the certificate
complexity of inputs which evaluate to one. This means that for problems like determining if a graph
contains a triangle, or element distinctness, where one of the certificate complexities is constant, the best
bound which can be proven by the adversary method is Ω(

√
N). For triangle finding, the best known upper

bound isN13/20 [MSS05], and for element distinctness the polynomial method is able to prove a tight lower
bound of N2/3. We show that our new method can break the certificate complexity barrier—we give an
example where ADV±(f) = Ω((C0(f)C1(f))0.549).

Another limitation of the adversary method is the “property testing barrier.” For a partial Boolean
function f where all zero-inputs have relative Hamming distance at least ε from all one-inputs, it holds that
ADV(f) ≤ 1/ε. A prime example where this limitation applies is the collision problem of determining if a
function is 2-to-1 or 1-to-1. Here all zero-inputs have relative Hamming distance at least 1/2 from all one
inputs and so the best bound provable by the adversary method is 2, while the polynomial method is able to
prove a tight lower bound of n1/3 [AS04]. We show the property testing barrier does not apply in this strict
sense to ADV±, although we do not know of an asymptotic separation for constant ε.

Breaking these barriers opens the possibility that ADV± can prove tight lower bounds for problems
like element distinctness and the collision problem, and improve the best known Ω(

√
N) lower bound for

triangle finding.

2

1.1 Comparison with previous methods

We now take a closer look at our new method and how it compares with previous adversary methods. We
will use the setting of the spectral formulation of the adversary method [BSS03].

Let f : S → {0, 1} be a Boolean function, with S ⊆ {0, 1}n. Let Γ be a Hermitian matrix with rows
and columns labeled by elements of S. We say that Γ is an adversary matrix for f if Γ[x, y] = 0 whenever
f(x) = f(y). We let ‖M‖ denote the spectral norm of the matrix M , and for a real matrix M use M ≥ 0
to say the entries of M are nonnegative. We now give the spectral formulation of the adversary method:

Definition 1
ADV(f) = max

Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

Here the maximum is taken over nonnegative symmetric adversary matrices Γ, and Di is a zero-one matrix
where Di[x, y] = 1 if xi 6= yi and Di[x, y] = 0 otherwise. Γ ◦ Di denotes the entry-wise (Hadamard)
product of Γ and Di.

Let Qε(f) be the two-sided ε-bounded error quantum query complexity of f . Barnum, Saks, and Szegedy
show that the spectral version of the adversary method is a lower bound on Qε(f):

Theorem 1 ([BSS03]) For any function f , Qε(f) ≥ 1−2
√

ε(1−ε)

2 ADV(f).

Note that the definition of ADV(f) restricts the maximization to adversary matrices whose entries are
all nonnegative and real. Our new bound removes these restrictions:

Definition 2
ADV±(f) = max

Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

It is clear that ADV±(f) ≥ ADV(f) for any function f as the maximization is taken over a larger set. Our
main theorem, presented in Section 3, states that ADV±(f) is a lower bound on Qε(f).

Theorem 2 Qε(f) ≥ 1−2
√

ε(1−ε)

2 ADV±(f).

While it is clear that ADV± is always least as large as ADV, it might at first seem surprising that ADV±

can achieve bounds super-linear in ADV. An intuition for why negative weights help is that it is good to
give negative weight to entries with large Hamming distance, entries which are easier to distinguish by
queries. Consider an entry (x, y) where x and y have large Hamming distance. This entry appears in several
Γ ◦ Di matrices but only appears in the Γ matrix once. Thus by giving this entry negative weight we can
simultaneously decrease ‖Γ ◦Di‖ for several i’s, while doing relatively little damage to the large Γ matrix.

While in form the ADV± bound is very similar to the ADV bound, our proof of Theorem 2 departs from
the standard adversary principle. The standard adversary principle is based on the fact that an algorithm A
which is able to compute a function f is, in particular, able to distinguish inputs x, y such that f(x) 6= f(y).
Distinguishing quantum states is closely related to the inner product of the states as given by the following
quantitative principle:

Theorem 3 Suppose we are given one of two known states |ψx〉, |ψy〉. Let 0 ≤ ε ≤ 1/2. There is a
measurement which correctly identifies which of the two states we are given with error probability ε if and
only if 〈ψx|ψy〉 ≤ 2

√
ε(1− ε).

3

Let |ψt
x〉 be the state of an algorithm on input x after t queries. The adversary method works by defining

a “progress function” based on the inner product 〈ψt
x|ψt

y〉. Initially, before the algorithm has made any
queries, all inputs look the same and thus 〈ψ0

x|ψ0
y〉 = 1 for all x, y, and thus the progress function is large.

On the other hand, if a T -query algorithm computes a function f within error ε, then by Theorem 3 for x, y
with f(x) 6= f(y) we must have 〈ψT

x |ψT
y 〉 ≤ 2

√
ε(1− ε), and thus the final progress function is small. In

[BSS03] this is termed the Ambainis output condition. The adversary method then works by showing an
upper bound on how much the progress function can change by a single query.

Our proof follows the same basic reasoning, but the Ambainis output condition no longer seems to suffice
to show that the final progress function is small. We use in an essential way the stronger output condition that
if a T -query algorithm A computes a Boolean function f , then there exists orthogonal projectors {Π0,Π1}
which sum to the identity such that ‖Πb|ψT

x 〉‖2 ≥ 1− ε when f(x) = b, for b ∈ {0, 1}.

2 Preliminaries

We assume standard background from quantum computing and Boolean function complexity, see [NC00]
and [BW02] for nice references. In this section, we restrict ourselves to more specific background.

2.1 Linear algebra

The background we need about matrices can be found in, for example, [Bha97]. We use standard notations
such as | · | for absolute value, A for the entrywise complex conjugate of a matrix A, A∗ for the conjugate
transpose of A, and ‖x‖ =

√
x∗x for the `2-norm of a vector x. For two matrices A,B of the same size, the

Hadamard product or entrywise product is the matrix (A ◦B)[x, y] = A[x, y]B[x, y].
For an indexed set of vectors {|ψx〉 : x ∈ S}, we associate an |S|-by-|S| Gram matrix M =

Gram(|ψx〉 : s ∈ S) where
M [x, y] = 〈ψx|ψy〉.

It is easy to see that M is Hermitian and positive semidefinite.
We will make use of several matrix norms. For a matrix A let ‖A‖ be the spectral norm of A

‖A‖ = max
x,y

|x∗Ay|
‖x‖‖y‖

.

