Disjointness is hard in the multi-party number-on-the-forehead model

Troy Lee Rutgers University

Adi Shraibman Weizmann Institute of Science

• Alice holds set S_1 , Bob S_2 . Do they share a common element?

- Alice holds set S_1 , Bob S_2 . Do they share a common element?
- Deterministic communication complexity \boldsymbol{n} bits

- Alice holds set S_1 , Bob S_2 . Do they share a common element?
- Deterministic communication complexity \boldsymbol{n} bits
- Randomized complexity $\Theta(n)$ [KS87, Raz92]

- Alice holds set S_1 , Bob S_2 . Do they share a common element?
- Deterministic communication complexity n bits
- Randomized complexity $\Theta(n)$ [KS87, Raz92]
- Quantum complexity $\Theta(\sqrt{n})$ [lower Raz03, upper AA03]

Number-on-the-forehead model

- k-players, input x_1, \ldots, x_k . Player i knows everything but x_i .
- Large overlap in information makes showing lower bounds difficult. Only available method is discrepancy method.
- Lower bounds have application to powerful models such as depth three circuits, complexity of proof systems.
- Best lower bounds are of the form $n/2^k$. Bound of $n/2^{2k}$ for generalized inner product function [BNS89].

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega(\frac{\log n}{k-1})$, and best upper bound is $O(kn/2^k)$ [lower BPSW06, upper Gro94].
- All existing lower bounds in number-on-the-forehead model use discrepancy method. For disjointness, discrepancy can only show bounds of O(log n).
- Researchers have studied restricted models—bound of $n^{1/3}$ for three players where first player speaks and dies [BPSW06]. Bound of $n^{1/k}/k^k$ in one-way model [VW07].

Our results

• We show disjointness requires randomized communication

$$\Omega\left(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}}\right)$$

in the general k-party number-on-the-forehead model.

Our results

• We show disjointness requires randomized communication

$$\Omega\left(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}}\right)$$

in the general k-party number-on-the-forehead model.

• Chattopadhyay and Ada independently obtained similar results

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.
- Beame, Pitassi, and Segerlind show that lower bounds on disjointness imply lower bounds for a very general class of proof systems [BPS06].

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.
- Beame, Pitassi, and Segerlind show that lower bounds on disjointness imply lower bounds for a very general class of proof systems [BPS06].
- Semantically entailed proof systems: terms are degree d polynomial inequalities. Derivation rule is Boolean soundness.

Example:
$$(a \lor b) \land (\neg a \lor \neg b) \land (\neg a \lor b) \land (a \lor \neg b)$$

- Via [BPS06] and our results on disjointness, we obtain super-polynomial lower bounds on the size of *tree-like* degree d semantically entailed proofs needed to refute certain CNFs for any $d = \log \log n O(\log \log \log n)$.
- Examples: cutting planes, Lovász-Schrijver systems (d = 2), degree d positivstellensatz.
- Exponential bounds were already known for cutting planes and Lovász-Schrijver systems, but relied heavily on the particular geometry of these proof systems. Even for d = 2 no such bounds were known in general.

Review of two-party complexity

- Alice and Bob wish to compute a distributed function $f : X \times Y \rightarrow \{-1, +1\}$. Consider a |X|-by-|Y| matrix where M[x, y] = f(x, y).
- A successful protocol partitions M into monchromatic rectangles. This leads to the famous log rank bound.
- $\bullet\,$ More explicitly, the protocol gives us a way to decompose M as

$$M = \sum_{i} \epsilon_i C_i$$

where $\epsilon_i \in \{-1, 1\}$ and C_i characteristic function of a combinatorial rectangle.

Example: Parity of two bits

Example: Parity of two bits

A relaxation

• Define a quantity

$$\mu(M) = \min\left\{\sum_{i} |\alpha_i| : M = \sum_{i} \alpha_i C_i\right\}$$

where each C_i is a combinatorial rectangle.

• Then we have
$$D(M) \ge \log \mu(M)$$
.

• The log rank bound is a relaxation in a different direction—each C_i can be an arbitrary rank one matrix, but we count their number rather than their "weight"

Number-on-the-forehead model

- Instead of a communication matrix, we now have a communication tensor $M[x_1, \ldots, x_k] = f(x_1, \ldots, x_k).$
- Instead of combinatorial rectangles we now have cylinder intersections.
- Message of player i does not depend on x_i . Behavior can be described as a function ϕ for which

$$\phi(x_1,\ldots,x_i,\ldots,x_k)=\phi(x_1,\ldots,x'_i,\ldots,x_k).$$

• We call such a function a cylinder function.

Number-on-the-forehead model

• A cylinder intersection is the intersection of sets which are cylinders. Characteristic function can be written as

$$\phi^1(x_1,\ldots,x_k)\cdots\phi^k(x_1,\ldots,x_k)$$

where each ϕ^i is a 0/1 valued function which is a cylinder in the i^{th} dimension.

