Disjointness is hard in the multi-party number-on-the-forehead model

Troy Lee
Rutgers University
Adi Shraibman
Weizmann Institute of Science

A brief history of disjointness

- Alice holds set $S_{1} \subseteq[n]$, Bob $S_{2} \subseteq[n]$. Are they disjoint?

A brief history of disjointness

- Alice holds set $S_{1} \subseteq[n]$, Bob $S_{2} \subseteq[n]$. Are they disjoint?
- Deterministic communication complexity n bits

A brief history of disjointness

- Alice holds set $S_{1} \subseteq[n]$, Bob $S_{2} \subseteq[n]$. Are they disjoint?
- Deterministic communication complexity n bits
- co-Nondeterministic complexity is $O(\log n)$.

A brief history of disjointness

- Alice holds set $S_{1} \subseteq[n]$, Bob $S_{2} \subseteq[n]$. Are they disjoint?
- Deterministic communication complexity n bits
- co-Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]

A brief history of disjointness

- Alice holds set $S_{1} \subseteq[n]$, Bob $S_{2} \subseteq[n]$. Are they disjoint?
- Deterministic communication complexity n bits
- co-Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]
- Quantum complexity $\Theta(\sqrt{n})$ [lower Raz03, upper AA03]

Number-on-the-forehead model

- k-players, input x_{1}, \ldots, x_{k}. Player i knows everything but x_{i}.
- Large overlap in information makes showing lower bounds difficult. Only available method is discrepancy method.
- Lower bounds have application to powerful models like circuit complexity and complexity of proof systems.
- Best lower bounds are of the form $n / 2^{k}$. Bound of $n / 2^{2 k}$ for generalized inner product function [BNS89].

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower BPSW06, upper Gro94].

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method."

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of $O(\log n)$.

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of $O(\log n)$.
- Researchers have studied restricted models-bound of $n^{1 / 3}$ for three players where first player speaks and dies [BPSW06]. Bound of $n^{1 / k} / k^{k}$ in one-way model [VW07].

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 / k+1}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 / k+1}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

- Separates nondeterministic and randomized complexity up to $\delta \log \log n$ players, $\delta<1$.

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 / k+1}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

- Separates nondeterministic and randomized complexity up to $\delta \log \log n$ players, $\delta<1$.
- Chattopadhyay and Ada independently obtained similar results

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.
- Beame, Pitassi, and Segerlind show that lower bounds on disjointness imply lower bounds for a very general class of proof systems, including the above [BPS06].

Semantically entailed proof systems

- Say trying to show a CNF formula ϕ is not satisfiable
- Refutation is a binary tree with nodes labeled by degree d polynomial inequalities and derives $0 \geq 1$.
- Axioms are clauses of ϕ, represented as inequalities.
- Derivation rule is Boolean soundness: if every $0 / 1$ assignment which satisfies f and g also satisfies h, then one may conclude h from f, g.

Example: $(a \vee b) \wedge(\neg a \vee \neg b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)$

Application to proof systems

- Via [BPS06] and our results on disjointness, we obtain super-polynomial lower bounds on the size of tree-like degree d semantically entailed proofs needed to refute certain CNFs for any $d=\log \log n-O(\log \log \log n)$.
- Examples: cutting planes, Lovász-Schrijver systems $(d=2)$.
- Exponential bounds known for cutting planes and tree-like LovászSchrijver systems, but rely heavily on specific properties of these proof systems. Even for $d=2$ no such bounds were known in general.

Review of two-party complexity

- Alice and Bob wish to compute a distributed function $f: X \times Y \rightarrow$ $\{-1,+1\}$. Consider a $|X|$-by- $|Y|$ matrix where $A[x, y]=f(x, y)$.
- Structural theorem: successful c-bit protocol partitions A into 2^{c} monchromatic rectangles.
- In particular, the protocol gives us a way to decompose A as

$$
A=\sum_{i} \epsilon_{i} C_{i}
$$

where $\epsilon_{i} \in\{-1,1\}$ and C_{i} is a $0 / 1$ valued rank-one matrix.

A relaxation

- Define a quantity

$$
\mu(A)=\min \left\{\sum\left|\alpha_{i}\right|: A=\sum_{i} \alpha_{i} C_{i}\right\}
$$

where each C_{i} is a $0 / 1$ valued rank-one matrix.

- We have $D(A) \geq \log \mu(A)$.
- The log rank bound is a relaxation in a different direction-each C_{i} can be an arbitrary rank one matrix, but we count their number rather than their "weight".

