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Abstract

Discrepancy is a versatile bound in communication complexity which can be used to show
lower bounds in the distributional, randomized, quantum, and even unbounded error models
of communication. We show an optimal product theorem for discrepancy, namely that for any
two Boolean functions f, g, disc(f ⊕ g) = Θ(disc(f)disc(g)). As a consequence we obtain
a strong direct product theorem for distributional complexity, and direct sum theorems for
worst-case complexity, for bounds shown by the discrepancy method. Our results resolve an
open problem of Shaltiel (2003) who showed a weaker product theorem for discrepancy with
respect to the uniform distribution, discU⊗k(f⊗k) = O(discU (f))k/3. The main tool for our
results is semidefinite programming, in particular a recent characterization of discrepancy in
terms of a semidefinite programming quantity by Linial and Shraibman (2006).

1 Introduction
Say we know the complexity of a Boolean function f . How difficult is it to compute F (x1, x2) =
f(x1)⊕f(x2), the parity of two independent instances of f? Theorems which address this situation
are known as direct product and direct sum theorems. Perhaps the best known direct product
theorem is Yao’s XOR lemma, which states that if any circuit of size s errs with non-negligible
probability when computing f , then any circuit of some smaller size s′ < s will have very small
advantage over random guessing when computing F (x1, . . . , xk) =

⊕
i f(xi). Notice here that
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while the error probability has increased, the amount of resources has actually decreased. This is
known as a weak direct product theorem. On the other hand, a direct sum theorem aims to show
that if it requires r resources to compute f with error ε, then computing F (x1, . . . , xk) = ⊕f(xi)
with error ε will require Ω(kr) resources. Here the error probability has not increased, but we
allow the algorithm more resources.

The best of both lower bound worlds is a strong direct product theorem, which states that
if computing f with success probability 1/2 + ε/2 requires r resources, then even with Ω(kr)
resources any algorithm computing the parity of k independent copies of f will have success prob-
ability at most 1/2 + εk/2. While proving such a strong direct product result for Boolean circuits
seems quite far off, a good testing grounds for our intuition about such theorems is communication
complexity. Such a project was initiated in a systematic way by Shaltiel [Sha03], who showed a
general counterexample where a strong direct product theorem does not hold. He further showed
that bounds by the discrepancy method under the uniform distribution, a common way to show
lower bounds on average-case communication complexity, do obey a product theorem. He left as
an open question if discrepancy under arbitrary distributions also satisfies a direct product theorem.

We answer this question here and tighten Shaltiel’s result to give a product theorem optimal up
to a constant multiplicative factor. Namely, we show that disc(f ⊕g) = Θ(disc(f)disc(g)) for any
Boolean functions f, g. Furthermore, we show that for functions of the form f⊕g, the discrepancy
bound is realized, up to a constant multiplicative factor, by a distribution of the form P ⊗Q, where
P is a distribution over f and Q is a distribution over g, and ⊗ denotes tensor product.

As a consequence, we obtain a strong direct product theorem for distributional complexity
bounds shown by the discrepancy method—If a c-bit protocol has correlation at most w with f , as
shown by the discrepancy method, then a kc-bit protocol will have correlation at most O(wk) with
the parity of k independent copies of f . Klauck [Kla01] has shown that the discrepancy bound
characterizes the model of weakly-unbounded error complexity, a communication complexity ver-
sion of the complexity class PP (formal definition given below in Section 2.2). As discrepancy
characterizes this class, here we are able to obtain an unconditional direct sum theorem for this
model of computation.

The main tool for our results is semidefinite programming, in particular a recent characteriza-
tion of discrepancy in terms of a semidefinite quantity γ∞2 by Linial and Shraibman [LS07]. Linial
and Shraibman also introduce a bounded-error version of the same semidefinite quantity, known
as γα

2 , which can be used to show lower bounds on bounded-error randomized and quantum com-
munication complexity. It remains an interesting open question if a product theorem also holds
for this quantity. As γα

2 is able to prove an Ω(
√

n) lower bound on the quantum communication
complexity of disjointness, such a theorem would reprove a result of Klauck, Špalek, and de Wolf
[KŠW07].

2 Preliminaries
In this section we will introduce some basic matrix notation, our main quantity of interest i.e. the
discrepancy and its relation to communication complexity. We also introduce the γ2 norm and its
variants which we use to prove our main result.
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2.1 Matrix preliminaries
We restrict ourselves to matrices over the real numbers. We use AT to denote the transpose of the
matrix A. For real matrices A, B we use ≤ to refer to entrywise comparison of matrices, that is
A ≤ B iff A[i, j] ≤ B[i, j] for all (i, j). For a scalar c, we sometimes use the shorthand A ≥ c to
indicate that all entries of A are at least as large as c. We denote tensor product by ⊗, Hadamard
(entrywise) product by ◦ and inner product by 〈·, ·〉. We let ‖A‖1 be the sum of the absolute values
of the entries of A.

