Direct product theorem for discrepancy

Troy Lee
Rutgers University
Adi Shraibman
Weizmann Institute of Science
Robert Špalek
Google

Direct product theorems: Why is Go gle interested?

Direct product theorems: Why should Go gle be interested?

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . .

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies,

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some theory graduate students . . .

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some theory graduate students . . .
- What is the most effective way to distribute your limited resources to achieve these goals?

Direct product theorems: Why should Google be interested?

- Say you want to accomplish k independent tasks. . . improve search algorithm, fight youtube copyright lawsuits, buy some promising new companies, hire some theory graduate students . . .
- What is the most effective way to distribute your limited resources to achieve these goals?
- Is it possible to accomplish all of these tasks while spending less than the sum of the resources required for the individual tasks?

Direct sum theorems

- Let f, g be Boolean functions. Say you want to compute $h\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), g\left(x_{2}\right)\right)$.

Direct sum theorems

- Let f, g be Boolean functions. Say you want to compute $h\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), g\left(x_{2}\right)\right)$.
- Obviously can compute f and then compute g. Can you do better?

Direct sum theorems

- Let f, g be Boolean functions. Say you want to compute $h\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), g\left(x_{2}\right)\right)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute h need sum of resources needed for f and g.

Direct sum theorems

- Let f, g be Boolean functions. Say you want to compute $h\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), g\left(x_{2}\right)\right)$.
- Obviously can compute f and then compute g. Can you do better?
- Direct sum theorem: To compute h need sum of resources needed for f and g.
- "The shortest way to do many things is to do only one thing at once" Samuel Smiles

Direct product theorems

- Study behavior of success probability: with obvious algorithm, if can compute f with success probability p, then succeed on $f^{2}\left(x_{1}, x_{2}\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ with probability p^{2}.

Direct product theorems

- Study behavior of success probability: with obvious algorithm, if can compute f with success probability p, then succeed on $f^{2}\left(x_{1}, x_{2}\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ with probability p^{2}.
- Direct product theorem: success probability decreases exponentially.

Direct product theorems

- Study behavior of success probability: with obvious algorithm, if can compute f with success probability p, then succeed on $f^{2}\left(x_{1}, x_{2}\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ with probability p^{2}.
- Direct product theorem: success probability decreases exponentially. Strong direct product theorem-this holds for f^{k} even with k times the resources.

Direct product theorems

- Study behavior of success probability: with obvious algorithm, if can compute f with success probability p, then succeed on $f^{2}\left(x_{1}, x_{2}\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ with probability p^{2}.
- Direct product theorem: success probability decreases exponentially. Strong direct product theorem-this holds for f^{k} even with k times the resources.
- Note: For us, more convenient to investigate $h\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)$. By results of [VW07] showing bias of this problem decreases exponentially suffices to give direct product theorem.

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.
- Soundness amplification
- Parallel repetition: if Alice and Bob win game G with probability $p<1$ then win k independent games with probability $\bar{p}^{k^{\prime}}<p$.

Applications

- Hardness amplification
- Yao's XOR lemma: if circuits of size s err on f with non-negligible probability, then any circuit of some smaller size $s^{\prime}<s$ will have small advantage over random guessing on $\oplus_{i=1}^{k} f$.
- Soundness amplification
- Parallel repetition: if Alice and Bob win game G with probability $p<1$ then win k independent games with probability $\bar{p}^{k^{\prime}}<p$.
- Time-space tradeoffs: Strong DPT for quantum query complexity of OR function [Aar05, KSW07] gives time-space tradeoffs for sorting with quantum computer.

Background

- Shaltiel [S03] began a systematic study of when strong direct product theorems might hold-in particular, in the context of communication complexity.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions

Background

- Shaltiel [S03] began a systematic study of when strong direct product theorems might hold-in particular, in the context of communication complexity.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions-say lower bound is shown by a particular method.

