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Rank Minimization Problem

Consider the following problem

min rank(X)
X

<AZ,X> sz fOI”L:]_,,]{

Arises in many contexts: complexity theory, recommendation systems,
control theory

Known to be NP-hard

Optimization problem over a nonconvex function



Communication complexity

Two parties Alice and Bob wish to evaluate a function f : X XY —
{—1,+1} where Alice holds z € X and Bob y € Y.

How much communication is needed? Can consider deterministic D(f),
randomized R.(f), and even quantum versions Q.( f)

Often convenient to work with |X]|-by-|Y| matrix A known as
communication matrix where A(x,y) = f(z,y). Allows tools from
linear algebra to be applied.
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Log rank bound

e As a successful protocol partitions the communication matrix into rank
one matrices we find

D(f) > logrank(Ay)

e One of the greatest open problems in communication complexity is the

log rank conjecture [LS88], which states that D(f) < (logrank(Ay))*
for some constant &.



Approximation rank

e As rank lower bounds deterministic communication complexity, the

relevant quantity for randomized (and quantum) models is approximation
rank.

e Given a target matrix A, find a low rank matrix entrywise close to A:
rank . (A) = H}}n rank(X)
X (i) — A(i, )| < e for all 4, j

e Krause [Kra96] shows that

R.(A) > logrank.(A).



Approximation rank

e We do not know if approximation rank remains NP-hard to compute, but
can be difficult in practice.

e For the “disjointness” matrix A with rows and columns labeled by n-bit

strings where
—1iflzNy| =0
Aley) = { o

1 otherwise.

The € = 1/3 approximation rank is 2°(v™) [Raz03, AA05].



Example 2: Matrix completion

e Popularly known as the “Netflix problem.” Think of a M-by-N matrix
where rows are labeled by users, columns are labeled by movies, and
entries are “ratings.”

e From a partial filling of this matrix—ratings supplied by some users—
would like to make predictions for other users, i.e. fill out the rest of the

matrix.

e A useful assumption: a user’s rating depends on only on a few factors,
thus the completed matrix should have low rank.



Example 2: Matrix completion

e Given a set 2 C M x N of constraints X (i, j) = a; ; for (¢,7) € €, find
the lowest rank completion of X

min rank(X)
X

X(’L,]) = Q4 for all (’L,]) e ()

e For applications, can think of a “hidden” low rank matrix A in the
background. The goal is to exactly recover this matrix.

e Basic observations: rank r matrix has O((M + N)r) degrees of freedom.
In general, will need some assumptions for interesting results—think of
matrix with only one nonzero entry.



Convex relaxations

e Part of the difficulty of the rank minimization problem is that it is an
optimization problem over a nonconvex function.

e Much work has looked at substituting the rank function by a convex
function.

e We will look at substituting rank function by different norms.



Matrix norms

e Define the i'"* singular value as 0;(X) = /A (X X?)

e Many useful matrix norms expressed in terms of vector of singular values
0(X) = (01(X),...,0n(X)).

| X |1 = ¢1(c(X)) “trace norm”
1 X ||co = o (O'(X)) “spectral norm”

1 X ||2 = la(o( = /Tr(X X?t) “Frobenius norm”




Trace norm heuristic

e Popular heuristic is to replace rank by the trace norm
min || X ||
X
<AZ,X> < bz for 1 = 1,...,]6

e Motivation: rank is equal to the number of nonzero singular values, thus

e Over matrices satisfying || X||oc < 1, trace norm is the largest convex
lower bound on rank [Faz02].



Trace norm heuristic for matrix completion

e There has recently been a lot of work on the trace norm heuristic for the
matrix completion problem [Faz02, RFP07, CR08, CT09].

e These results are of the form: Say that X is generated by taking N-by-r
random Gaussian matrices Y and Z and setting X = Y Z¢.

o Let |Q > Nrlog” n consist of entries of X sampled uniformly at random.

Then with high probability the trace norm heuristic will exactly recover
X.



Trace norm heuristic for approximation rank

e In the context of approximation rank and communication complexity,
often work with sign matrices.

e Here the trace norm heuristic is better motivated by another simple

inequality:
[ X1l =) oa(X) < v/rank(X)[| X[|2.

e For a M-by-N sign matrix A this simplifies nicely:

A 2
rank(A) > !\4}”\;



Trace norm bound on rank (example)

o Let Hy be a N-by-N Hadamard matrix (entries from {—1,+1}).
e Then |Hyll1 = N3/2.

e Trace norm method gives bound on rank of N°/N? = N



Trace norm bound (drawback)

e As a complexity measure, the trace norm bound suffers one drawback—it

IS not monotone.
HN 1N
Iy 1n

e Trace norm at most N3/2 + 3N

e Trace norm method gives

(N32+3N)2 N L O

4N? 4

worse bound on whole than on Hj submatrix!