For two matrices A,B let 〈A,B〉 be the Hilbert-Schmidt inner product. This is the inner product of A,B
viewed as long vectors,

〈A,B〉 = Tr(A∗B) =
∑
i,j

A[i, j]B[i, j].

The Frobenius norm, denoted ‖A‖F , is the norm associated with this inner product,

‖A‖F =
√
〈A,A〉 =

√∑
i,j

|A[i, j]|2.

Finally, we will use the trace norm, denoted ‖A‖tr, where

‖A‖tr = max
B

|〈A,B〉|
‖B‖

,

4

and B runs over all complex matrices of the same size as A.
In our proof that ADV± is a lower bound on quantum query complexity we will use two tools for

bounding norms. The first of these follows easily from the definition of the trace norm.

Theorem 4 Let A,B be n-by-n matrices. Then |〈A,B〉| ≤ ‖A‖‖B‖tr.

Theorem 5 (Hölder’s Inequality, [Bha97] Corollary IV.2.6) Let A,B be matrices such that AB∗ is de-
fined. Then

‖AB∗‖tr ≤ ‖A‖F ‖B‖F .

2.2 Quantum query complexity

As with the classical model of decision trees, in the quantum query model we wish to compute some function
f and we access the input through queries. The complexity of f is the number of queries needed to compute
f on a worst-case input x. Unlike the classical case, however, we can now make queries in superposition.

The memory of a quantum query algorithm is described by three registers: the input register, HI , which
holds the input x ∈ {0, 1}n, the query register, HQ, which holds an integer 0 ≤ i ≤ n, and the working
memory, HW , which holds an arbitrary value. The query register and working memory together form the
accessible memory, denoted HA.

The accessible memory of a quantum query algorithm A is initialized to a fixed state. For convenience,
on input x we assume the state of the algorithm is |x, 0, 0〉 where all qubits in the accessible memory are
initialized to 0. The state of the algorithm then evolves through queries, which depend on the input register,
and accessible memory operators which do not. We now describe these operations.

We will model a query by a unitary operator where the oracle answer is given in the phase. This operator
O is defined by its action on the basis state |x〉|i〉|w〉 as

O|x〉|i〉|w〉 = (−1)xi |x〉|i〉|w〉.

For every x, we define x0 = 0, thus querying i = 0 is the identity operation or “null query” which is needed
for an important technical reason.

An accesible memory operator is an arbitrary unitary operation U on the accessible memory HA. This
operation is extended to act on the whole space by interpreting it as Iinput ⊗ U , where Iinput is the identity
operation on the input space HI . Thus the state of the algorithm on input x after t queries can be written

|φt
x〉 = UtOUt−1 · · ·U1OU0|x, 0, 0〉.

As the input register is left unchanged by the algorithm, we can decompose |φt
x〉 as |φt

x〉 = |x〉|ψt
x〉, where

|ψt
x〉 is the state of the accessible memory after t queries.

The output of a T -query algorithm A on input x is chosen according to a probability distribution which
depends on the final state of the accessible memory |ψT

x 〉. Namely, the probability that the algorithm outputs
the bit b ∈ {0, 1} on input x is ‖Πb|ψT

x 〉‖2, for a fixed set of projectors {Πb} which are orthogonal and
complete, that is, sum to the identity. The ε-error quantum query complexity of a function f , denoted
Qε(f), is the minimum number of queries made by an algorithm which outputs f(x) with probability at
least 1− ε for every x.

5

3 Bounded-error quantum query complexity

We now show that ADV±(f) is a lower bound on the bounded-error quantum query complexity of f .
Proof of Theorem 2. Let f : S → {0, 1} where S ⊆ {0, 1}n be a Boolean function and let Γ be a
|S|-by-|S| Hermitian matrix such that Γ[x, y] = 0 if f(x) = f(y). Notice that this property means that Γ
corresponds to a weighted bipartite graph, and so the spectrum of Γ is symmetric about the origin. Thus the
spectral norm ‖Γ‖ is in fact an eigenvalue. Let δ be an eigenvector of Γ corresponding to the eigenvalue
‖Γ‖.

We imagine that we initially prepare the state |Ψ0〉 =
∑

x δx|x〉|0〉|0〉 and run the algorithm on this
superposition. Thus after t queries we have the state

|ψt〉 = UtOUt−1 . . . U1OU0

∑
x

δx|x〉|0〉|0〉 =
∑

x

δx|x〉|ψt
x〉,

where ψt
x is the state of the accesible memory of the algorithm on input x after t queries. We define ρ(t)

to be the reduced density matrix of the state |Ψt〉 on the input register, that is we trace out the accessible
memory. In other words, ρ(t) = Gram(δx|ψt

x〉 : x ∈ S).
We define a progress function W t based on ρ(t) as W t = 〈Γ, ρ(t)〉. Although phrased differently, this is

in fact the same progress function used by Høyer and Špalek [HŠ05] in their proof that the regular adversary
method is a lower bound on bounded-error quantum query complexity. Our proof rests on three claims:

1. At the beginning of the algorithm W 0 = ‖Γ‖.

2. At the end of the algorithm |W T | ≤ 2
√
ε(1− ε)‖Γ‖.

3. With any one query, the progress measure changes by at most |W t −W t+1| ≤ 2 maxi ‖Γ ◦Di‖.

The theorem clearly follows from these three claims. The main novelty of the proof lies in the second
step. This is where we depart from the standard adversary principle in using a stronger output condition
implied by a successful algorithm.

Item 1: As the state of the accessible memory |ψ0
u〉 is independent of the oracle, 〈ψ0

u|ψ0
v〉 = 1 for every

u, v, and so ρ(0) = δδ∗. Thus W 0 = 〈Γ, δδ∗〉 = Tr(δ∗Γ∗δ) = ‖Γ‖.

Item 2: Now consider the algorithm at the final time T . We want to upper bound |〈Γ, ρ(T)〉|. The first
thing to notice is that as Γ[x, y] = 0 when f(x) = f(y), we have Γ = Γ ◦ F , where F is a zero-one matrix
such that F [x, y] = 1 if f(x) 6= f(y) and F [x, y] = 0 otherwise.