Background

- Shaltiel [S03] began a systematic study of when strong direct product theorems might hold-in particular, in the context of communication complexity.
- Showed a general counter-example where strong direct product theorem does not hold.
- In light of counter-example, we should look for direct product theorems under some assumptions-say lower bound is shown by a particular method.
- Studied discrepancy method in communication complexity

Communication complexity

- Alice is given input x, Bob input y and wish to compute some distributed function $f(x, y)$.
- In classical case, complexity is number of bits of conversation needed to output $f(x, y)$ on worst case input.
- Identify f with its communication matrix $M_{f}[x, y]=(-1)^{f(x, y)}$.
- For functions f, g, notice that the sign matrix of

$$
h\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus g\left(x_{2}\right)
$$

is simply $M_{f} \otimes M_{g}$

Discrepancy

- Discrepancy is one of most general techniques available:

$$
D(f) \geq R_{1 / 3}(f) \geq Q_{1 / 3}^{*}(f)=\Omega\left(\log \frac{1}{\operatorname{disc}(f)}\right)
$$

- Let $M_{f}[x, y]=(-1)^{f(x, y)}$ be sign matrix of f. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{x, y \in\{0,1\}^{N}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C}
$$

Discrepancy

- Discrepancy is one of most general techniques available:

$$
D(f) \geq R_{1 / 3}(f) \geq Q_{1 / 3}^{*}(f)=\Omega\left(\log \frac{1}{\operatorname{disc}(f)}\right)
$$

- Let $M_{f}[x, y]=(-1)^{f(x, y)}$ be sign matrix of f. Let P be a probability distribution on entries.

$$
\operatorname{disc}_{P}(f)=\max _{x, y \in\{0,1\}^{N}}\left|x^{T}\left(M_{f} \circ P\right) y\right|=\left\|M_{f} \circ P\right\|_{C}
$$

- $\operatorname{disc}(f)=\min _{P} \operatorname{disc}_{P}(f)$.

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U \otimes k}\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?
- For any probability distributions P, Q :

$$
\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)
$$

Results

- [Shaltiel 03] showed $\operatorname{disc}_{U} \otimes k\left(M_{f}^{\otimes k}\right)=O\left(\operatorname{disc}_{U}\left(M_{f}\right)\right)^{k / 3}$ Open question: does product theorem hold for general discrepancy?
- For any probability distributions P, Q :

$$
\operatorname{disc}_{P \otimes Q}(A \otimes B) \leq 8 \operatorname{disc}_{P}(A) \operatorname{disc}_{Q}(B)
$$

- $\operatorname{Product~theorem~also~holds~for~} \operatorname{disc}(A)=\min _{P} \operatorname{disc}_{P}(A)$:

$$
\frac{1}{64} \operatorname{disc}(A) \operatorname{disc}(B) \leq \operatorname{disc}(A \otimes B) \leq 8 \operatorname{disc}(A) \operatorname{disc}(B)
$$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Uniform distribution, $x=y=\left[\begin{array}{ll}1 & 1\end{array}\right]$, $\operatorname{shows} \operatorname{disc}(H)=1 / 2$

Optimality

- Discrepancy does not perfectly product
- Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Uniform distribution, $x=y=\left[\begin{array}{ll}11\end{array}\right]$, shows $\operatorname{disc}(H)=1 / 2$
- On the other hand, $\operatorname{disc}\left(H^{\otimes k}\right)=\Theta\left(2^{-k / 2}\right)$.

Some consequences

- Strong direct product theorem for randomized lower bounds shown by the discrepancy method

Some consequences

- Strong direct product theorem for randomized lower bounds shown by the discrepancy method
- Unconditional direct sum theorem for weakly unbounded-error protocols: randomized model where
$-\operatorname{Pr}[R[x, y]=f(x, y)]>1 / 2$ for all x, y
- If always succeed with probability $\geq 1 / 2+\epsilon$, cost is number of bits communicated $+\log (1 / \epsilon)$.

Proof ideas

- Let's look at disc_{P} again:

$$
\operatorname{disc}_{P}(A)=\max _{x, y \in\{0,1\}^{N}}\left|x^{T}\left(M_{f} \circ P\right) y\right|
$$

- This is an example of a quadratic program, in general NP-hard to evaluate.
- In approximation algorithms, great success in looking at semidefinite relaxations of NP-hard problems.
- Semidefinite programs also tend to behave nicely under product!

