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Rank Minimization Problem

• Consider the following problem

min
X

rank(X)

〈Ai, X〉 ≤ bi for i = 1, . . . , k

• Arises in many contexts: complexity theory, recommendation systems,
control theory

• Known to be NP-hard

• Optimization problem over a nonconvex function



Communication complexity

• Two parties Alice and Bob wish to evaluate a function f : X × Y →
{−1,+1} where Alice holds x ∈ X and Bob y ∈ Y .

• How much communication is needed? Can consider deterministic D(f),
randomized Rε(f), and even quantum versions Qε(f)

• Often convenient to work with |X|-by-|Y | matrix A known as
communication matrix where A(x, y) = f(x, y). Allows tools from
linear algebra to be applied.
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Log rank bound

• As a successful protocol partitions the communication matrix into rank
one matrices we find

D(f) ≥ log rank(Af)

• One of the greatest open problems in communication complexity is the
log rank conjecture [LS88], which states that D(f) ≤ (log rank(Af))k

for some constant k.



Approximation rank

• As rank lower bounds deterministic communication complexity, the
relevant quantity for randomized (and quantum) models is approximation
rank.

• Given a target matrix A, find a low rank matrix entrywise close to A:

rankε(A) = min
X

rank(X)

|X(i, j)−A(i, j)| ≤ ε for all i, j

• Krause [Kra96] shows that

Rε(A) ≥ log rankε(A).



Approximation rank

• We do not know if approximation rank remains NP-hard to compute, but
can be difficult in practice.

• For the “disjointness” matrix A with rows and columns labeled by n-bit
strings where

A(x, y) =

{
−1 if |x ∩ y| = 0
1 otherwise.

The ε = 1/3 approximation rank is 2Θ(
√
n) [Raz03, AA05].



Example 2: Matrix completion

• Popularly known as the “Netflix problem.” Think of a M -by-N matrix
where rows are labeled by users, columns are labeled by movies, and
entries are “ratings.”

• From a partial filling of this matrix—ratings supplied by some users—
would like to make predictions for other users, i.e. fill out the rest of the
matrix.

• A useful assumption: a user’s rating depends on only on a few factors,
thus the completed matrix should have low rank.



Example 2: Matrix completion

• Given a set Ω ⊆M ×N of constraints X(i, j) = ai,j for (i, j) ∈ Ω, find
the lowest rank completion of X

min
X

rank(X)

X(i, j) = ai,j for all (i, j) ∈ Ω

• For applications, can think of a “hidden” low rank matrix A in the
background. The goal is to exactly recover this matrix.

• Basic observations: rank r matrix has O((M +N)r) degrees of freedom.
In general, will need some assumptions for interesting results—think of
matrix with only one nonzero entry.



Convex relaxations

• Part of the difficulty of the rank minimization problem is that it is an
optimization problem over a nonconvex function.

• Much work has looked at substituting the rank function by a convex
function.

• We will look at substituting rank function by different norms.



Matrix norms

• Define the ith singular value as σi(X) =
√
λi(XXt)

• Many useful matrix norms expressed in terms of vector of singular values
σ(X) = (σ1(X), . . . , σn(X)).

‖X‖1 = `1(σ(X)) “trace norm”

‖X‖∞ = `∞(σ(X)) “spectral norm”

‖X‖2 = `2(σ(X)) =
√

Tr(XXt) “Frobenius norm”



Trace norm heuristic

• Popular heuristic is to replace rank by the trace norm

min
X
‖X‖1

〈Ai, X〉 ≤ bi for i = 1, . . . , k

• Motivation: rank is equal to the number of nonzero singular values, thus

‖X‖1
‖X‖∞

≤ rank(X).

• Over matrices satisfying ‖X‖∞ ≤ 1, trace norm is the largest convex
lower bound on rank [Faz02].



Trace norm heuristic for matrix completion

• There has recently been a lot of work on the trace norm heuristic for the
matrix completion problem [Faz02, RFP07, CR08, CT09].

• These results are of the form: Say that X is generated by taking N -by-r
random Gaussian matrices Y and Z and setting X = Y Zt.

• Let |Ω| ≥ Nr log7 n consist of entries of X sampled uniformly at random.
Then with high probability the trace norm heuristic will exactly recover
X.



Trace norm heuristic for approximation rank

• In the context of approximation rank and communication complexity,
often work with sign matrices.

• Here the trace norm heuristic is better motivated by another simple
inequality:

‖X‖1 =
∑
i

σi(X) ≤
√

rank(X)‖X‖2.

• For a M -by-N sign matrix A this simplifies nicely:

rank(A) ≥ ‖A‖
2
1

MN



Trace norm bound on rank (example)

• Let HN be a N -by-N Hadamard matrix (entries from {−1,+1}).

• Then ‖HN‖1 = N3/2.

• Trace norm method gives bound on rank of N3/N2 = N



Trace norm bound (drawback)

• As a complexity measure, the trace norm bound suffers one drawback—it
is not monotone. (

HN 1N
1N 1N

)
• Trace norm at most N3/2 + 3N

• Trace norm method gives

(N3/2 + 3N)2

4N2
=
N

4
+O(

√
N)

worse bound on whole than on HN submatrix!