As F is a real symmetric matrix, it is clear from the definition of the Hilbert-Schmidt inner product that
〈Γ ◦ F, ρ(T)〉 = 〈Γ, F ◦ ρ(T)〉. Now applying Theorem 4 we have 〈Γ, F ◦ ρ(T)〉 ≤ ‖Γ‖‖ρ(T) ◦ F‖tr. It
remains to upper bound ‖ρ(T) ◦ F‖tr, which we do using Theorem 5. By this theorem, it suffices to bound
‖X‖F ‖Y ‖F for some X,Y such that XY ∗ = ρ(T) ◦ F .

Let Π0,Π1 be a complete set of orthogonal projectors which determine the output probabilities, that
is, the probability that the algorithm outputs b on input x is ‖Πb|ψT

x 〉‖2. The correctness of the algorithm
tells us that ‖Πf(x)|ψT

x 〉‖2 ≥ 1 − ε and ‖Π1−f(x)|ψT
x 〉‖2 ≤ ε. We choose X to be the matrix with rows

Πf(x)δx|ψT
x 〉, and Y to be the matrix with rows Π1−f(x)δx|ψT

x 〉. That is, X is the matrix where we project

6

onto the correct answers, and Y is the matrix where we project onto the incorrect answers. Using the fact
that Π0Π1 = 0, a little computation shows that

(XY ∗ + Y X∗)[x, y] =

{
δxδy(〈ψT

x |Π0|ψT
y 〉+ 〈ψT

x |Π1|ψT
y 〉) if f(x) 6= f(y)

0 if f(x) = f(y).

Since Π0 + Π1 = I , we get XY ∗ + Y X∗ = ρ(T) ◦ F . Thus, using the triangle inequality and Theorem 5,

‖ρ(T) ◦ F‖tr ≤ ‖XY ∗‖tr + ‖Y X∗‖tr ≤ 2‖X‖F ‖Y ‖F .

Notice that
‖X‖2

F + ‖Y ‖2
F =

∑
x∈S

|δx|2(‖Π0|ψT
x 〉‖2 + ‖Π1|ψT

x 〉‖2) = 1

and
‖Y ‖2

F =
∑
x∈S

|δx|2‖Π1−f(x)|ψT
x 〉‖2 ≤ ε

∑
x∈S

|δx|2 = ε.

The maximum of ‖X‖2
F ‖Y ‖2

F under these constraints is ε(1− ε), thus W T ≤ 2‖Γ‖
√
ε(1− ε).

Item 3: We now bound how much the progress function can drop with any single query. To do this, we
first look at how a single query affects the inner product between two states |ψt

x〉 and |ψt
y〉. LetOx denote the

oracle operator when the input register has value x, that isOx|i〉|w〉 = (−1)xi |i〉|w〉. For each 0 ≤ i ≤ n let
Pi =

∑
z≥0 |i; z〉〈i; z| denote the projection onto the subpace querying the ith oracle bit. The t + 1st query

changes the inner product by at most the overlap between the projections onto the subspace that corresponds
to indices i where xi and yi differ.

〈ψt
x|ψt

y〉 − 〈ψt+1
x |ψt+1

y 〉 = 〈ψt
x|ψt

y〉 − 〈ψt
x|OxOy|ψt

y〉

= 〈ψt
x|(I −OxOy)|ψt

y〉 =
∑

i:xi 6=yi

2〈ψt
x|Pi|ψt

y〉.

As before, let ρ(t) = Gram(δx|ψt
x〉), and let ρ(t)

i = Gram(δxPi|ψt
x〉). Consider ρ(t)− ρ(t+1). Using the

above expression we see that ρ(t) − ρ(t+1) = 2
∑

i ρ
(t)
i ◦Di. Thus

W t −W t+1 = 〈Γ, ρ(t) − ρ(t+1)〉 = 2〈Γ,
∑

i

ρ
(t)
i ◦Di〉

= 2
∑

i

〈Γ, ρ(t)
i ◦Di〉 = 2

∑
i

〈Γ ◦Di, ρ
(t)
i 〉,

where the last step follows as Di is a real symmetric matrix and so can be shifted in the Hilbert-Schmidt
inner product. Now applying Theorem 4 gives

|W t −W t+1| ≤ 2
∑

i

‖Γ ◦Di‖‖ρ(t)
i ‖tr

≤ 2 max
i
‖Γ ◦Di‖

∑
i

‖ρ(t)
i ‖tr = 2max

i
‖Γ ◦Di‖.

To see the last equality notice that as each ρ(t)
i is positive semidefinite, ‖ρ(t)

i ‖tr = Tr(ρ(t)
i). As {Pi}0≤i≤n

form a complete orthonormal set of projectors,
∑n

i=1 ρ
(t)
i = ρ(t). Finally, Tr(ρ(t)) = 1 as ρ(t) is a density

matrix. 2

7

4 Formula size

Laplante, Lee, and Szegedy [LLS06] show that the adversary method can also be used to prove classical
lower bounds—they show that ADV(f)2 is a lower bound on the formula size of f . A formula is circuit
with AND, OR, and NOT gates with the restriction that every gate has out-degree exactly one. The size of
a formula is the number of leaves and the size of a smallest formua computing f is denoted L(f). We show
that ADV±(f)2 remains a lower bound on the formula size of f , denoted L(f).

Theorem 6 L(f) ≥ ADV±(f)2.

The proof is given in Appendix A. Note that this theorem does imply a limitation of ADV±(f)—it is
upper bounded by the square root of the formula size of f . Thus for the binary AND-OR tree—or read-once
formulae in general— the largest lower bounds provable by ADV± are

√
n. On the other hand, this theorem

can also be seen as giving further evidence to the conjecture of Laplante, Lee, and Szegedy that this is not
a limitation at all—they conjecture that bounded-error quantum query complexity squared is in general a
lower bound on formula size.

5 Composition theorem

One nice property of the adversary method is that it behaves very well with respect to function composition.
For a function f : {0, 1}n → {0, 1} we define the dth iteration of f , fd : {0, 1}nd → {0, 1} recursively as
f1 = f and fd = f ◦ (fd−1, . . . , fd−1) for d > 1. Ambainis [Amb03] shows that ADV(fd) ≥ ADV(f)d.
Thus by proving a good adversary bound on the base function f , one can easily obtain good lower bounds
on the iterates of f . In this way, Ambainis shows a super-linear gap between the bound given by the
polynomial degree of a function and the adversary method, thus separating polynomial degree and quantum
query complexity.

Laplante, Lee, and Szegedy [LLS06] show a matching upper bound for iterated functions, namely that
ADV(fd) ≤ ADV(f)d. Thus we conclude that the adversary method possesses the following composition
property.

