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• Deterministic communication complexity n bits

• co-Nondeterministic complexity is O(log n).

• Randomized complexity Θ(n) [KS87, Raz92]

• Quantum complexity Θ(
√

n) [lower Raz03, upper AA03]



Number-on-the-forehead model

• k-players, input x1, . . . , xk. Player i knows everything but xi.

• Large overlap in information makes showing lower bounds difficult. Only
available method is discrepancy method.

• Lower bounds have application to powerful models like circuit complexity
and complexity of proof systems.

• Best lower bounds are of the form n/2k. Bound of n/22k for generalized
inner product function [BNS89].
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• Best lower bound Ω(log n
k−1 ), and best upper bound O(kn/2k) [lower

BPSW06, upper Gro94].

• Kushilevitz and Nisan: “The only technique from two-party complexity
that generalizes to multiparty complexity is the discrepancy method.”
For disjointness, discrepancy can only show bounds of O(log n).

• Researchers have studied restricted models—bound of n1/3 for three
players where first player speaks and dies [BPSW06]. Bound of n1/k/kk

in one-way model [VW07].
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in the general k-party number-on-the-forehead model.

• Separates nondeterministic and randomized complexity up to δ log log n
players, δ < 1.

• Chattopadhyay and Ada independently obtained similar results
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Application to proof systems

• As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

• One way to formalize this is through proof complexity: for example
cutting planes, Lovász-Schrijver proof systems.

• Beame, Pitassi, and Segerlind show that lower bounds on disjointness
imply lower bounds for a very general class of proof systems, including
the above [BPS06].



Semantically entailed proof systems

• Say trying to show a CNF formula φ is not satisfiable

• Refutation is a binary tree with nodes labeled by degree d polynomial
inequalities and derives 0 ≥ 1.

• Axioms are clauses of φ, represented as inequalities.

• Derivation rule is Boolean soundness: if every 0/1 assignment which
satisfies f and g also satisfies h, then one may conclude h from f, g.



Example: (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b)

a(1-a)+b(1-b)+
a(1-b)+b(1-a) >= 1

a(1-a)+b(1-b)+
ba+(1-a)(1-b) >= 1

a+b >= 1 1-a+1-b >= 1 1-a+b >= 1 a+1-b >= 1

a(1-b)+b(1-a) >= 1 ab+(1-a)(1-b) >= 1

1 >= 2



Application to proof systems

• Via [BPS06] and our results on disjointness, we obtain super-polynomial
lower bounds on the size of tree-like degree d semantically entailed proofs
needed to refute certain CNFs for any d = log log n−O(log log log n).

• Examples: cutting planes, Lovász-Schrijver systems (d = 2).

• Exponential bounds known for cutting planes and tree-like Lovász-
Schrijver systems, but rely heavily on specific properties of these proof
systems. Even for d = 2 no such bounds were known in general.



Review of two-party complexity

• Alice and Bob wish to compute a distributed function f : X × Y →
{−1,+1}. Consider a |X|-by-|Y | matrix where A[x, y] = f(x, y).

• Structural theorem: successful c-bit protocol partitions A into 2c

monchromatic rectangles.

• In particular, the protocol gives us a way to decompose A as

A =
∑

i

εiCi

where εi ∈ {−1, 1} and Ci is a 0/1 valued rank-one matrix.



A relaxation

• Define a quantity

µ(A) = min

{∑
|αi| : A =

∑
i

αiCi

}

where each Ci is a 0/1 valued rank-one matrix.

• We have D(A) ≥ log µ(A).

• The log rank bound is a relaxation in a different direction—each Ci can
be an arbitrary rank one matrix, but we count their number rather than
their “weight”.



Randomized complexity

• For randomized complexity, a protocol gives a decomposition not of A
but of a matrix close to A in `∞ norm.

• To capture this, we consider an approximate version of µ: for α ≥ 1

µα(A) = min
A′:J≤A◦A′≤αJ

µ(A′)

where J is the all ones matrix.

• One can show that Rε(A) ≥ log µα(A)− log(α) for α = 1/(1− 2ε).
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• We look at the dual formulation to get a maximization problem which is
more convenient for showing lower bounds.

• By definition, the dual norm is

µ∗(Q) = max
B:µ(B)≤1

|〈Q,B〉|

• So we see µ∗(Q) = maxC |〈Q,C〉| where C is 0/1 valued rank one
matrix.



Dual formulation

• By theory of duality we then get

µ(A) = max
Q

〈A,Q〉
µ∗(Q)

• This form is more convenient for showing lower bounds— it suffices to
exhibit a matrix Q that has non-negligible correlation with A and such
that µ∗(Q) is small.
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Number-on-the-forehead model

• Instead of a communication matrix, we now have a communication tensor
A[x1, . . . , xk] = f(x1, . . . , xk).

