Direct product theorem for discrepancy

Troy Lee
Rutgers University
Joint work with: Robert Špalek

Direct product theorems

- Knowing how to compute f, how can you compute $f \oplus f \oplus \cdots \oplus f$?
- Obvious upper bounds:
- If can compute f with t resources, can compute $\oplus_{i=1}^{k} f$ with $k t$ resources. If can compute f with success probability $1 / 2+\epsilon / 2$, then succeed on $\oplus_{i=1}^{k} f$ with probability $1 / 2+\epsilon^{k} / 2$.
- Question: is this the best one can do?
- Direct sum theorem: Need $\Omega(k t)$ resources to achieve original advantage
- Direct product theorem: advantage decreases exponentially

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$. \|
- Soundness amplification
- Parallel repetition: if Alice and Bob win game G with probability $\epsilon<1$ then win k independent games with probability $\bar{\epsilon}^{k^{\prime}}<\epsilon$. \|
- Strong DPT for quantum query complexity of OR function: [A05, KSW07] Oracle where NP $\nsubseteq \mathrm{BQP} /$ qpoly, time-space tradeoffs for sorting.

Background

- Shaltiel [S03] started a systematic study of when direct product theorems might hold.
- Showed a general counter-example where strong direct product theorem does not hold.
- Looked at bounds proven by particular method: discrepancy method in communication complexity.

$$
\operatorname{disc}_{U}\left(f^{\oplus k}\right)=O\left(\operatorname{disc}_{U}(f)\right)^{k / 3}
$$

Discrepancy

- For a Boolean function $f: X \times Y \rightarrow\{0,1\}$, let M_{f} be sign matrix of f $M_{f}[x, y]=(-1)^{f(x, y)}$. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{\substack{x \in\{0,1\} \\ y \in\{0,1\} \\| || |}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C} \|
$$

- $\operatorname{disc}(f)=\min _{P}\left\|M_{f} \circ P\right\|_{C}$. $\|$
- Discrepancy is one of most general techniques available:

$$
D(f) \geq R_{\epsilon}(f) \geq Q_{\epsilon}^{*}(f)=\Omega\left(\log \frac{1}{\operatorname{disc}(f)}\right)
$$

Basic Orientation

- Identify a function $f(x, y)$ with its sign matrix
- $(f \oplus g)\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=f\left(x_{1}, y_{1}\right) \oplus g\left(x_{2}, y_{2}\right)$
- Very nice in terms of sign matrices: sign matrix for $f \oplus g$ is $M_{f} \otimes M_{g} \|$
- Shaltiel: Does general discrepancy obey product theorem?

Results

- Yes!

$$
\begin{gathered}
\operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B) \leq \operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B) \\
\frac{1}{64} \operatorname{disc}(A) \operatorname{disc}(B) \leq \operatorname{disc}(A \otimes B) \leq 8 \operatorname{disc}(A) \operatorname{disc}(B)
\end{gathered}
$$

- Taken together this means that for tensor product matrices, a tensor product distribution is near optimal:

$$
\frac{1}{512} \operatorname{disc}_{P \otimes Q}(A \otimes B) \leq \operatorname{disc}(A \otimes B) \leq 8 \operatorname{disc}_{P \otimes Q}(A \otimes B)
$$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Uniform distribution, $x=y=\left[\begin{array}{ll}1 & 1\end{array}\right]$, shows $\operatorname{disc}(H)=1 / 2 \|$
- On the other hand, $\operatorname{disc}\left(H^{\otimes k}\right)=\Theta\left(2^{-k / 2}\right)$.

The proof: short answer

- [Linial and Shraibman 06] define a semidefinite programming quantity γ_{2} which they show characterizes discrepancy up to a constant factor, using ideas from [Alon and Naor 06].
- Although not always the case, semidefinite programs tend to behave nicely under product: [L79, FL92, . . . CSUU07].
- The semidefinite relaxation of discrepancy does as well.

Outline for rest of talk

- Try to convince you that γ_{2} arises very naturally in communication complexity
- Sketch the proof of the product theorem, and try to convince you this is what you would do even if you didn't listen to first part II
- Further extensions, open problems

Communication complexity

- For deterministic complexity, rank is all you need . . .
$-\log \operatorname{rk}(A) \leq D(A)$
- Log rank conjecture: $\exists \ell: D(A) \leq(\log \operatorname{rk}(A))^{\ell}$
- As $\operatorname{rk}(A \otimes B)=\operatorname{rk}(A) \operatorname{rk}(B) \log$ rank conjecture would give direct sum theorem for deterministic communication complexity, up to polynomial factors.