Theorem 7 ([Amb03, LLS06]) For any function f : S → {0, 1}, with S ⊆ {0, 1}n and natural number
d > 0,

ADV(fd) = ADV(f)d.

We show that one direction of this theorem, the lower bound, also holds for the ADV± bound. This is
the direction which is useful for proving separations.

Theorem 8 ADV±(fd) ≥ ADV±(f)d.

The proof is given in Appendix B. We actually prove a more general version of this theorem which
gives a lower bound on the adversary bound of any two-level decision tree h = f ◦ (g1, . . . , gk) in terms of
the adversary bounds of the component functions f, gi. As with the proof that ADV± is a lower bound on
quantum query complexity, the presence of negative entries again causes new difficulties here and our proof
is substantially different from previous composition theorems. Also, the dual of the ADV± bound is more
complicated than that of the ADV bound, and we have not yet been able to show the upper bound in this
theorem.

8

6 Examples

In this section, we look at some examples to see how negative weights can help to achieve larger lower
bounds. We consider two examples in detail: a 4-bit function giving the largest known separation between
the polynomial degree and the quantum query complexity, and a 6-bit function breaking the certificate
complexity and property testing barriers.

To help find good adversary matrices, we implemented both adversary bounds as semidefinite programs
and used the convex optimization package SeDuMi for Matlab. Using these programs, we tested both ADV
and ADV± bounds for all 222 functions on 4 or fewer variables which are not equivalent under negation
of output and input variables and permutation of input variables (see sequence number A000370 in [Slo]).
The ADV± bound is strictly larger than the ADV bound for 128 of these functions. The source code of our
semidefinite programs and more examples can be downloaded from [HLŠ06].

6.1 Ambainis function

In order to separate quantum query complexity and polynomial degree, Ambainis defines a Boolean function
f : {0, 1}4 → {0, 1} which is one if and only if the four input bits are sorted1, that is they are either in
a non-increasing or non-decreasing order. This function has polynomial degree 2, and an adversary bound
of 2.5. Thus by the composition theorem for the standard adversary method, Ambainis obtains a separation
between quantum query complexity and polynomial degree ofQε(fd) = Ω(deg(fd)1.321). We have verified
that this function indeed gives the largest separation between adversary bounds and polynomial degree over
all functions on 4 or fewer variables.

In the next theorem, we construct an adversary matrix with negative weights which shows that
ADV±(f) ≥ 2.5135. Using the composition theorem Theorem 8 we obtain ADV±(f) ≥ ADV(f)1.005

and improve the separation between quantum query complexity and polynomial degree to Qε(fd) =
Ω(deg(fd)1.3296).

Theorem 9 Let f : {0, 1}4 → {0, 1} be Ambainis’ function. Then ADV±(f) ≥ 2.5135.

Proof. We first look at some basic properties of Ambainis’ function. It is a balanced function, with 8
inputs which map to zero and 8 inputs which map to one. Every input x ∈ {0, 1}4 has 2 sensitive bits
and 2 insensitive bits, where flipping both insensitive bits also changes the function value. The function is
invariant under complementation of inputs, thus the Hamming distance between any zero-input and one-
input is either 1, 2, or 3. We define an adversary matrix Γ where Γ[x, y] = 0 if f(x) = f(y) and otherwise:
Γ[x, y] = a if the Hamming distance between (x, y) is 1, Γ[x, y] = b if the Hamming distance is 2 and the
different bits are both sensitive or both not, Γ[x, y] = c if the Hamming distance is 2 and one different bit is
sensitive and the other is not, and Γ[x, y] = d if the Hamming distance is 3, for some constants a, b, c, d.

It can be shown that for every i = 1, . . . , 4, the matrix Γ ◦ Di consists of four 4-by-4 disjoint blocks,
and each of these blocks is some permutation of rows and columns of the following matrix B:

B =

c b d d
b c d a
d d c b
d a b c

 . (1)

1The function was first described in this way by Laplante, Lee, and Szegedy [LLS06]. The function defined by Ambainis
[Amb03] can be obtained from this function by exchanging the first and third input bits and negating the output.

9

The particular block B above is one of the four blocks of Γ ◦D1 with columns indexed by zero-inputs
0010, 0100, 0101, 0110, and rows indexed by one-inputs 1000, 1110, 1111, 1100. We choose this particular
order of rows instead of the lexicographical order, so that B is a symmetric matrix; its eigenvalues corre-
spond to singular values of a matrix with any different ordering. We maximize the spectral norm of Γ while
keeping ‖Γ ◦Di‖ ≤ 1. The optimal setting of the four variables can be found numerically by semidefinite
programming and is the following:

ADV ADV±

a 3/4 0.5788
b 1/2 0.7065
c 0 0.1834
d 0 −0.2120
λ 5/2 2.5135

(2)

The eigenvalues of Γ ◦Di are {1, 1, 1
4 ,

1
4}, and the eigenvalues of Γ± ◦Di are {1, 1,−1,−0.2664}. The

spectral norm of Γ is at least 2a + 2b + 2c + 2d, witnessed by the all one vector. Both spectral bounds are
tight due to the existence of matching dual solutions; we, however, omit them here. 2

6.2 Breaking the certificate complexity barrier

We now consider a function on six bits. We will consider this function in two guises. We first define a partial
function f to show that ADV± can break the property testing barrier. We then extend this partial function
to a total monotone function g which gives a larger separation between the ADV and ADV± bounds, and
also shows that ADV± can break the certificate complexity barrier.

We define the partial function f on six bits as follows:

• The zero inputs of f are: 111000, 011100, 001110, 100110, 110010, 101001, 100101, 010101,
010011, 001011.

• The one inputs of f are: 110100, 110001, 101100, 101010, 100011, 011010, 011001, 010110,
001101, 000111.

Notice that f is defined on all inputs with Hamming weight three, and only on these inputs. This function is
inspired by a function defined by Kushilevitz which appears in [NW95] and is also discussed by Ambainis
[Amb03]. Kushilevitz’s function has the same behavior as the above on inputs of Hamming weight three;
it is additionally defined to be 0 on inputs with Hamming weight 0, 4, or 5, and to be 1 on inputs with
Hamming weight 1, 2, or 6.