Randomized complexity

- For randomized complexity, a protocol gives a decomposition not of A but of a matrix close to A in ℓ_{∞} norm.
- To capture this, we consider an approximate version of μ : for $\alpha \geq 1$

$$
\mu^{\alpha}(A)=\min _{A^{\prime}: J \leq A \circ A^{\prime} \leq \alpha J} \mu\left(A^{\prime}\right)
$$

where J is the all ones matrix.

- One can show that $R_{\epsilon}(A) \geq \log \mu^{\alpha}(A)-\log (\alpha)$ for $\alpha=1 /(1-2 \epsilon)$.

Dual formulation

- Now we have a lower bound technique, but it seems hard to use as is a minimization problem.

Dual formulation

- Now we have a lower bound technique, but it seems hard to use as is a minimization problem.
- We look at the dual formulation to get a maximization problem which is more convenient for showing lower bounds.

Dual formulation

- Now we have a lower bound technique, but it seems hard to use as is a minimization problem.
- We look at the dual formulation to get a maximization problem which is more convenient for showing lower bounds.
- By definition, the dual norm is

$$
\mu^{*}(Q)=\max _{B: \mu(B) \leq 1}|\langle Q, B\rangle|
$$

- So we see $\mu^{*}(Q)=\max _{C}|\langle Q, C\rangle|$ where C is $0 / 1$ valued rank one matrix.

Dual formulation

- By theory of duality we then get

$$
\mu(A)=\max _{Q} \frac{\langle A, Q\rangle}{\mu^{*}(Q)}
$$

- This form is more convenient for showing lower bounds- it suffices to exhibit a matrix Q that has non-negligible correlation with A and such that $\mu^{*}(Q)$ is small.

Dual formulation, approximate versions

The approximate versions of μ also have attractive dual formulations:

$$
\mu^{\alpha}(A)=\max _{Q} \frac{(1+\alpha)\langle A, Q\rangle+(1-\alpha)\|Q\|_{1}}{2 \mu^{*}(Q)}
$$

Dual formulation, approximate versions

The approximate versions of μ also have attractive dual formulations:

$$
\begin{aligned}
\mu^{\alpha}(A) & =\max _{Q} \frac{(1+\alpha)\langle A, Q\rangle+(1-\alpha)\|Q\|_{1}}{2 \mu^{*}(Q)} \\
\mu^{\infty}(A) & =\max _{Q: A \circ Q \geq 0} \frac{\langle A, Q\rangle}{\mu^{*}(Q)}
\end{aligned}
$$

Comparison with discrepancy

Discrepancy with respect to probability distribution P is defined as

$$
\begin{aligned}
\operatorname{disc}_{P}(A) & =\max _{C}\langle A \circ P, C\rangle \\
& =\mu^{*}(A \circ P) .
\end{aligned}
$$

Comparison with discrepancy

Discrepancy with respect to probability distribution P is defined as

$$
\begin{aligned}
\operatorname{disc}_{P}(A) & =\max _{C}\langle A \circ P, C\rangle \\
& =\mu^{*}(A \circ P) .
\end{aligned}
$$

Thus

$$
\frac{1}{\operatorname{disc}(A)}=\max _{\substack{P \geq 0 \\\|P\|_{1}=1}} \frac{1}{\mu^{*}(A \circ P)}
$$

Comparison with discrepancy

Discrepancy with respect to probability distribution P is defined as

$$
\begin{aligned}
\operatorname{disc}_{P}(A) & =\max _{C}\langle A \circ P, C\rangle \\
& =\mu^{*}(A \circ P) .
\end{aligned}
$$

Thus

$$
\frac{1}{\operatorname{disc}(A)}=\max _{\substack{P \geq 0 \\\|P\|_{1}=1}} \frac{1}{\mu^{*}(A \circ P)}=\max _{P \geq 0} \frac{\langle A, A \circ P\rangle}{\mu^{*}(A \circ P)}
$$

Comparison with discrepancy

Discrepancy with respect to probability distribution P is defined as

$$
\begin{aligned}
\operatorname{disc}_{P}(A) & =\max _{C}\langle A \circ P, C\rangle \\
& =\mu^{*}(A \circ P) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{\operatorname{disc}(A)} & =\max _{\substack{P \geq 0 \\
\|P\|_{1}=1}} \frac{1}{\mu^{*}(A \circ P)}=\max _{P \geq 0} \frac{\langle A, A \circ P\rangle}{\mu^{*}(A \circ P)} \\
& =\max _{Q: A \circ Q \geq 0} \frac{\langle A, Q\rangle}{\mu^{*}(Q)}
\end{aligned}
$$

Number-on-the-forehead model

- Instead of a communication matrix, we now have a communication tensor $A\left[x_{1}, \ldots, x_{k}\right]=f\left(x_{1}, \ldots, x_{k}\right)$.
- Instead of combinatorial rectangles we now have cylinder intersections.
- Message of player i does not depend on x_{i}. Behavior can be described as a function ϕ for which

$$
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right)=\phi\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{k}\right) .
$$

- We call such a function a cylinder function.