• As a two-player protocol decomposes communication matrix into monochromatic rectangles, number-on-the-forehead decomposes communication tensor into monochromatic cylinder intersections.

Our lower bound technique

• Analogous to the two-player case, for a k-tensor M we define

$$\mu(M) = \min\left\{\sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}C_{i}\right\}$$

where each C_i is characteristic function of a cylinder intersection.

•
$$D_k(M) \ge \log \mu(M)$$

Our lower bound technique

• Analogous to the two-player case, for a k-tensor M we define

$$\mu(M) = \min\left\{\sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}C_{i}\right\}$$

where each C_i is characteristic function of a cylinder intersection.

- $D_k(M) \ge \log \mu(M)$
- Now we have a lower bound technique, but how do we use it?

Dual norm

- In order to show lower bounds on μ it is helpful to look at its dual norm
- By definition, $\mu^*(Q) = \max_{B:\mu(B) \leq 1} |\langle Q, B \rangle|$
- So we see

$$\mu^*(Q) = \max_C |\langle Q, C \rangle|$$

where C is the characteristic function of a cylinder intersection.

Dual formulation

• By theory of duality we then get

$$\mu(M) = \max_{Q} \frac{\langle M, Q \rangle}{\mu^*(Q)}$$

• This form is more convenient for showing lower bounds— it suffices to exhibit a tensor Q that has non-negligible correlation with M and such that $\mu^*(Q)$ is small.

Randomized Models

• The method can be easily modified for randomized models. Instead of M, the important thing is then tensors which are *close* to M.

• Define
$$\mu^{\alpha}(M) = \min'_M \{\mu(M') : 1 \le M \circ M' \le \alpha\}.$$

- Motivates the definition $\mu^{\infty}(M) = \min_{M'} \{ \mu(M') : 1 \le M \circ M' \}$
- $R_{\epsilon}(M) \ge \log \mu^{\alpha_{\epsilon}}(M) \log \alpha_{\epsilon}$, where $\alpha_{\epsilon} = 1/(1 2\epsilon)$.

Dual formulation, approximate versions

The approximate versions of μ also have attractive dual formulations:

$$\mu^{\alpha}(M) = \max_{Q} \frac{(1+\alpha)\langle M, Q \rangle + (1-\alpha) \|Q\|_{1}}{2\mu^{*}(Q)}$$

Dual formulation, approximate versions

The approximate versions of μ also have attractive dual formulations:

$$\mu^{\alpha}(M) = \max_{Q} \frac{(1+\alpha)\langle M, Q \rangle + (1-\alpha) \|Q\|_{1}}{2\mu^{*}(Q)}$$
$$\mu^{\infty}(M) = \max_{Q: M \circ Q \ge 0} \frac{\langle M, Q \rangle}{\mu^{*}(Q)}$$

For a sign tensor ${\cal M}$ discrepancy is defined as

$$\operatorname{disc}_{P}(M) = \max_{C} \langle M \circ P, C \rangle$$
$$= \mu^{*}(M \circ P).$$

For a sign tensor ${\cal M}$ discrepancy is defined as

$$\operatorname{disc}_{P}(M) = \max_{C} \langle M \circ P, C \rangle$$
$$= \mu^{*}(M \circ P).$$

Thus

$$\frac{1}{{\rm disc}(M)} = \max_{\substack{P \geq 0 \\ \|P\||_1 = 1}} \frac{1}{\mu^*(M \circ P)}$$

For a sign tensor ${\cal M}$ discrepancy is defined as

$$\operatorname{disc}_{P}(M) = \max_{C} \langle M \circ P, C \rangle$$
$$= \mu^{*}(M \circ P).$$

Thus

$$\frac{1}{\operatorname{disc}(M)} = \max_{\substack{P \ge 0 \\ \|P\||_1 = 1}} \frac{1}{\mu^*(M \circ P)} = \max_{\substack{P \ge 0}} \frac{\langle M, M \circ P \rangle}{\mu^*(M \circ P)}$$

For a sign tensor ${\cal M}$ discrepancy is defined as

$$\operatorname{disc}_{P}(M) = \max_{C} \langle M \circ P, C \rangle$$
$$= \mu^{*}(M \circ P).$$

Thus

$$\frac{1}{\operatorname{disc}(M)} = \max_{\substack{P \ge 0 \\ \|P\||_1 = 1}} \frac{1}{\mu^*(M \circ P)} = \max_{\substack{P \ge 0 \\ P \ge 0}} \frac{\langle M, M \circ P \rangle}{\mu^*(M \circ P)}$$
$$= \max_{\substack{Q:M \circ Q \ge 0 \\ Q \ge 0}} \frac{\langle M, Q \rangle}{\mu^*(Q)}$$

• Tasks: choose Q. Show $\langle M, Q \rangle$ is non-negligible. Upper bound $\mu^*(Q)$.