For a symmetric matrix A, let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) denote the eigenvalues of A.
Let σi(A) =

√
λi(AT A) be the ith singular value of A. We make use of a few matrix norms. The

Frobenius norm of A is the `2 norm of A thought of as a vector—that is

‖A‖F =

√∑
i,j

A[i, j]2.

Notice also that ‖A‖2
F = Tr(AT A) =

∑
i σ

2
i (A). We also use the trace norm, ‖A‖tr =

∑
i σi(A).

Finally, we denote the spectral norm as ‖A‖ = σ1(A).
As the singular values of the matrix A⊗B are σi(A)σj(B) where σi(A), σj(B) range over the

singular values of A and B respectively, all three of these matrix norms are multiplicative under
tensor products.

Finally, we make use of the following simple fact

Fact 1 For any matrices A, B, C,D, where A, C are of the same dimension and B, D are of the
same dimension,

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D).

2.2 Communication complexity and discrepancy
Let X, Y be finite sets and f : X × Y → {0, 1} be a Boolean function. We associate with f
a |X|-by-|Y | sign matrix Mf known as the communication matrix. Mf is the |X|-by-|Y | matrix
where

Mf [x, y] = (−1)f(x,y).

We will identify the communication matrix with the function, and use them interchangeably.
Discrepancy is defined as follows:

Definition 2 (Discrepancy with respect to P ) Let P be a probability distribution on the entries
of Mf . Discrepancy with respect to the distribution P is defined as:

discP (Mf ) = max
x,y∈{0,1}n

∣∣xT (Mf ◦ P )y
∣∣
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The maximum absolute value of a bilinear form over Boolean vectors is known as the cut norm,
‖ · ‖C , thus it can be equivalently stated that discP (A) = ‖A ◦ P‖C . We will sometimes use
this view in our proofs as our product results hold more generally for the cut norm, and not just
discrepancy.

For showing lower bounds in communication complexity, one wishes to show that the dis-
crepancy is small. We will let disc(A) without a subscript refer to discP (A) under the “hardest”
distribution P .

Definition 3 (General discrepancy) The discrepancy of a sign matrix Mf is defined as

disc(Mf ) = min
P

discP (Mf ),

where the minimum is taken over all probability distributions P .

We will first see how discrepancy can be applied to communication complexity in the distribu-
tional model. The cost in this model is defined as follows:

Definition 4 (Distributional complexity) Let f : X×Y → {0, 1} be a Boolean function and P a
probability distribution over the inputs X × Y . For a fixed error ε ≥ 0, we define Dε

P (f) to be the
minimum communication of a deterministic protocol R where E(x,y)←P [R(x, y) 6= f(x, y)] ≤ ε.

The connection to discrepancy comes from the well known fact that a deterministic c-bit com-
munication protocol partitions the communication matrix into 2c many combinatorial rectangles.
(See Kushilevitz and Nisan [KN97] for this and other background on communication complexity.)
Let P be a probability distribution, R be a deterministic protocol, and let R[x, y] ∈ {−1, 1} be the
output of R on input (x, y). The correlation of R with f under the distribution P is

CorrP (Mf , R) = E(x,y)←P [R[x, y]Mf [x, y]]

We then define the correlation with c-bit protocols as

Corrc,P (Mf ) = max
R

CorrP (Mf , R)

where the max is taken over all deterministic c-bit protocols.

Fact 5
Corrc,P (Mf ) ≤ 2cdiscP (Mf )

Proof: Let R be a c-bit protocol which realizes the value Corrc,P (Mf ). A c-bit protocol partitions
the communication matrix Mf into 2c combinatorial rectangles, and on each such rectangle R
reports the same answer for all the elements of the rectangle. We enumerate these rectangles by
i ∈ {1, . . . , 2c}, and let Ri be the output of the protocol on elements of the ith rectangle. Further,

4



let xi ∈ {0, 1}|X| and yi ∈ {0, 1}|Y | be characteristic vectors of the respective rows and columns
active in the ith rectangle. Then we have

Corrc,P (Mf ) = 〈R,M ◦ P 〉

=
2c∑

i=1

Ri

(
xT

i (Mf ◦ P )yi

)
≤

2c∑
i=1

∣∣xT
i (Mf ◦ P )yi

∣∣
≤ 2cdiscP (Mf ).