Enter γ_{2} norm

- Looking at the natural semidefinite relaxation of cut norm one arrives at the γ_{2} norm, or rather its dual [AN06, LS08].

$$
\left(1 / 4 K_{G}\right) \gamma_{2}^{*}(A \circ P) \leq \operatorname{disc}_{P}(A) \leq \gamma_{2}^{*}(A \circ P)
$$

where $1.67<K_{G}<1.783$ is Grothendieck's constant.

- Furthermore, for $\operatorname{disc}(A)=\min _{P} \operatorname{disc}_{P}(A)$ we have [LS08]

$$
\gamma_{2}^{\infty}(A) \leq \frac{1}{\operatorname{disc}(A)} \leq 4 K_{G} \gamma_{2}^{\infty}(A)
$$

where $\gamma_{2}^{\infty}(A)=\min _{A^{\prime}: 1 \leq A \circ A^{\prime}} \gamma_{2}(A)$.

Proof: second step

- Thus for our results suffices to show

$$
\begin{array}{rc}
\gamma_{2}^{*}(A \otimes B) & =\gamma_{2}^{*}(A) \gamma_{2}^{*}(B) \\
\gamma_{2}^{\infty}(A \otimes B) & =\gamma_{2}^{\infty}(A) \gamma_{2}^{\infty}(B)
\end{array}
$$

- This is done in usual fashion-look at semidefinite formulations of $\gamma_{2}^{*}, \gamma_{2}^{\infty}$, and use min and max formulations to show upper and lower inequalities, respectively.

Proof: second step

- Thus for our results suffices to show

$$
\begin{array}{rc}
\gamma_{2}^{*}(A \otimes B) & =\gamma_{2}^{*}(A) \gamma_{2}^{*}(B) \\
\gamma_{2}^{\infty}(A \otimes B) & =\gamma_{2}^{\infty}(A) \gamma_{2}^{\infty}(B)
\end{array}
$$

- This is done in usual fashion-look at semidefinite formulations of $\gamma_{2}^{*}, \gamma_{2}^{\infty}$, and use min and max formulations to show upper and lower inequalities, respectively.
- First item actually shown for perfect parallel repetition for two-prover XOR games with entanglement in Complexity last year [CSUU07]

Open problems

- We have shown product theorem for γ_{2}^{∞}. How about bounded-error version $\gamma_{2}^{\alpha}(A)=\min _{A^{\prime}: 1 \leq A \circ A^{\prime} \leq \alpha} \gamma_{2}\left(A^{\prime}\right)$?

Open problems

- We have shown product theorem for γ_{2}^{∞}. How about bounded-error version $\gamma_{2}^{\alpha}(A)=\min _{A^{\prime}: 1 \leq A \circ A^{\prime} \leq \alpha} \gamma_{2}\left(A^{\prime}\right)$?
- Optimal $\Omega(n)$ lower bound for disjointness can be shown by corruption bound or one-sided version of discrepancy. Does this obey product theorem? Known under product distributions [BPSW05].

Open problems

- We have shown product theorem for γ_{2}^{∞}. How about bounded-error version $\gamma_{2}^{\alpha}(A)=\min _{A^{\prime}: 1 \leq A \circ A^{\prime} \leq \alpha} \gamma_{2}\left(A^{\prime}\right)$?
- Optimal $\Omega(n)$ lower bound for disjointness can be shown by corruption bound or one-sided version of discrepancy. Does this obey product theorem? Known under product distributions [BPSW05].
- Build on the general theory developed by [MS07, LM08] for classifying when semidefinite programs perfectly product.

Open problems

- We have shown product theorem for γ_{2}^{∞}. How about bounded-error version $\gamma_{2}^{\alpha}(A)=\min _{A^{\prime}: 1 \leq A \circ A^{\prime} \leq \alpha} \gamma_{2}\left(A^{\prime}\right)$?
- Optimal $\Omega(n)$ lower bound for disjointness can be shown by corruption bound or one-sided version of discrepancy. Does this obey product theorem? Known under product distributions [BPSW05].
- Build on the general theory developed by [MS07, LM08] for classifying when semidefinite programs perfectly product.
- More general composition theorems for operations other than tensor product. Recent work of [SZ07] has some results in this direction.