Trace norm method (a fix)

• We can fix this by considering

max
u,v:

‖u‖2=‖v‖2=1

‖A ◦ uvt‖1

• As rank(A ◦ uvt) ≤ rank(A) we still have

rank(A) ≥
(
‖A ◦ uvt‖1
‖A ◦ uvt‖2

)2



The γ2 norm

• This bound simplifies nicely for a sign matrix A

rank(A) ≥ max
u,v:

‖u‖2=‖v‖2=1

(
‖A ◦ uvt‖1
‖A ◦ uvt‖2

)2

= max
u,v:

‖u‖2=‖v‖2=1

‖A ◦ uvt‖21

• We have arrived at the γ2 norm introduced to communication complexity
by [LMSS07, LS07]

γ2(A) = max
u,v:

‖u‖2=‖v‖2=1

‖A ◦ uvt‖1



γ2 norm: Surprising usefulness

• γ2 is a norm, though not a matrix norm. In matrix analysis known as
“Schur/Hadamard product operator/trace norm.”

• Schur (1911) showed that γ2(A) = maxiAii if A positive semidefinite.

• γ2(A) can be written as a semidefinite program and so can be well
approximated in time polynomial in the size of A.

• The dual norm γ∗2(A) = maxB〈A,B〉/γ2(B) turns up in semidefinite
programming relaxation of MAX-CUT of Goemans and Williamson, and
is closely related to the discrepancy method in communication complexity.
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Approximation rank with γ2

• Substitute rank by γ2 in the approximation rank optimization problem:

γε2(A) = min
X

γ2(X)

|A(i, j)−X(i, j)| ≤ ε for all (i, j).

• Main theorem: For any M -by-N sign matrix A and constant 0 < ε < 1/2

γε2(A)2

(1 + ε)2
≤ rankε(A) = O

(
γε2(A)2 log(MN)

)3



Proof sketch

• We introduced γ2 as a maximization problem.

• For the proof, we use an alternative characterization of γ2 in terms of a
minimization problem.

• Trace norm can be written as

‖X‖1 = min
Y,Z:X=Y Zt

‖Y ‖2‖Z‖2

This follows from singular value decomposition: X = UΣV where U, V
unitary.



Min formulation of γ2

γ2(X) = max
u,v:‖u‖2=‖v‖2=1

‖X ◦ uvt‖1

= max
u,v

min
Y,Z

X=Y Zt

‖D(u)Y ‖2 ‖ZtD(v)‖2

“ = ” min
Y,Z

X=Y Zt

max
u,v
‖D(u)Y ‖2 ‖ZtD(v)‖2

= min
Y,Z

X=Y Zt

‖Y ‖r‖Z‖r

where ‖Y ‖r is the largest `2 norm of a row of Y .



First step: dimension reduction

• Thus γ2 looks for factorization X = Y Zt where Y,Z have short rows in
terms of `2 norm.

• Similarly rank looks for factorization X = Y Zt where Y,Z have short
rows in terms of dimension.

• Use Johnson-Lindenstrauss lemma to project rows of Y,Z to dimension
about equal to γ2(X)2. Let R be a random K ′-by-K matrix

Pr
R

[
〈Ru,Rv〉 − 〈u, v〉 ≥ δ

2
(‖u‖2 + ‖v‖2)

]
≤ 4e−δ

2K′/8



Second step: error reduction

• After the first step, we obtain a new matrix X ′ of rank O(γε2(A)2 logN)
but the approximation factor has worsened—X ′ is only 2ε close to A.

• Trick going back to Krivine: Apply a low degree polynomial entrywise to
the matrix X ′.

p(M) = a0J + a1M + . . .+ adM
◦d.

• See that rank(p(M)) ≤ (d+1)rank(M)d. Taking p to be approximation
to the sign function reduces error.



Polynomial for Error Reduction
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Final result

• For any M -by-N sign matrix A and constant 0 < ε < 1/2

γε2(A)2

(1 + ε)2
≤ rankε(A) = O

(
γε2(A)2 log(MN)

)3
• Logarithmic factor is necessary as (sign version of) identity matrix has

approximation rank log(N) [Alo03] but constant γ2.

• [BES02] used dimension reduction to upper bound sign rank by γ∞2 (A)2.
Interestingly, here the lower bound fails.



Extension to general rank minimization problem

• Consider again the general rank minimization problem

α(A,b) = min
X

rank(X)

〈Ai, X〉 ≤ bi for i = 1, . . . , k

• Let C = {X : 〈Ai, X〉 ≤ bi} be the feasible set.

• Let `∞(C) = maxX∈C `∞(X).



Extension to general rank minimization problem

• As argued before we have

α(A,b) ≥ min
X∈C

γ2(X)2

`∞(C)2
.

• Say we solve via semidefinite programming the program minX∈C γ2(X)

• Then by doing dimension reduction on an optimal X∗ we obtain a matrix
Y of rank about γ2(X∗)2 log(N) which is ε close to X∗.

• This matrix will satisfy the ith constraint up to a factor ε `1(Ai).



Application to the matrix completion problem

• In matrix completion, often is a natural bound on `∞(C). For example,
Netflix uses ratings {1, 2, 3, 4, 5} so matrix will be bounded.

• Also in the matrix completion problem each constraint matrix Ai consists
of a single entry so `1(Ai) = 1.

• Thus if the lowest rank completion has rank d, via γ2 we can find a rank
O(d log(N)) matrix which is ε-close on the specified entries.



Open questions

• Approximation algorithm for the limiting case of sign rank?

• For matrix completion, can one show similar unconditional results for
trace norm heuristic?

• Practical implementations of γ2 for large matrices.