- Tasks: choose Q. Show $\langle M, Q \rangle$ is non-negligible. Upper bound $\mu^*(Q)$.
- We will follow the elegant "pattern matrix" framework of Sherstov [She07a,She07b].

- Tasks: choose Q. Show $\langle M, Q \rangle$ is non-negligible. Upper bound $\mu^*(Q)$.
- We will follow the elegant "pattern matrix" framework of Sherstov [She07a,She07b].
- If M is "derived" from a function f in a structured way, we can relate $\mu^{\alpha}(M)$ to the approximate degree of f.

- Tasks: choose Q. Show $\langle M, Q \rangle$ is non-negligible. Upper bound $\mu^*(Q)$.
- We will follow the elegant "pattern matrix" framework of Sherstov [She07a,She07b].
- If M is "derived" from a function f in a structured way, we can relate $\mu^{\alpha}(M)$ to the approximate degree of f.
- Namely, we can use a "witness" q to the high degree of f to construct Q with the right properties.

Pattern Tensors

Chattopadhyay extends Sherstov's pattern matrices to the multiparty case [Cha07]. We adapt this definition to accommodate disjointness.

- For simplicity, k = 3. Let $M \ge m$ and $f : \{0, 1\}^m \to \{-1, 1\}$
- First player holds x: vector of m many M-by-M matrices
- Second, third players hold $S_1, S_2 \subset [M]^m$ which will index bits of x
- Define $F(x, S_1, S_2) = f(x_1[S_1[1], S_2[1]], \dots, x_m[S_1[m], S_2[m]])$

Pattern Tensors

- Every m bit string appears an equal number of times as argument to f.
- When f is the OR function, we can embed F into the disjointness function.

Pattern Tensors

- Every m bit string appears an equal number of times as argument to f.
- When f is the OR function, we can embed F into the disjointness function.
- Think of inputs x, y, z to disjointness as being vectors of m many M-by-M matrices
- x stays the same. Define $y_i[r,c] = 1$ iff $S_1[i] = r$. Similarly, $z_i[r,c] = 1$ iff $S_2[i] = c$.

Picture of the embedding

Building Q from degree witness

- We define approximate degree in a "sign" way
- $\deg_{\alpha}(f) = \min_{g} \{ \deg(g) : 1 \le g(x)f(x) \le \alpha \}$
- In this way, we can uniformly handle both the bounded-error case and the sign or voting polynomial degree which corresponds to $\deg_{\infty}(f)$.

Dual polynomial

- For a fixed degree d, finding the "best fit" degree d polynomial g can be written as a linear program.
- If f has no degree- $d \alpha$ -approximation, the dual of this program will be feasible, and its solution q will give us a witness to the hardness of f.
- We will use this witness vector q to construct our tensor Q to witness that μ^{α} is large.

Dual polynomial

More precisely, if $\deg_{\alpha}(f)=d$ then there exists a polynomial q such that

- $||q||_1 = 1$
- $\langle f, q \rangle \ge \frac{\alpha 1}{\alpha + 1}$
- q is orthogonal to all polynomials of degree < d.

Dual polynomial

More precisely, if $\deg_{\alpha}(f)=d$ then there exists a polynomial q such that

- $||q||_1 = 1$
- $\langle f, q \rangle \ge \frac{\alpha 1}{\alpha + 1}$
- q is orthogonal to all polynomials of degree < d.

We let Q be the pattern tensor formed from q. Item 2 bounds $\langle M, Q \rangle$. Item 3 is used to upper bound $\mu^*(Q)$.

Main theorem

Let $\alpha < \alpha_0$.

$$\log \mu^{\alpha}(F_{m,M}) \ge \frac{\deg_{\alpha_0}(f)}{2^{k-1}}$$

Main theorem

Let
$$\alpha < \alpha_0$$
.

$$\log \mu^{\alpha}(F_{m,M}) \ge \frac{\deg_{\alpha_0}(f)}{2^{k-1}}$$
provided $M \ge e(k-1)2^{2^{k-1}}m^2$.

Main theorem

Let
$$\alpha < \alpha_0$$
.

$$\log \mu^{\alpha}(F_{m,M}) \geq \frac{\deg_{\alpha_0}(f)}{2^{k-1}}$$
 provided $M \geq e(k-1)2^{2^{k-1}}m^2$.

We can embed the pattern tensor of OR into disjointness to obtain

$$R_{1/4}(\text{DISJ}_n) = \Omega\left(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}}\right)$$

Where we lose

- $n^{1/2k}$ comes from the reduction. Curse of dimensionality.
- Factor of 2^{2^k} comes in upper bounding $\mu^*(Q)$

More recently. . .

- We can develop an analogous norm γ for the quantum case.
- It turns out that all techniques to upper bound μ^* also work for γ^*
- We can port essentially all known results to quantum case. In particular, we can show bounds of size $n/2^k$ for explicit functions, $n/2^{2k}$ for generalized inner product.