2

We can turn this equation around to get a lower bound on Dε
P (f). A protocol which has

probability of error at most ε has correlation at least 1 − 2ε with f , thus Dε
P (f) ≥ log 1/((1 −

2ε)discP (Mf )). This, in turn, shows how discrepancy can be used to lower bound randomized
communication complexity. Let Rε(f) be the minimum communication cost of a randomized
protocol R such that Pr[R[x, y] 6= f(x, y)] ≤ ε for all x, y. Then, as by Yao’s principle Rε(f) =
maxP Dε

P (f), we find that Rε(f) ≥ log 1/((1− 2ε)disc(Mf )).
Discrepancy is even more widely applicable to proving lower bounds on worst-case complexity.

Kremer [Kre95] shows that discrepancy can be used to lower bound quantum communication with
bounded-error, and Linial and Shraibman [LS07] extend this to show the discrepancy bound is valid
even when the communicating parties share entanglement. Klauck [Kla01] shows that discrepancy
characterizes, up to a small multiplicative factor, the communication cost of weakly unbounded-
error protocols. We state this latter result for future use.

Definition 6 (Weakly unbounded-error) Let R be a c-bit randomized protocol for f , and de-
note ε(R) = minx,y (Pr[R(x, y) = f(x, y)]− 1/2). The weakly unbounded-error cost of R is
UPCR(f) = c + log(1/ε(R)). The weakly unbounded-error cost of f , denoted UPC(f), is the
minimal weakly unbounded-error cost of a randomized protocol for f .

Theorem 7 (Klauck) Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. Then

UPC(f) ≥ log(1/disc(f))−O(1)

UPC(f) ≤ 3 log(1/disc(f)) + log n + O(1).

The lower bound can be seen immediately from Fact 5, while the upper bound requires more
work. Forster et al. [FKL+01] show a similar result characterizing UPC complexity in terms of a
notion from learning theory known as the maximal margin complexity. Linial and Shraibman later
showed that discrepancy and maximal margin complexity are equivalent up to a constant factor.
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2.3 Definitions of γ2

The quantity γ2 was introduced in [LMSS07] in a study of complexity measures of sign matrices.
We give here a leisurely introduction to this quantity, its relatives, and their many equivalent forms.

2.3.1 Motivation

Matrix rank plays a fundamental role in communication complexity. Many different models of
communication complexity have an associated rank bound which is usually the best technique
available for showing lower bounds. For deterministic complexity, D(f) ≥ log rk(Mf ), and the
long-standing log rank conjecture asserts that this bound is tight up to polynomial factors. For
randomized and quantum communication complexity, one becomes concerned not with the rank of
the communication matrix, but of matrices close to the communication matrix in `∞ norm. Namely,
if let the approximate rank be defined as r̃k(Mf ) = min{rk(M) : ‖M −Mf‖∞ ≤ ε}, then one has
Rε(f) ≥ Qε(f) ≥ (1/2) log r̃k(Mf ). As ε → 1/2 one obtains unbounded-error complexity, where
one simply has to obtain the correct answer with probability strictly greater than 1/2. This class is
characterized up to one bit by the log of sign rank, the minimum rank of a matrix which agrees in
sign everywhere with Mf .

In the case of approximate rank and sign rank, a difficulty arises as such rank minimization
problems are in general NP-hard to compute. A (now) common approach to deal with NP-hard
problems is to consider a semidefinite programming relaxation of the problem. The quantity
γ2(Mf ) can very naturally be viewed as a semidefinite relaxation of rank.

As the rank of a matrix is equal to the number of non-zero singular values, it follows from the
Cauchy-Schwarz inequality that

‖A‖2
tr

‖A‖2
F

≤ rk(A).

A problem with this bound as a complexity measure is that it is not monotone—the bound can
be larger on a submatrix of A than on A itself. As taking the Hadamard product of a matrix with a
rank one matrix does not increase its rank, a way to fix this problem is to consider instead:

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT‖2
tr

‖A ◦ vuT‖2
F

≤ rk(A).

When A is a sign matrix, this bound simplifies nicely—for then, ‖A ◦ vuT‖F = ‖u‖‖v‖ = 1, and
we are left with

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT‖2
tr ≤ rk(A).

This quantity turns out to be exactly γ2(A), as we shall now see.

2.3.2 The many faces of γ2

The primary definition of γ2 given in [LMSS07] is
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Definition 8
γ2(A) = min

X,Y :XY =A
r(X)c(Y ),

where r(X) is the largest `2 norm of a row of X and similarly c(Y ) is the largest `2 norm of a
column of Y .

