Rank minimization via the γ_2 norm

Troy Lee Columbia University

Adi Shraibman Weizmann Institute

Rank Minimization Problem

• Consider the following problem

$$\min_{X} \operatorname{rank}(X)$$
$$\langle A_i, X \rangle \le b_i \text{ for } i = 1, \dots, k$$

- Arises in many contexts: complexity theory, recommendation systems, control theory
- Known to be NP-hard
- Optimization problem over a nonconvex function

Communication complexity

- Two parties Alice and Bob wish to evaluate a function $f : X \times Y \rightarrow \{-1, +1\}$ where Alice holds $x \in X$ and Bob $y \in Y$.
- How much communication is needed? Can consider deterministic D(f), randomized $R_{\epsilon}(f)$, and even quantum versions $Q_{\epsilon}(f)$
- Often convenient to work with |X|-by-|Y| matrix A known as communication matrix where A(x, y) = f(x, y). Allows tools from linear algebra to be applied.

How a protocol partitions communication matrix

How a protocol partitions communication matrix

How a protocol partitions communication matrix

Log rank bound

• As a successful protocol partitions the communication matrix into rank one matrices we find

 $D(f) \ge \log \operatorname{rank}(A_f)$

• One of the greatest open problems in communication complexity is the log rank conjecture [LS88], which states that $D(f) \leq (\log \operatorname{rank}(A_f))^k$ for some constant k.

Approximation rank

- As rank lower bounds deterministic communication complexity, the relevant quantity for randomized (and quantum) models is *approximation rank*.
- Given a target matrix A, find a low rank matrix entrywise close to A:

$$\begin{aligned} \operatorname{rank}_{\epsilon}(A) &= \min_{X} \operatorname{rank}(X) \\ & |X(i,j) - A(i,j)| \leq \epsilon \text{ for all } i,j \end{aligned}$$

• Krause [Kra96] shows that

 $R_{\epsilon}(A) \ge \log \operatorname{rank}_{\epsilon}(A).$

Approximation rank

- We do not know if approximation rank remains NP-hard to compute, but can be difficult in practice.
- For the "disjointness" matrix A with rows and columns labeled by n-bit strings where

$$A(x,y) = \begin{cases} -1 \text{ if } |x \cap y| = 0 \\ 1 \text{ otherwise.} \end{cases}$$

The $\epsilon = 1/3$ approximation rank is $2^{\Theta(\sqrt{n})}$ [Raz03, AA05].

Example 2: Matrix completion

- Popularly known as the "Netflix problem." Think of a *M*-by-*N* matrix where rows are labeled by users, columns are labeled by movies, and entries are "ratings."
- From a partial filling of this matrix—ratings supplied by some users would like to make predictions for other users, i.e. fill out the rest of the matrix.
- A useful assumption: a user's rating depends on only on a few factors, thus the completed matrix should have low rank.

Example 2: Matrix completion

• Given a set $\Omega \subseteq M \times N$ of constraints $X(i, j) = a_{i,j}$ for $(i, j) \in \Omega$, find the lowest rank completion of X

 $\min_{X} \operatorname{rank}(X)$ $X(i,j) = a_{i,j} \text{ for all } (i,j) \in \Omega$

- For applications, can think of a "hidden" low rank matrix A in the background. The goal is to exactly recover this matrix.
- Basic observations: rank r matrix has O((M+N)r) degrees of freedom. In general, will need some assumptions for interesting results—think of matrix with only one nonzero entry.

Convex relaxations

- Part of the difficulty of the rank minimization problem is that it is an optimization problem over a nonconvex function.
- Much work has looked at substituting the rank function by a convex function.
- We will look at substituting rank function by different norms.

Matrix norms

- Define the i^{th} singular value as $\sigma_i(X) = \sqrt{\lambda_i(XX^t)}$
- Many useful matrix norms expressed in terms of vector of singular values $\sigma(X) = (\sigma_1(X), \dots, \sigma_n(X)).$

$$\begin{split} \|X\|_1 &= \ell_1(\sigma(X)) \text{ "trace norm"} \\ \|X\|_\infty &= \ell_\infty(\sigma(X)) \text{ "spectral norm"} \\ \|X\|_2 &= \ell_2(\sigma(X)) = \sqrt{\operatorname{Tr}(XX^t)} \text{ "Frobenius norm"} \end{split}$$

Trace norm heuristic

• Popular heuristic is to replace rank by the trace norm

$$\min_{X} \|X\|_{1}$$

$$\langle A_{i}, X \rangle \leq b_{i} \text{ for } i = 1, \dots, k$$

• Motivation: rank is equal to the number of nonzero singular values, thus

$$\frac{\|X\|_1}{\|X\|_{\infty}} \le \operatorname{rank}(X).$$

• Over matrices satisfying $||X||_{\infty} \leq 1$, trace norm is the largest convex lower bound on rank [Faz02].