Bounded-error models

- Approximate rank: $\widetilde{\operatorname{rk}}(A)=\min _{B}\left\{\operatorname{rk}(B):\|A-B\|_{\infty} \leq \epsilon\right\}$.
- For randomized and quantum complexity

$$
R_{\epsilon}(A) \geq Q_{\epsilon}(A) \geq \frac{\log \mathrm{rk}(A)}{2}
$$

- But these approximate ranks are very hard to work with . . . Borrow ideas from approximation algorithms.

Relaxation of rank

- Instead of working with rank, work with convex relaxation of rank
- For example, by Cauchy-Schwarz we have

$$
\frac{\|A\|_{t r}^{2}}{\|A\|_{F}^{2}} \leq \operatorname{rk}(A)
$$

- Not a good complexity measure as can be too uniform.

$$
\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{T}\right\|_{t r}^{2} \leq \operatorname{rk}(A)
$$

for sign matrix A.

Also known as . . .

- Duality of spectral norm and trace norm . . .

$$
\|A\|=\max _{B:\|B\|_{t r} \leq 1}\langle A, B\rangle \|
$$

- means

$$
\begin{aligned}
\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{T}\right\|_{t r}^{2} & =\max _{B:\|B\|_{t r} \leq 1}\|A \circ B\|_{t r} \\
& =\max _{B:\|B\| \leq 1}\|A \circ B\|
\end{aligned}
$$

aka .. Linial and Shraibman's γ_{2}

- Coming from learning theory, Linial and Shraibman define

$$
\gamma_{2}(A)=\min _{X, Y: X Y=A} r(X) c(Y),
$$

$r(X)$ is largest ℓ_{2} norm of a row of X, similarly $c(Y)$ for column of Y

- By duality of semidefinite programming

$$
\gamma_{2}(A)=\max _{u, v:\|u\|=\|v\|=1}\left\|A \circ u v^{*}\right\|_{t r}
$$

Different flavors of γ_{2}

- For deterministic complexity

$$
\gamma_{2}(A)=\min _{X, Y: X Y=A} r(X) c(Y)=\max _{Q:\|Q\| t r \leq 1}\|A \circ Q\|_{t r}
$$

- For randomized, quantum complexity with entanglement

$$
\gamma_{2}^{\epsilon}(A)=\min _{X, Y: 1 \leq X Y \circ A \leq 1+\epsilon} r(X) c(Y)
$$

- For unbounded error

$$
\gamma_{2}^{\infty}=\min _{X, Y: 1 \leq X Y \circ A} r(X) c(Y)=\max _{Q:\|Q\|_{t r} \leq 1, Q \circ A \geq 0}\|A \circ Q\|_{t r}
$$

Product theorem: $\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)$

- Let's look at disc_{P} again:

$$
\operatorname{disc}_{P}(A)=\|A \circ P\|_{C}
$$

- This is an example of a quadratic program, in general NP-hard to evaluate.
- In approximation algorithms, great success in looking at semidefinite relaxations of NP-hard problems.
- Semidefinite programs also tend to behave nicely under product!

Proof: first step

- Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
- First step: go from $0 / 1$ vectors to ± 1 vectors. Look at the norm

$$
\|A\|_{\infty \rightarrow 1}=\max _{x, y \in\{-1,1\}^{n}} x^{T} A y \|
$$

- Simple lemma shows these are related.

$$
\|A\|_{C} \leq\|A\|_{\infty \rightarrow 1} \leq 4\|A\|_{C}
$$

Proof: second step

- Now go to semidefinite relaxation:

$$
\|A\|_{\infty \rightarrow 1} \leq \max _{\substack{u_{i}, v_{j} \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle \|
$$

- Grothendieck's Inequality says

$$
\max _{\substack{u_{i}, v_{j} \\\left\|u_{i}\right\|=\left\|v_{j}\right\|=1}} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle \leq K_{G}\|A\|_{\infty \rightarrow 1}
$$

where $1.67 \leq K_{G} \leq 1.782 \ldots$

Proof: last step

- Our approximating quantity is exactly the norm dual to γ_{2} :

$$
\begin{aligned}
\gamma_{2}^{*}(A) & =\max _{B: \gamma_{2}(B) \leq 1}\langle A, B\rangle \\
& =\max _{u_{i}, v_{j}:\left\|u_{i}\right\|\|,\| v_{j} \| \leq 1} \sum_{i, j} A_{i, j}\left\langle u_{i}, v_{j}\right\rangle
\end{aligned}
$$

- Thus we have

$$
\operatorname{disc}_{P}(A) \leq \gamma_{2}^{*}(A \circ P) \leq 4 K_{G} \operatorname{disc}_{P}(A)
$$