We now see that this quantity is the same as the one just discussed. Note that this equivalence
holds for any matrix A, not just a sign matrix.

Theorem 9 Let A be a m-by-n matrix. Then

γ2(A) = max
Q:‖Q‖≤1

‖A ◦Q‖ = max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT‖tr

Proof: We obtain this by writing γ2 as a semidefinite program and dualizing. Let Jm,n be the
m-by-n matrix all whose entries are equal to one. It will be convenient to work with a (m + n)-
by-(m + n) matrix A′ which is a square and Hermitian “bipartite version” of A, and an auxiliary
matrix F defined as follows:

A′ =

[
0 A

AT 0

]
, F =

[
0 Jm,n

Jn,m 0

]
With these definitions in hand, one can see that γ2 is equivalent to the following program:

min η

X[i, i] ≤ η for all i

X � 0

X ◦ A′ = F

Here X � 0 means the X is positive semidefinite. Dualizing this program we obtain:

max 〈Q,A′〉 (1)
‖α‖1 = 1 (2)

diag(α) � Q (3)
Q ◦ F = Q (4)

α ≥ 0. (5)

We can bring this program into a particularly nice form by letting β[i] = 1/
√

α[i], and Q′ =
Q ◦ ββT . Then the condition α � Q can be rewritten as I � Q′, or in other words ‖Q′‖ ≤ 1.
Letting γ[i] =

√
α[i], the objective function then becomes

〈Q, A′〉 = 〈Q′ ◦ γγT , A′〉 = γT (Q′ ◦ A′)γ.

The condition Tr(α) = 1 means that γ is a unit vector. As γ is otherwise unconstrained, we obtain
the first equivalence of the theorem:

γ2(A) = max
Q

‖Q ◦ A‖
‖Q‖
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This shows that γ2 is equivalent to a quantity known in the matrix analysis literature as the
Hadamard product operator norm [Mat93]. The duality of the spectral norm and trace norm easily
gives that this is equivalent to the Hadamard product trace norm (see [Mat93] for a proof):

γ2(A) = max
Q

‖Q ◦ A‖tr

‖Q‖tr

= max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖tr (6)

2

The fact that (γ2(A))2 ≤ rk(A) implies its usefulness for communication complexity:

Theorem 10 (Linial-Shraibman [LS07]) Let f be a Boolean function and Mf [x, y] = (−1)f(x,y).
Then

2 log γ2(Mf ) ≤ D(f).

2.3.3 Dual norm of γ2

The norm dual to γ2 will also play a key role in our study of discrepancy. By definition of a dual
norm, we have

γ2(A) = max
B:γ∗2 (B)≤1

〈A, B〉.

Since the dual norm is uniquely defined, we can read off the conditions for γ∗2(B) ≤ 1 from
Equations (2)–(5) in the formulation of γ2(A). This tells us

γ∗2(B) = min
α

{
1

2
(1T α) : diag(α)−B′ � 0

}
(7)

We can interpret the value of this program as follows:

Theorem 11
γ∗2(B) = min

X,Y
XT Y =B

1

2

(
‖X‖2

F + ‖Y ‖2
F

)
= min

X,Y
XT Y =B

‖X‖F‖Y ‖F

where the min is taken over X,Y with orthogonal columns.

Proof: Let α be the optimal solution to (7). As diag(α) − B′ � 0, we have a factorization
diag(α)−B′ = MT M . Write M as

M =

[
X
Y

]
.

Then we see that XT Y = B and the columns of X, Y are orthogonal as B′ is block anti-diagonal.
The value of the program is simply (1/2)(‖X‖2

F + ‖Y ‖2
F ).

In the other direction, for X,Y such that XT Y = B, we define the vector α as α[i] = ‖XT
i ‖2 if

i ≤ m and α[i] = ‖Yi‖2 otherwise. A similar argument to the above shows that diag(α)−B′ � 0,
and the objective function is 1

2
(‖X‖2

F + ‖Y ‖2
F ).

To see the equivalence between the additive and multiplicative forms of the bound, notice that
if X, Y is a feasible solution, then so is cX, (1/c)Y for a constant c. Thus we see that in the
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additive form of the bound, the optimum can be achieved with ‖X‖2
F = ‖Y ‖2

F , and similarly for
the multiplicative form. The equivalence follows. 2

2.3.4 Approximate versions of γ2

To talk about randomized communication models, we need to go to an approximate version of γ2.
Linial and Shraibman [LS07] define

Definition 12 Let A be a sign matrix, and α ≥ 1 .

γα
2 = min

X,Y :α≥(XY ◦A)≥1
r(X)c(Y ).