Trace norm heuristic for matrix completion

- There has recently been a lot of work on the trace norm heuristic for the matrix completion problem [Faz02, RFP07, CR08, CT09].
- These results are of the form: Say that X is generated by taking N-by-r random Gaussian matrices Y and Z and setting $X = YZ^t$.
- Let $|\Omega| \ge Nr \log^7 n$ consist of entries of X sampled uniformly at random. Then with high probability the trace norm heuristic will *exactly* recover X.

Trace norm heuristic for approximation rank

- In the context of approximation rank and communication complexity, often work with sign matrices.
- Here the trace norm heuristic is better motivated by another simple inequality:

$$||X||_1 = \sum_i \sigma_i(X) \le \sqrt{\operatorname{rank}(X)} ||X||_2.$$

• For a *M*-by-*N* sign matrix *A* this simplifies nicely:

$$\operatorname{rank}(A) \ge \frac{\|A\|_1^2}{MN}$$

Trace norm bound on rank (example)

- Let H_N be a N-by-N Hadamard matrix (entries from $\{-1, +1\}$).
- Then $||H_N||_1 = N^{3/2}$.
- $\bullet\,$ Trace norm method gives bound on rank of $N^3/N^2=N$

Trace norm bound (drawback)

• As a complexity measure, the trace norm bound suffers one drawback—it is not monotone.

$$\begin{pmatrix} H_N & 1_N \\ 1_N & 1_N \end{pmatrix}$$

- Trace norm at most $N^{3/2} + 3N$
- Trace norm method gives

$$\frac{(N^{3/2} + 3N)^2}{4N^2} = \frac{N}{4} + O(\sqrt{N})$$

worse bound on whole than on H_N submatrix!

Trace norm method (a fix)

• We can fix this by considering

$$\max_{\substack{u,v:\\ \|u\|_2 = \|v\|_2 = 1}} \|A \circ uv^t\|_1$$

• As $\operatorname{rank}(A \circ uv^t) \leq \operatorname{rank}(A)$ we still have

$$\operatorname{rank}(A) \ge \left(\frac{\|A \circ uv^t\|_1}{\|A \circ uv^t\|_2}\right)^2$$

The γ_2 norm

• This bound simplifies nicely for a sign matrix A

$$\operatorname{rank}(A) \ge \max_{\substack{u,v:\\ \|u\|_2 = \|v\|_2 = 1}} \left(\frac{\|A \circ uv^t\|_1}{\|A \circ uv^t\|_2} \right)^2 = \max_{\substack{u,v:\\ \|u\|_2 = \|v\|_2 = 1}} \|A \circ uv^t\|_1^2$$

• We have arrived at the γ_2 norm introduced to communication complexity by [LMSS07, LS07]

$$\gamma_2(A) = \max_{\substack{u,v:\\ \|u\|_2 = \|v\|_2 = 1}} \|A \circ uv^t\|_1$$

γ_2 norm: Surprising usefulness

- γ_2 is a norm, though not a matrix norm. In matrix analysis known as "Schur/Hadamard product operator/trace norm."
- Schur (1911) showed that $\gamma_2(A) = \max_i A_{ii}$ if A positive semidefinite.
- $\gamma_2(A)$ can be written as a semidefinite program and so can be well approximated in time polynomial in the size of A.
- The dual norm $\gamma_2^*(A) = \max_B \langle A, B \rangle / \gamma_2(B)$ turns up in semidefinite programming relaxation of MAX-CUT of Goemans and Williamson, and is closely related to the discrepancy method in communication complexity.

Approximation rank with γ_2

• Substitute rank by γ_2 in the approximation rank optimization problem:

$$\gamma_2^{\epsilon}(A) = \min_X \gamma_2(X)$$
$$|A(i,j) - X(i,j)| \le \epsilon \text{ for all } (i,j).$$

• Main theorem: For any M-by-N sign matrix A and constant $0 < \epsilon < 1/2$

$$\frac{\gamma_2^{\epsilon}(A)^2}{(1+\epsilon)^2} \le \operatorname{rank}_{\epsilon}(A) = O\left(\gamma_2^{\epsilon}(A)^2 \log(MN)\right)^3$$

Proof sketch

- We introduced γ_2 as a maximization problem.
- For the proof, we use an alternative characterization of γ_2 in terms of a minimization problem.
- Trace norm can be written as

$$||X||_1 = \min_{Y,Z:X=YZ^t} ||Y||_2 ||Z||_2$$

This follows from singular value decomposition: $X = U \Sigma V$ where U, V unitary.