Number-on-the-forehead model

- A cylinder intersection is the intersection of sets which are cylinders. Characteristic function can be written as

$$
\phi^{1}\left(x_{1}, \ldots, x_{k}\right) \cdots \phi^{k}\left(x_{1}, \ldots, x_{k}\right)
$$

where each ϕ^{i} is a $0 / 1$ valued cylinder function in the $i^{t h}$ dimension.

- Structural theorem: a successful c-bit k-player NOF protocol decomposes the communication tensor into 2^{c} monochromatic k-fold cylinder intersections.

Our lower bound technique

- Analogous to the two-player case, for a k-tensor A we define

$$
\mu(A)=\min \left\{\sum_{i}\left|\alpha_{i}\right|: A=\sum_{i} \alpha_{i} C_{i}\right\}
$$

where each C_{i} is characteristic function of a k-fold cylinder intersection.

- $D_{k}(A) \geq \log \mu(A)$

Our lower bound technique

- Analogous to the two-player case, for a k-tensor A we define

$$
\mu(A)=\min \left\{\sum_{i}\left|\alpha_{i}\right|: A=\sum_{i} \alpha_{i} C_{i}\right\}
$$

where each C_{i} is characteristic function of a k-fold cylinder intersection.

- $D_{k}(A) \geq \log \mu(A)$
- As before we define the approximate version to lower bound randomized complexity:

$$
\mu^{\alpha}(A)=\min _{A^{\prime}: J \leq A \circ A^{\prime} \leq \alpha J} \mu\left(A^{\prime}\right)
$$

Dual formulation

- Now we see that

$$
\mu^{*}(Q)=\max _{C}|\langle Q, C\rangle|
$$

where C is the characteristic function of a cylinder intersection.

- Connection to discrepancy: $\operatorname{disc}_{P}(A)=\mu^{*}(A \circ P)$.

$$
\mu^{\alpha}(A)=\max _{Q} \frac{(1+\alpha)\langle A, Q\rangle+(1-\alpha)\|Q\|_{1}}{2 \mu^{*}(Q)}
$$

Dual formulation

- Now we see that

$$
\mu^{*}(Q)=\max _{C}|\langle Q, C\rangle|
$$

where C is the characteristic function of a cylinder intersection.

- Connection to discrepancy: $\operatorname{disc}_{P}(A)=\mu^{*}(A \circ P)$.

$$
\begin{aligned}
\mu^{\alpha}(A) & =\max _{Q} \frac{(1+\alpha)\langle A, Q\rangle+(1-\alpha)\|Q\|_{1}}{2 \mu^{*}(Q)} \\
\mu^{\infty}(A) & =\max _{Q: A \circ Q \geq 0} \frac{\langle A, Q\rangle}{\mu^{*}(Q)}
\end{aligned}
$$

Overview of proof

- We want to lower bound $\mu^{\alpha}(A)$, where $A\left[x_{1}, \ldots, x_{k}\right]=\operatorname{OR}\left(x_{1} \wedge \ldots \wedge x_{k}\right)$.
- Suffices to find Q, show $\langle A, Q\rangle$ is non-negligible, upper bound $\mu^{*}(Q)$.

Overview of proof

- We want to lower bound $\mu^{\alpha}(A)$, where $A\left[x_{1}, \ldots, x_{k}\right]=\operatorname{OR}\left(x_{1} \wedge \ldots \wedge x_{k}\right)$.
- Suffices to find Q, show $\langle A, Q\rangle$ is non-negligible, upper bound $\mu^{*}(Q)$.
- Also choose Q to be of the form $Q\left[x_{1}, \ldots, x_{k}\right]=q\left(x_{1} \wedge \ldots \wedge x_{k}\right)$
- We follow the elegant "pattern matrix" framework of Sherstov [She07a,She07b], and its extension to the tensor case by Chattopadhyay [Cha07]. Focus on subtensors of A, Q with nicer structure.

Overview of proof

- We want to lower bound $\mu^{\alpha}(A)$, where $A\left[x_{1}, \ldots, x_{k}\right]=\operatorname{OR}\left(x_{1} \wedge \ldots \wedge x_{k}\right)$.
- Suffices to find Q, show $\langle A, Q\rangle$ is non-negligible, upper bound $\mu^{*}(Q)$.
- Also choose Q to be of the form $Q\left[x_{1}, \ldots, x_{k}\right]=q\left(x_{1} \wedge \ldots \wedge x_{k}\right)$
- We follow the elegant "pattern matrix" framework of Sherstov [She07a,She07b], and its extension to the tensor case by Chattopadhyay [Cha07]. Focus on subtensors of A, Q with nicer structure.
- This allows us to relate properties of functions f, q to those of A, Q.