• Instead of combinatorial rectangles we now have cylinder intersections.

• Message of player i does not depend on xi. Behavior can be described
as a function φ for which

φ(x1, . . . , xi, . . . , xk) = φ(x1, . . . , x
′
i, . . . , xk).

• We call such a function a cylinder function.



Number-on-the-forehead model

• A cylinder intersection is the intersection of sets which are cylinders.
Characteristic function can be written as

φ1(x1, . . . , xk) · · ·φk(x1, . . . , xk)

where each φi is a 0/1 valued cylinder function in the ith dimension.

• Structural theorem: a successful c-bit k-player NOF protocol decomposes
the communication tensor into 2c monochromatic k-fold cylinder
intersections.
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|αi| : A =
∑

i
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}

where each Ci is characteristic function of a k-fold cylinder intersection.

• Dk(A) ≥ log µ(A)

• As before we define the approximate version to lower bound randomized
complexity:

µα(A) = min
A′:J≤A◦A′≤αJ

µ(A′)
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Overview of proof

• We want to lower bound µα(A), where A[x1, . . . , xk] = OR(x1∧. . .∧xk).

• Suffices to find Q, show 〈A,Q〉 is non-negligible, upper bound µ∗(Q).

• Also choose Q to be of the form Q[x1, . . . , xk] = q(x1 ∧ . . . ∧ xk)

• We follow the elegant “pattern matrix” framework of Sherstov
[She07a,She07b], and its extension to the tensor case by Chattopadhyay
[Cha07]. Focus on subtensors of A,Q with nicer structure.

• This allows us to relate properties of functions f, q to those of A,Q.



Pattern Matrix

• Alice holds m-many strings x = (x1, . . . , xm) each of length M .

• Bob holds S ∈ [M ]m to select bits of x.

• For a function f : {0, 1}m → {−1,+1}, pattern matrix is defined as

Af [x, S] = f(x1[S[1]], . . . , xm[S[m]]).

• If f = OR then this is special case of disjointness on mM bits.



Pattern Tensors

• For simplicity, k = 3. Now Alice has m many M -by-M matrices
x = (x1, . . . , xm).

• Bob, Charlie hold S1, S2 ∈ [M ]m to select rows resp. columns of x.

• For a function f : {0, 1}m → {−1,+1} define

Af [x, S1, S2] = f(x1[S1[1], S2[1]], . . . , xm[S1[m], S2[m]].

• Nice property: every m-bit string appears as input to f equal number of
times.



Embedding into disjointness of size mM2

M

M

...

...

...

m many

S_1[1]

S_1[m]

S_2[1] S_2[m]

x

y

z

010 ......



Building Q from degree witness

• Choose Q to be a pattern tensor of function q.

• By structure of pattern tensor, 〈f, q〉 ∼ 〈A,Q〉.

• Following Degree/Discrepancy [She07a, Cha07, She07b], one can show
µ∗(Q) is small if q contains only high degree terms.

• Thus to get good bounds we want to find q which correlates with f and
has all terms with degree as large as possible.



Dual polynomial

More precisely, if degα(f) ≥ d then there exists a polynomial q such
that

1. ‖q‖1 = 1

2. 〈f, q〉 ≥ α−1
α+1

3. q is orthogonal to all polynomials of degree < d.



Dual polynomial

More precisely, if degα(f) ≥ d then there exists a polynomial q such
that

1. ‖q‖1 = 1

2. 〈f, q〉 ≥ α−1
α+1

3. q is orthogonal to all polynomials of degree < d.

We let Q be the pattern tensor formed from q. Item 2 lower bounds
〈Af , Q〉. Item 3 is used to upper bound µ∗(Q).
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Main theorem

Let α < α0.

log µα(Af) ≥
degα0

(f)
2k−1

+ log
α0 − α

α0 + 1

provided M ≥ e(k − 1)22k−1
m.

We can embed the pattern tensor of OR into disjointness to obtain

R1/4(DISJn) = Ω
(

n1/k+1

22k

)



Conclusion

• Find a function in AC0 whose NOF complexity remains non-trivial for
more than k = log log n players.

• For our particular approach (choosing Q as pattern tensor, using [BNS92]
bound on discrepancy), analysis is tight.

• Our inspiration to the µ norm: γ2 norm shown to lower bound quantum
communication complexity by Linial and Shraibman.

• Follow-up work [LSS08] extends γ2 to the multiparty case to lower bound
multiparty quantum communication. We show that multiparty µ and
γ2 are related by constant factor to transfer all classical bounds to the
quantum case.