Trace norm method (a fix)

e We can fix this by considering

max  ||Aouvt|;
u,v:

)
[ull2=]lv]l2=1

e As rank(A ouv') < rank(A) we still have

2
I\Aouvt|\1>

1A 0 uvt|2

rank(A) > (



The > norm

e This bound simplifies nicely for a sign matrix A

yU- t
||u||2zllvv||2=1 HAOUU ||2

Ao uv|)’ 2
rank(A) >  max = max |Aouv’|7
u,v:
|

Y
[ull2=]lv]l2=1

e \We have arrived at the 75 norm introduced to communication complexity
by [LMSSO07, LS07]

12(A) = max  [Aowd'|

Y
[ull2=]|v][2=1



vo norm: Surprising usefulness

2 1S @ norm, though not a matrix norm. In matrix analysis known as
“Schur/Hadamard product operator/trace norm."

Schur (1911) showed that v2(A) = max; A;; if A positive semidefinite.

v2(A) can be written as a semidefinite program and so can be well
approximated in time polynomial in the size of A.

The dual norm ~3(A) = maxp(A, B)/v2(B) turns up in semidefinite
programming relaxation of MAX-CUT of Goemans and Williamson, and
is closely related to the discrepancy method in communication complexity.



Cross—section of Y, unit ball of symmetric matrices [x,y;y,z]




Approximation rank with -

e Substitute rank by 75 in the approximation rank optimization problem:

V5(A) = min Y2(X)

|A(i,7) — X (2,7)| < e forall (i,7).

e Main theorem: For any M-by-N sign matrix A and constant 0 < € < 1/2

75(A)” L ;
1+ = rank (A) = O (v5(A)?log(MN))



Proof sketch

e \We introduced 5 as a maximization problem.

e For the proof, we use an alternative characterization of 5 in terms of a
minimization problem.

e [race norm can be written as

| X[[1=_ min _[[Y]2]Z]2
Y, Z:X=YZ

This follows from singular value decomposition: X = UXV where U,V
unitary.



Min formulation of v,

B(X)=  max [|IXow],
u,v:||ull2=]lv]2=1
=max min [|[D(w)Y]|s ||Z*D(v)]|2
U,V Y, Z
X=y z?
“=7 min max|Du)Y|s [|Z°Dv)|
Y,Z  u,v
X=vZz!
= min YIl,)1Z],
X=y z?

where ||Y ||, is the largest 5 norm of a row of Y.



First step: dimension reduction

e Thus 7, looks for factorization X = Y Z! where Y, Z have short rows in
terms of /5 norm.

e Similarly rank looks for factorization X = Y Z! where Y, Z have short
rows in terms of dimension.

e Use Johnson-Lindenstrauss lemma to project rows of Y, Z to dimension
about equal to v2(X)?. Let R be a random K’-by-K matrix

5 52
Pr | (Ru, Rv) — {u,v) > S([Jull* + [|v][*)| < 4™/



Second step: error reduction

e After the first step, we obtain a new matrix X’ of rank O(y5(A)%log N)
but the approximation factor has worsened—X" is only 2¢ close to A.

e Trick going back to Krivine: Apply a low degree polynomial entrywise to
the matrix X'.

p(M) = agJ + a1 M + ...+ agM°.

e See that rank(p(M)) < (d+1)rank(M)?. Taking p to be approximation
to the sign function reduces error.



Polynomial for Error Reduction
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Final result

e For any M-by-N sign matrix A and constant 0 < e < 1/2

75(A)” s ;
(1+ )2 < rank(A4) = O (75(A)* log(MN))

e Logarithmic factor is necessary as (sign version of) identity matrix has
approximation rank log(N) [Alo0O3] but constant ~,.

e [BESO02] used dimension reduction to upper bound sign rank by 5°(A)2.

Interestingly, here the lower bound falils.



Extension to general rank minimization problem

e Consider again the general rank minimization problem

a(A,b) = rr}}n rank(X)

<A27X>sz forz'zl,...,k

o Let C ={X:(A;, X) <b;} be the feasible set.

o |et EOO(C) = maxxec KOO(X)



Extension to general rank minimization problem

As argued before we have

- 72(X)?
> .
o«(A.b) =iy )

Say we solve via semidefinite programming the program minxce 2 (X)

Then by doing dimension reduction on an optimal X™* we obtain a matrix
Y of rank about 72(X*)?log(NN) which is € close to X*.

This matrix will satisfy the i*" constraint up to a factor € £1(A;).



Application to the matrix completion problem

e In matrix completion, often is a natural bound on /,,(C). For example,
Netflix uses ratings {1,2,3,4,5} so matrix will be bounded.

e Also in the matrix completion problem each constraint matrix A; consists
of a single entry so ¢1(A;) = 1.

e Thus if the lowest rank completion has rank d, via 72 we can find a rank
O(dlog(NN)) matrix which is e-close on the specified entries.



Open questions

e Approximation algorithm for the limiting case of sign rank?

e For matrix completion, can one show similar unconditional results for
trace norm heuristic?

e Practical implementations of «, for large matrices.