All zero inputs of f have Hamming distance at least 2 from any one input, thus the relative Hamming
distance between any zero and one input is ε = 1/3. In Theorem 10 we show that ADV±(f) ≥ 2+3

√
5/5 ≈

3.341. This implies ADV±(f) ≥ (1/ε(f))1.098, and as both bounds compose we obtain ADV±(fd) ≥
(1/ε(fd))1.098. This shows that the property testing barrier does not apply to ADV± as it does to ADV.
The relative Hamming distance ε(fd), however, goes to zero when d increases. We don’t know of an
asymptotic separation for constant ε.

We now consider a monotone extension of f to a total function, denoted g. It is additionally defined
to be 0 on inputs with Hamming weight 0, 1, or 2, and to be 1 on inputs with Hamming weight 4, 5, or 6.
Recall that the maxterms of a monotone Boolean function are the maximal, under subset ordering, inputs x
which evaluate to 0, and similarly the minterms are the minimal inputs which evaluate to 1. The zero inputs

10

of f become maxterms of g and the one inputs become minterms. Since f is defined on all inputs with
Hamming weight three, g is a total function. The extended function g is at least as hard as its sub-function
f , hence ADV±(g) ≥ ADV±(f). The 0-certificates of g are given by the location of 0’s in the maxterms
and the 1-certificates are given by the location of 1’s in the minterms, thus C0(g) = C1(g) = 3. Both
bounds compose thus C0(gd) = C1(gd) = 3d.

Applying the composition theorem Theorem 8 we obtain ADV±(gd) ≥ (C0(g)C1(g))0.549. As
ADV(h) ≤

√
C0(h)C1(h) for a total function h, we also conclude ADV±(gd) ≥ ADV(gd)1.098.

Theorem 10 ADV±(f) ≥ 2 + 3
√

5/5.

Proof. In the adversary matrix for f we only give nonzero weight to pairs (x, y) where one is a maxterm
and one is a minterm. Furthermore, for a maxterm-minterm pair (x, y), the corresponding entry of the
adversary matrix depends only on the Hamming distance between x and y. As all minterms and maxterms
have Hamming weight three, the Hamming distance between x and y is even and is either two, four, or six.
We label the matrix entries a, b, c respectively for Hamming distances two, four, six. The optimal settings
turn out to be a = (1 +

√
5)/5, b = (1−

√
5)/5, c = 1/5.

The function is very regular, thus for any maxterm x, there are six minterms at Hamming distance two,
three minterms at Hamming distance four, and one minterm at Hamming distance six. It follows that all
rows have the same sum, namely 6a + 3b + c. This implies that the all ones vector is an eigenvector—it
turns out the principal eigenvector—corresponding to the eigenvalue 2 + 3

√
5/5.

To complete the proof it remains to verify that ‖Γ ◦Di‖ ≤ 1 for every i. By inspection we see that all
Γ ◦Di matrices are equivalent up to permutation, which does not change the spectral norm, to the following
matrix B:

B =

c b b a a
b c a a b
b a c b a
a a b c b
a b a b c

 .

Calculation shows that the eigenvalues of B are {1, 1, 1,−1,−1}. 2

7 Conclusion

7.1 Open questions

Breaking the certificate complexity and property testing barriers opens the possibility that ADV± can prove
better lower bounds where we know ADV cannot. Salient examples are element distinctness, the collision
problem, and triangle finding. For element distinctness, the best bound provable by the standard adversary
method is O(

√
n) while the polynomial method is able to prove a tight lower bound of Ω(n2/3) [AS04]. For

the collision problem, the adversary method is only able to prove a constant lower bound while the polyno-
mial method again proves a tight lower bound of Ω(n1/3) [AS04]. Finally, for the problem of determining
if a graph contains a triangle, the best bound provable by the adversary method is O(n) and the best known
algorithm is O(n1.3) [MSS05]. We have seen that the square of ADV± is a lower bound on formula size.
Is this indeed a limitation, or, as conjectured by Laplante, Lee, and Szegedy, is the square of bounded-error
quantum query complexity in general a lower bound on formula size?

11

Acknowledgements

We would like to thank Aram Harrow and Umesh Vazirani for interesting discussions on the topics of this
paper, and Ronald de Wolf for many valuable comments on an earlier draft.

References

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness
problems. Journal of the ACM, 51(4):595–767, 2004.

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and System
Sciences, 64:750–767, 2002.

[Amb03] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science, pages 230–239. IEEE, 2003.

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method, with applications
to direct product theorems and time-space tradeoffs. In Proceedings of the 38th ACM Symposium
on the Theory of Computing, pages 618–633. ACM, 2006.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by poly-
nomials. Journal of the ACM, 48(4):778–797, 2001.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidefinite programming.
In Proceedings of the 18th IEEE Conference on Computational Complexity, pages 179–193,
2003.

[Bha97] R. Bhatia. Matrix Analysis. Springer-Verlag, 1997.

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288:21-43, 2002.

[Gro96] L. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
28th ACM Symposium on the Theory of Computing, pages 212–219. ACM, 1996.

[HLŠ05] P. Høyer, T. Lee, and R. Špalek. Tight adversary bounds for composite functions. quant-
ph/0509067, 2005.

[HLŠ06] P. Høyer, T. Lee, and R. Špalek. Source codes of semidefinite programs for ADV(±). http:
//www.ucw.cz/∼robert/papers/adv/

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. Bulletin of the European
Association for Theoretical Computer Science, 87:78–103, 2005.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[KW88] M. Karchmer and A. Wigderson. Monotone connectivity circuits require super-logarithmic
depth. In Proceedings of the 20th ACM Symposium on the Theory of Computing, pages 539–550,
1988.

12

http://www.ucw.cz/~robert/papers/adv/
http://www.ucw.cz/~robert/papers/adv/

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical formula size
lower bounds. Computational Complexity, 15:163–196, 2006.

[LM04] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query complexity
using Kolmogorov arguments. In Proceedings of the 19th IEEE Conference on Computational
Complexity, pages 294–304. IEEE, 2004.

[MSS05] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. In Proc.
of 16th ACM-SIAM SODA, pages 1109–1117, 2005.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[NW95] N. Nisan and A. Wigderson. A note on rank vs. communication complexity. Combinatorica,
15(4):557–566, 1995.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM Journal on Computing, 26:1484–1509, 1997.

[Slo] N. Sloane. On-line encyclopedia of integer sequences. http://www.research.att.
com/∼njas/sequences/

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory of Comput-
ing, 2(1):1–18, 2006.