Min formulation of γ_2

$$\gamma_{2}(X) = \max_{\substack{u,v: \|u\|_{2} = \|v\|_{2} = 1}} \|X \circ uv^{t}\|_{1}$$

$$= \max_{\substack{u,v \ Y,Z \ X = YZ^{t}}} \min_{\substack{Y,Z \ X = YZ^{t}}} \|D(u)Y\|_{2} \|Z^{t}D(v)\|_{2}$$

$$\stackrel{"}{=} \min_{\substack{Y,Z \ X = YZ^{t}}} \max_{\substack{u,v \ X = YZ^{t}}} \|D(u)Y\|_{2} \|Z^{t}D(v)\|_{2}$$

where $||Y||_r$ is the largest ℓ_2 norm of a row of Y.

First step: dimension reduction

- Thus γ_2 looks for factorization $X = YZ^t$ where Y, Z have short rows in terms of ℓ_2 norm.
- Similarly rank looks for factorization $X = YZ^t$ where Y, Z have short rows in terms of *dimension*.
- Use Johnson-Lindenstrauss lemma to project rows of Y,Z to dimension about equal to $\gamma_2(X)^2$. Let R be a random K'-by-K matrix

$$\Pr_{R}\left[\langle Ru, Rv \rangle - \langle u, v \rangle \ge \frac{\delta}{2}(\|u\|^{2} + \|v\|^{2})\right] \le 4e^{-\delta^{2}K'/8}$$

Second step: error reduction

- After the first step, we obtain a new matrix X' of rank $O(\gamma_2^{\epsilon}(A)^2 \log N)$ but the approximation factor has worsened—X' is only 2ϵ close to A.
- Trick going back to Krivine: Apply a low degree polynomial entrywise to the matrix X'.

$$p(M) = a_0 J + a_1 M + \ldots + a_d M^{\circ d}.$$

• See that $\operatorname{rank}(p(M)) \leq (d+1)\operatorname{rank}(M)^d$. Taking p to be approximation to the sign function reduces error.

Polynomial for Error Reduction

Final result

• For any M-by-N sign matrix A and constant $0 < \epsilon < 1/2$

$$\frac{\gamma_2^{\epsilon}(A)^2}{(1+\epsilon)^2} \le \operatorname{rank}_{\epsilon}(A) = O\left(\gamma_2^{\epsilon}(A)^2 \log(MN)\right)^3$$

- Logarithmic factor is necessary as (sign version of) identity matrix has approximation rank $\log(N)$ [Alo03] but constant γ_2 .
- [BES02] used dimension reduction to upper bound sign rank by $\gamma_2^{\infty}(A)^2$. Interestingly, here the *lower bound* fails.

Extension to general rank minimization problem

• Consider again the general rank minimization problem

$$lpha(\mathbf{A}, \mathbf{b}) = \min_{X} \operatorname{rank}(X)$$

 $\langle A_i, X \rangle \leq b_i \text{ for } i = 1, \dots, k$

• Let
$$C = \{X : \langle A_i, X \rangle \leq b_i\}$$
 be the feasible set.

• Let $\ell_{\infty}(\mathcal{C}) = \max_{X \in \mathcal{C}} \ell_{\infty}(X)$.

Extension to general rank minimization problem

• As argued before we have

$$\alpha(\mathbf{A}, \mathbf{b}) \ge \min_{X \in \mathcal{C}} \frac{\gamma_2(X)^2}{\ell_{\infty}(\mathcal{C})^2}.$$

- Say we solve via semidefinite programming the program $\min_{X \in \mathcal{C}} \gamma_2(X)$
- Then by doing dimension reduction on an optimal X^* we obtain a matrix Y of rank about $\gamma_2(X^*)^2 \log(N)$ which is ϵ close to X^* .
- This matrix will satisfy the i^{th} constraint up to a factor $\epsilon \ell_1(A_i)$.

Application to the matrix completion problem

- In matrix completion, often is a natural bound on $\ell_{\infty}(\mathcal{C})$. For example, Netflix uses ratings $\{1, 2, 3, 4, 5\}$ so matrix will be bounded.
- Also in the matrix completion problem each constraint matrix A_i consists of a single entry so $\ell_1(A_i) = 1$.
- Thus if the lowest rank completion has rank d, via γ_2 we can find a rank $O(d \log(N))$ matrix which is ϵ -close on the specified entries.

Open questions

- Approximation algorithm for the limiting case of sign rank?
- For matrix completion, can one show similar unconditional results for trace norm heuristic?
- Practical implementations of γ_2 for large matrices.