Pattern Matrix

- Alice holds m-many strings $x=\left(x_{1}, \ldots, x_{m}\right)$ each of length M.
- Bob holds $S \in[M]^{m}$ to select bits of x.
- For a function $f:\{0,1\}^{m} \rightarrow\{-1,+1\}$, pattern matrix is defined as

$$
A_{f}[x, S]=f\left(x_{1}[S[1]], \ldots, x_{m}[S[m]]\right) .
$$

- If $f=$ OR then this is special case of disjointness on $m M$ bits.

Pattern Tensors

- For simplicity, $k=3$. Now Alice has m many M-by- M matrices $x=\left(x_{1}, \ldots, x_{m}\right)$.
- Bob, Charlie hold $S_{1}, S_{2} \in[M]^{m}$ to select rows resp. columns of x.
- For a function $f:\{0,1\}^{m} \rightarrow\{-1,+1\}$ define

$$
A_{f}\left[x, S_{1}, S_{2}\right]=f\left(x_{1}\left[S_{1}[1], S_{2}[1]\right], \ldots, x_{m}\left[S_{1}[m], S_{2}[m]\right]\right.
$$

- Nice property: every m-bit string appears as input to f equal number of times.

Embedding into disjointness of size $m M^{2}$

Building Q from degree witness

- Choose Q to be a pattern tensor of function q.
- By structure of pattern tensor, $\langle f, q\rangle \sim\langle A, Q\rangle$.
- Following Degree/Discrepancy [She07a, Cha07, She07b], one can show $\mu^{*}(Q)$ is small if q contains only high degree terms.
- Thus to get good bounds we want to find q which correlates with f and has all terms with degree as large as possible.

Dual polynomial

More precisely, if $\operatorname{deg}_{\alpha}(f) \geq d$ then there exists a polynomial q such that

1. $\|q\|_{1}=1$
2. $\langle f, q\rangle \geq \frac{\alpha-1}{\alpha+1}$
3. q is orthogonal to all polynomials of degree $<d$.

Dual polynomial

More precisely, if $\operatorname{deg}_{\alpha}(f) \geq d$ then there exists a polynomial q such that

1. $\|q\|_{1}=1$
2. $\langle f, q\rangle \geq \frac{\alpha-1}{\alpha+1}$
3. q is orthogonal to all polynomials of degree $<d$.

We let Q be the pattern tensor formed from q. Item 2 lower bounds $\left\langle A_{f}, Q\right\rangle$. Item 3 is used to upper bound $\mu^{*}(Q)$.

Main theorem

Let $\alpha<\alpha_{0}$.

$$
\log \mu^{\alpha}\left(A_{f}\right) \geq \frac{\operatorname{deg}_{\alpha_{0}}(f)}{2^{k-1}}+\log \frac{\alpha_{0}-\alpha}{\alpha_{0}+1}
$$

Main theorem

Let $\alpha<\alpha_{0}$.

$$
\log \mu^{\alpha}\left(A_{f}\right) \geq \frac{\operatorname{deg}_{\alpha_{0}}(f)}{2^{k-1}}+\log \frac{\alpha_{0}-\alpha}{\alpha_{0}+1}
$$

provided $M \geq e(k-1) 2^{2^{k-1}} m$.

Main theorem

Let $\alpha<\alpha_{0}$.

$$
\log \mu^{\alpha}\left(A_{f}\right) \geq \frac{\operatorname{deg}_{\alpha_{0}}(f)}{2^{k-1}}+\log \frac{\alpha_{0}-\alpha}{\alpha_{0}+1}
$$

provided $M \geq e(k-1) 2^{2^{k-1}} m$.

We can embed the pattern tensor of $O R$ into disjointness to obtain

$$
R_{1 / 4}\left(\mathrm{DISJ}_{n}\right)=\Omega\left(\frac{n^{1 / k+1}}{2^{2^{k}}}\right)
$$

Conclusion

- Find a function in AC^{0} whose NOF complexity remains non-trivial for more than $k=\log \log n$ players.
- For our particular approach (choosing Q as pattern tensor, using [BNS92] bound on discrepancy), analysis is tight.
- Our inspiration to the μ norm: γ_{2} norm shown to lower bound quantum communication complexity by Linial and Shraibman.
- Follow-up work [LSS08] extends γ_{2} to the multiparty case to lower bound multiparty quantum communication. We show that multiparty μ and γ_{2} are related by constant factor to transfer all classical bounds to the quantum case.