[Zha05] S. Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science, 339(2–
3):241–256, 2005.

A Formula size

In this section we give the proof of Theorem 6. We will work in the setting of Karchmer and Wigderson, who
characterize formula size in terms of a communication complexity game [KW88]. Since this seminal work,
nearly all formula size lower bounds have been formulated in the language of communication complexity.

Let f : {0, 1}n → {0, 1} be a Boolean function. Following Karchmer and Wigderson, we associate
with f a relation Rf ⊆ {0, 1}n × {0, 1}n × [n] where

Rf = {(x, y, z) : f(x) = 0, f(y) = 1, xz 6= yz}.

For a relation R, let CP (R) denote the number of leaves in a smallest communication protocol for R, and
let L(f) be the number of leaves in a smallest formula for f . Karchmer and Wigderson show the following:

Theorem 11 L(f) = CP (R).

We say that a set S ⊆ X × Y is monochromatic with respect to R if there exists z ∈ Z such that
(x, y, z) ∈ R for all (x, y) ∈ S. It is well known, see for example [KN97], that a successful communication
protocol for a relation R ⊆ X × Y × Z partitions X × Y into disjoint combinatorial rectangles which
are monochromatic with respect to R. Let CD(R) be the size of a smallest decomposition of X × Y into
disjoint rectangles monochromatic with respect to R. Clearly, CD(R) ≤ CP (R). We are actualy able to
show the stronger statement that the square of ADV±(f) is a lower bound on the size of a smallest rectangle
decomposition of Rf .

13

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

Theorem 12 L(f) ≥ CD(Rf) ≥ (ADV±(f))2.

Proof. Laplante, Lee, and Szegedy [LLS06] show that two conditions are sufficient for a measure to lower
bound formula size. The first is rectangle subadditivity—they show that the spectral norm squared is subad-
ditive over rectangles, and this result holds for an arbitrary, possibly negative, matrix.

Lemma 13 (Laplante, Lee, Szegedy) LetA be an arbitrary |X|-by-|Y |matrix andR a rectangle partition
of |X| × |Y |. Then ‖A‖2 ≤

∑
R∈R ‖AR‖2.

The second property is monotonicity, and here we need to modify their argument to handle negative
entries. They use the property that if A,B are nonnegative matrices, and if A ≤ B entrywise, then ‖A‖ ≤
‖B‖. In our application, however, we actually know more: if R is a rectangle monochromatic with respect
to a color i, then AR is a submatrix of Ai. And, for arbitrary matrices A,B, if A is a submatrix of B then
‖A‖ ≤ ‖B‖.

This allows us to complete the proof: let R be a monochromatic partition of Rf with |R| = CD(Rf).
Then for any matrix A

‖A‖2 ≤
∑
R∈R

‖AR‖2 ≤ CD(Rf) ·max
R

‖AR‖2

≤ CD(Rf) ·max
i
‖Ai‖2.

And so we conclude

L(f) ≥ CD(Rf) ≥ max
A6=0

‖A‖2

maxi ‖Ai‖2
.

2

B Composition theorem

In this section, we prove Theorem 8. We will actually show a more general result which applies to functions
that can be written in the form

h = f ◦ (g1, . . . , gk). (3)

One may think of h as a two-level decision tree with the top node being labeled by a function f :
{0, 1}k → {0, 1}, and each of the k internal nodes at the bottom level being labeled by a function gi :
{0, 1}ni → {0, 1}. We do not require that the inputs to the inner functions gi have the same length. An input
x ∈ {0, 1}n to h is a bit string of length n =

∑
i ni, which we think of as being comprised of k parts,

x = (x1, x2, . . . , xk), where xi ∈ {0, 1}ni . We may evaluate h on input x by first computing the k bits
x̃i = gi(xi), and then evaluating f on input x̃ = (x̃1, x̃2, . . . , x̃k).

Adversary bound with costs On the way to proving our composition theorem we consider as an interme-
diate step a generalization of the adversary method allowing input bits to be given an arbitrary positive cost.
For any function f : {0, 1}n → {0, 1}, and any vector α ∈ Rn

+ of length n of positive reals, we define a
quantity ADVα(f) as follows:

ADVα(f) = max
Γ≥0
Γ6=0

min
i

{
αi

‖Γ‖
‖Γ ◦Di‖

}
.

14

We define the analogous quantity ADV±
α (f) by enlarging the maximization over all nonzero adversary

matrices. We will use the notation ADV(±) to simultaneously refer to both ADV and ADV±. One may
think of αi as expressing the cost of querying the ith input bit xi. For example, xi could be equal to the parity
of αi new input bits, or, alternatively, each query to xi could reveal only a fraction of 1/αi bits of information
about xi. When α = (a, . . . , a) and all costs are equal to a, the new adversary bound ADV(±)

α (f) reduces to
a·ADV(±)(f), the product of a and the adversary bound ADV(±)(f). In particular, when all costs a = 1 we
have Qε(f) = Ω(ADV(±)

~1
(f)). When α is not the all-one vector, then ADV(±)

α (f) will not necessarily be a
lower bound on the quantum query complexity of f , but this quantity can still be very useful in computing
the adversary bound of composed functions.

We are able to give a lower bound on ADV(±)(h) in terms of the adversary bounds
ADV(±)(f),ADV(±)(gi).

Theorem 14 For any function h : S → {0, 1} of the form h = f ◦ (g1, . . . , gk) with domain S ⊆ {0, 1}n,
and any cost function α ∈ Rn

+,
ADV(±)

α (h) ≥ ADV(±)
β (f),

where βi = ADV(±)

αi (gi), α = (α1, α2, . . . , αk), and β = (β1, . . . , βk).

We remark that for the ADV bound one can in fact show that this holds with equality [HLŠ05]. The
usefulness of such a theorem is that it allows one to divide and conquer—it reduces the computation of the
adversary bound for h into the disjoint subproblems of first computing the adversary bound for each gi, and
then, having determined βi = ADV(±)(gi), computing ADV(±)

β (f), the adversary bound for f with costs
β.

B.1 Composition Lemma

We now turn to the proof of the composition theorem. Given an adversary matrix Γf realizing the adversary
bound for f and adversary matrices Γgi realizing the adversary bound for gi where i = 1, . . . , k, we build
an adversary matrix Γh for the function h = f ◦ (g1, . . . , gk). Lemma 15 expresses the spectral norm of this
Γh in terms of the spectral norms of Γf and Γgi .