Connection to XOR games

- Let $P[x, y]$ be the probability the verifier asks questions x, y, and $A[x, y]=(-1)^{f(x, y)}$ be the desired response. Provers send $a, b \in\{-1,1\}$ trying to achieve $a b=A[x, y]$.
- Value of classical game is $1 / 2+\frac{\|A \circ P\|_{\infty \rightarrow 1}}{2}$
- Value of entanglement game is $1 / 2+\frac{\gamma_{2}^{*}(A \circ P)}{2}$ [Tsirelson80, CHTW04]
- A product theorem for γ_{2}^{*} has been shown twice before in the literature [FL92, CSUU07]

Product theorem: $\operatorname{disc}(A \otimes B) \leq 8 \operatorname{disc}(A) \operatorname{disc}(B)$

- $\operatorname{disc}(A)=\min _{P}\|A \circ P\|_{C} \|$
- $\left(1 / 4 K_{G}\right) \min _{P} \gamma_{2}^{*}(A \circ P) \leq \operatorname{disc}(A) \leq \min _{P} \gamma_{2}^{*}(A \circ P)$
- Now need to show product theorem for

$$
\begin{aligned}
\min _{P:\|P\|_{1}=1, P \geq 0} \gamma_{2}^{*}(A \circ P) & =\min _{P:\|P\|_{1}=1, P \geq 0} \frac{\gamma_{2}^{*}(A \circ P)}{\langle A, A \circ P\rangle} \\
& =\min _{Q: Q \circ A \geq 0} \frac{\gamma_{2}^{*}(Q)}{\langle A, Q\rangle}
\end{aligned}
$$

Direct product for $\operatorname{disc}(A)$: Last step

- quantity from last slide:

$$
\min _{Q: Q \circ A \geq 0} \frac{\gamma_{2}^{*}(Q)}{\langle A, Q\rangle}
$$

- Reciprocal looks like $\gamma_{2}(A)$, except for non-negativity restriction
- Reciprocal equals $\gamma_{2}^{\infty}(A)$:

$$
\gamma_{2}^{\infty}(A)=\max _{\substack{Q:\|Q\|_{t r} \leq 1 \\ Q \circ A \geq 0}}\|A \circ Q\|_{t r}=\min _{\substack{X, Y \\ X Y \circ A \geq 1}} r(X) c(Y)
$$

Direct product for $\operatorname{disc}(A)$: Final step

- [Linial and Shraibman 06] $\gamma_{2}^{\infty}(A) \leq 1 / \operatorname{disc}(A) \leq 8 \gamma_{2}^{\infty}$ I
- If Q_{A}, Q_{B} are optimal witnesses for A, B respectively, then

$$
\begin{aligned}
& \gamma_{2}^{\infty}(A \otimes B) \geq\left\|(A \otimes B) \circ\left(Q_{A} \otimes Q_{B}\right)\right\|_{t r}=\left\|\left(A \circ Q_{A}\right) \otimes\left(B \circ Q_{B}\right)\right\|_{t r} \\
& \text { and } Q_{A} \otimes Q_{B} \text { agrees in sign everywhere with } A \otimes B \|
\end{aligned}
$$

- If $A=X_{A} Y_{A}$ and $B=X_{B} Y_{B}$ are optimal factorizations, then

$$
\gamma_{2}^{\infty}(A \otimes B) \leq r\left(X_{A} \otimes X_{B}\right) c\left(Y_{A} \otimes Y_{B}\right)=r\left(X_{A}\right) c\left(Y_{A}\right) r\left(X_{B}\right) c\left(Y_{B}\right)
$$

Future directions

- Bounded-error version of γ_{2}

$$
\gamma_{2}^{\epsilon}(A)=\min _{B:\|A-B\|_{\infty} \leq \epsilon} \max _{u, v}\left\|B \circ v u^{T}\right\|_{t r}
$$

- Lower bounds quantum communication complexity with entanglement [LS07]. Strong enough to reprove Razborov's optimal results for symmetric functions.
- Does γ_{2}^{ϵ} obey product theorem? Would generalize some results of [KSW06]

Composition theorem

- What about functions of the form $f\left(g\left(x_{1}, y_{1}\right), g\left(x_{2}, y_{2}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$?
- When $f \neq \oplus$ lose the tensor product structure . . .
- Recent paper of [Shi and Zhu 07] show some results in this direction-use bound like γ_{2}^{ϵ} on f but need g to be hard.

Open problems

- Optimal $\Omega(n)$ lower bound for disjointness can be shown by one-sided version of discrepancy. Does this obey product theorem?
- [Mittal and Szegedy 07] have begun a systematic theory of when a product theorem holds for a general semidefinite program. All of $\gamma_{2}, \gamma_{2}^{*}, \gamma_{2}^{\infty}$ fit in their framework.