Let Γf be an adversary matrix for f , i.e. a Hermitian matrix satisfying Γf [x, y] = 0 if f(x) = f(y), and
let δf be a prinicipal eigenvector of Γf with unit norm. Similarly, let Γgi be a spectral matrix for gi and let
δgi be a principal eigenvector of unit norm, for every i = 1, . . . , k.

It is helpful to visualize an adversary matrix in the following way. Let Xf = f−1(0) and Yf = f−1(1).
We order the rows first by elements from Xf and then by elements of Yf . In this way, the matrix has the
following form:

Γf =
[

0 Γf
(0,1)

Γf
(1,0) 0

]
where Γf

(0,1) is the submatrix of Γf with rows labeled from Xf and columns labeled from Yf and Γf
(1,0) is

the conjugate transpose of Γf
(0,1).

Thus one can see that an adversary matrix for a Boolean function corresponds to a (weighted) bipartite
graph where the two color classes are the domains where the function takes the values 0 and 1. For b ∈ {0, 1}
let δ�b

gi [x] = δgi [x] if gi(x) = b and δ�b
gi [x] = 0 otherwise. In other words, δ�b

gi is the vector δgi restricted to
the color class b.

Before we define our composition matrix, we need one more piece of notation. Let Γf
(0,0) = ‖Γf‖I|Xf |,

where I is a |Xf |-by-|Xf | identity matrix and similarly Γf
(1,1) = ‖Γf‖I|Yf |.

15

We are now ready to define the matrix Γh:

Definition 3 Γh[x, y] = Γf [x̃, ỹ] ·
(⊗

i Γ
(x̃i,ỹi)
gi

)
[x, y]

Lemma 15 Let Γh be as in Definition 3. Then ‖Γh‖ = ‖Γf‖ ·
∏k

i=1 ‖Γgi‖ and a principal eigenvector of Γh

is δh[x] = δf [x̃] ·
∏k

i=1 δgi [x
i].

Proof. The more difficult direction is to show ‖Γh‖ ≤ ‖Γf‖ ·
∏k

i=1 ‖Γgi‖, and we do this first. The outline
of this direction is as follows:

1. We first define 2k+n many vectors δα,c ∈ C2n
.

2. We show that each δα,c is an eigenvector of Γh.

3. We show that {δα,c}α,c span a space of dimension 2n. This implies that every eigenvalue of Γh is an
eigenvalue associated to at least one of the δα,c as eigenvectors corresponding to different eigenvalues
of a Hermitian matrix are orthogonal.

4. We upper bound the absolute value of the eigenvalues corresponding to the δα,c by ‖Γf‖ ·
∏k

i=1 ‖Γgi‖.

Let c = (c1, . . . , ck) where ci ∈ [2ni] for i = 1, . . . , k. Let δci be an eigenvector of unit norm corre-
sponding to the cith largest eigenvalue of Γgi—that is Γgiδci = λci(Γgi)δci .

It is helpful to look at the matrix Γh as composed of blocks labeled by a, b ∈ {0, 1}k where the (a, b)
block of the matrix consists of all x, y pairs with x̃ = a and ỹ = b. Notice that the (a, b) block of Γh is the
matrix Γf [a, b] · ⊗Γ(ai,bi)

gi .
Let λ0

ci
(A) = ‖A‖ and λ1

ci
(A) = λci(A). We claim that Γ(ai,bi)

gi δ�bi
ci = λai⊕bi

ci
(Γgi)δ

�ai
ci . This is because

if ai 6= bi then Γ(ai,bi)
gi is one half of the bipartite matrix Γgi and so Γ(ai,bi)

gi δ�bi
ci = λci(Γgi)δ

�ai
ci . On the other

hand, if ai = bi then Γ(ai,bi)
gi = ‖Γgi‖I and so Γ(ai,bi)

gi δ�bi
ci = ‖Γgi‖δ

�bi
ci = ‖Γgi‖δ

�ai
ci .

Thus for the tensor product matrix ⊗Γ(ai,bi)
gi we have that

⊗Γ(ai,bi)
gi

⊗ δ�bi
ci

=
k∏

i=1

λai⊕bi
ci

(Γgi) · ⊗δ�ai
ci
.

Expanding this equation gives that for every x such that x̃ = a

∑
y:ỹ=b

⊗Γ(ai,bi)
gi

[x, y] · (⊗δci)[y] =
k∏

i=1

λai⊕bi
ci

(Γgi) · (⊗δci)[x]. (4)

Now consider a 2k-by-2k matrix Ac where

Ac[a, b] = Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi).

Let α be a unit norm eigenvector of this matrix, say with eigenvalue µα,c. Explicitly writing out the eigen-
value equation means that for every a,

∑
b

Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi) · α[b] = µα,c α[a]. (5)

16

Item 1: We are ready to define our proposed eigenvectors of Γh. For any c = (c1, . . . , ck) and α an
eigenvector of Ac let

δα,c[x] = α[x̃] ·
k∏

i=1

δci [x
i] = α[x̃] · (⊗δci)[x].

Item 2: We claim that δα,c is an eigenvector of Γh with eigenvalue µα,c. This can be verified as follows:
for any x, ∑

y

Γh[x, y]δα,c[y] =
∑

y

Γf [x̃, ỹ]α[ỹ] · (⊗Γ(x̃i,ỹi)
gi

)[x, y] · (⊗δci)[y]

=
∑

b

Γf [x̃, b]α[b] ·
∑

y:ỹ=b

(⊗Γ(x̃i,ỹi)
gi

)[x, y] · (⊗δci)[y]

Applying Equation (4) gives

∑
y

Γh[x, y]δα,c[y] =
∑

b

Γf [x̃, b]α[b] ·
k∏

i=1

λx̃i⊕bi
ci

(Γgi) · (⊗δci)[x]

= (⊗δci)[x] ·
∑

b

Γf [x̃, b] ·
k∏

i=1

λx̃i⊕bi
ci

(Γgi)α[b].

And now applying Equation (5) gives∑
y

Γh[x, y]δα,c[y] = µα,cα[x̃] · (⊗δci)[x] = µα,c δα,c[x].

Thus δα,c is an eigenvector of Γh with eigenvalue µα,c. This completes the second step of the proof.

Item 3: We now claim that the vectors {δα,c}α,c span C2n
. For a fixed c, the set of eigenvectors {α`}2k

`=1 of
Ac forms an orthogonal basis for the space of vectors of dimension 2k, hence there is a linear combination
γ of α`’s such that

∑
` γ`α` = (1, 1, . . . , 1). Then

∑
` γ`δα`,c = ⊗δci . Now, since {δci}2ni

ci=1 form an
orthogonal basis for every i, linear combinations of δα,c span the whole space of dimension 2

P
i ni , which

is the dimension of Γh. Hence every eigenvector of Γh can be expressed in this form. This completes step
three of the proof.

Item 4: It now remains to show that µα,c ≤ ‖Γf‖ ·
∏

i ‖Γgi‖ for every α, c. To do this, fix c and consider
the matrix Ac.

µα,c = α∗Acα =
∑
a,b

Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi) · α[a]α[b]. (6)

Notice that −‖Γgi‖ ≤ λci(Γgi) ≤ ‖Γgi‖. Our first claim is that we can replace λci(Γgi) by either ‖Γgi‖
or −‖Γgi‖ in such a way that the sum in (6) does not decrease. To see this, we can first factor out λc1(Γg1)
of the above sum and look at the term it multiplies. If this term is positive, then setting λc1(Γg1) to ‖Γg1‖

17

will not decrease the sum; on the other hand, if the term it multiplies is negative, then replacing λc1(Γg1) by
−‖Γg1‖ will not decrease the sum. We continue this process in turn with i = 2, . . . , k.

Let di = 1 if in this process we replaced λci(Γgi) by −‖Γgi‖ and di = 0 if λci(Γgi) was replaced by
‖Γgi‖. Note that if ai = bi, then no replacement was made and the coefficient remains ‖Γgi‖. We thus now
have

µα,c ≤
∑
a,b

Γf [a, b]α[a]α[b] ·
k∏

i=1

(−1)di(ai+bi)‖Γgi‖, (7)

A key fact here is that the sign of ‖Γgi‖ will be the same everywhere ai 6= bi—the signs of entries cannot be
flipped at will.

We now mimic the pattern of signs in Equation (7) by defining a new unit vector α′. Let α′[a] =
α[a]

∏
i(−1)di·ai . Then

µα,c ≤
∑
a,b

Γf [a, b]α[a]α[b] ·
k∏

i=1

(−1)di(ai+bi)‖Γgi‖

=
k∏

i=1

‖Γgi‖
∑
a,b

Γf [a, b]α′[a]α′[b]

≤ ‖Γf‖ ·
∏

‖Γgi‖,

which we wished to show.

Other direction: We now show that ‖Γh‖ ≥ ‖Γf‖·
∏k

i=1 ‖Γgi‖. Let δf be a principal eigenvector of Γf and
δgi a principal eigenvector for Γgi for i = 1, . . . , k. We have already argued that δh = δf [x̃] ·

∏k
i=1 δgi [x

i] is
an eigenvector of Γh whose eigenvalue is the eigenvalue of the matrix A~1 where

A~1[a, b] = Γf [a, b] ·
k∏

i=1

‖Γgi‖.

Factoring out
∏k

i=1 ‖Γgi‖ from A~1 we are simply left with the matrix Γf , thus the largest eigenvalue of A~1

is ‖Γf‖ ·
∏k

i=1 ‖Γgi‖. 2

B.2 Composition lower bound

With Lemma 15 in hand, it is a relatively easy matter to show a lower bound on the adversary value of the
composed function h.

Lemma 16 ADV(±)
α (h) ≥ ADV(±)

β (f), where βi = ADV(±)

αi (gi),

Proof. Due to the maximization over all matrices Γ, the spectral bound of the composite function h is at least
ADV(±)

α (h) ≥ minn
`=1(α`‖Γh‖/‖Γh ◦D`‖), where Γh is defined as in Lemma 15. We compute ‖Γh ◦D`‖

for ` = 1, . . . , n. Let the `th input bit be the qth bit in the pth block. Recall that

Γh[x, y] = Γf [x̃, ỹ] ·
k∏

i=1

Γ(x̃i,ỹi)
gi

[xi, yi].

We prove that

18

(Γh ◦D`)[x, y] = (Γf ◦Dp)[x̃, ỹ] · (Γgp ◦Dq)(x̃p,ỹp)[xp, yp] ·
∏
i6=p

Γ(x̃i,ỹi)
gi

[xi, yi].

If x` 6= y` and x̃p 6= ỹp then both sides are equal because all multiplications by Dp, Dq, D` are multi-
plications by 1. If this is not the case—that is, if x` = y` or x̃p = ỹp—then both sides are zero. We see this
by means of two cases:

1. x` = y`: In this case the left hand side is zero due to (Γh ◦D`)[x, y] = 0. The right hand side is also
zero because

(a) if x̃p = ỹp then the right hand side is zero as (Γf ◦Dp)[x̃, ỹ] = 0.

(b) else if x̃p 6= ỹp then the right hand side is zero as (Γgp ◦Dq)[xp, yp] = 0.

2. x` 6= y`, x̃p = ỹp: The left side is zero because Γ(x̃p,ỹp)
gp [xp, yp] = ‖Γgp‖I[xp, yp] = 0 since xp 6= yp.

The right side is also zero due to (Γf ◦Dp)[x̃, ỹ] = 0.

Since Γh ◦ D` has the same structure as Γh, by Lemma 15, ‖Γh ◦D`‖ = ‖Γf ◦Dp‖ · ‖Γgp ◦Dq‖ ·∏
i6=p ‖Γgi‖. By dividing the two spectral norms,

‖Γh‖
‖Γh ◦D`‖

=
‖Γf‖

‖Γf ◦Dp‖
·

‖Γgp‖
‖Γgp ◦Dq‖

. (8)

Since the spectral adversary maximizes over all adversary matrices, we conclude that

ADV(±)
α (h) ≥

n
min
`=1

‖Γh‖
‖Γh ◦D`‖

· α`

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

·
ni

min
j=1

‖Γgi‖
‖Γgi ◦Dj‖

· αi
j

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

·ADV(±)

αi (gi)

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

· βi

= ADV(±)
β (f),

which we had to prove. 2

19

	Introduction
	Comparison with previous methods

	Preliminaries
	Linear algebra
	Quantum query complexity

	Bounded-error quantum query complexity
	Formula size
	Composition theorem
	Examples
	Ambainis function
	Breaking the certificate complexity barrier

	Conclusion
	Open questions

	Formula size
	Composition theorem
	Composition Lemma
	Composition lower bound