An interesting limiting case is where XY simply has everywhere the same sign as A.

γ∞2 (A) = min
X,Y :(XY ◦A)≥1

r(X)c(Y )

As we did with γ2, we can represent γα
2 and γ∞2 as semidefinite programs and dualize to obtain

equivalent max formulations, which are more useful for proving lower bounds. We start with γ∞2
as it is simpler.

Theorem 13 Let A be a sign matrix.

γ∞2 (A) = max
Q:Q◦A≥0

‖A ◦Q‖
‖Q‖

.

Notice that this is the same as the definition of γ2(A) except for the restriction that Q ◦A ≥ 0. We
similarly obtain the following max formulation of γα

2 .

Theorem 14 Let A be a sign matrix and ε ≥ 0.

γ1+ε
2 (A) = max

Q

‖(1 + ε/2)Q ◦ A− (ε/2)|Q|‖
‖Q‖

(8)

where |Q| denotes the matrix whose (x, y) entry is |Q[x, y]|.

Proof: The theorem is obtained by writing the definition of γα
2 as a semidefinite programming and

dualizing. The primal problem can be written as

min η

X[i, i] ≤ η

X � 0

αF ≥ X ◦ A′ ≥ F

9



Again in a straightforward way we can form the dual of this program:

max 〈Q1 −Q2, F 〉 − (α− 1)〈Q2, F 〉
Tr(β) = 1

β � (Q1 −Q2) ◦ A′

β, Q1, Q2 ≥ 0,

where β is a diagonal matrix. Notice that as α → ∞ in the optimal solution Q2 → 0 and so we
recover the dual program for γ∞2 .

We can argue that in the optimal solution to this program, Q1, Q2 will be disjoint. For if
Q1[x, y]−Q2[x, y] = a ≥ 0 then we set Q′1[x, y] = a and Q′2[x, y] = 0 and increase the objective
function. Similarly, if Q1[x, y] − Q2[x, y] = a < 0 we set Q′1[x, y] = 0 and Q′2[x, y] = −a ≤
Q2[x, y] and increase the objective function.

Let ε = α− 1. In light of this observation, we can let Q = Q1 −Q2 be unconstrained and our
objective function becomes 〈(1 + ε/2)Q− ε/2|Q|, F 〉, as the entrywise absolute value of Q in our
case is |Q| = Q1 +Q2. As with γ2 above, we can reformulate γα

2 (A) in terms of spectral norms. 2

Linial and Shraibman [LS07] show that γα
2 can be used to lower bound quantum communica-

tion complexity with entanglement.

Theorem 15 (Linial and Shraibman) Let A be a sign matrix, and ε ≥ 0. Then

Q∗ε(A) ≥ log γαε
2 − log αε − 2,

where αε = 1
1−2ε

In his seminal result showing a Ω(
√

n) lower bound on the quantum communication com-
plexity of disjointness, Razborov [Raz03] essentially used a “uniform” version of γα

2 . Namely, if
A is a |X|-by-|Y | matrix, we can in particular lower bound the spectral norm in the numerator
of Equation (8) by considering uniform unit vectors x of length |X| and y of length |Y | where
x[i] = 1/

√
|X| and y[i] = 1/

√
|Y |. Then we have

‖(1 + ε/2)Q ◦ A− (ε/2)|Q|‖ ≥ xT ((1 + ε/2)Q ◦ A− (ε/2)|Q|)y

=
〈(1 + ε/2)Q,A〉 − ε/2‖Q‖1√

|X||Y |
,

and so

γ1+ε
2 (A) ≥ max

Q:‖Q‖1=1

〈(1 + ε/2)Q,A〉 − ε/2

‖Q‖
√
|X||Y |

Sherstov [She07a] also uses this bound in simplifying Razborov’s proof, giving an extremely ele-
gant way to choose the matrix Q for a wide class of sign matrices A.
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3 Relation of γ2 to discrepancy
In looking at the definition of discP (A), we see that it is a quadratic program with quadratic con-
straints. Such problems are in general NP-hard to compute. A (now) common approach for dealing
with NP-hard problems is to consider a semidefinite relaxation of the problem. In fact, Alon and
Naor [AN06] do exactly this in developing a constant factor approximation algorithm for the cut
norm. While we do not need the fact that semidefinite programs can be solved in polynomial time,
we do want to take advantage of the fact that semidefinite programs often have the property of
behaving nicely under product of instances. While not always the case, this property has been used
many times in computer science, for example [Lov79, FL92, CSUU07].

As shown by Linial and Shraibman [LS06], it turns out that the natural semidefinite relaxations
of discP (A) and disc(A) are given by γ∗2(A ◦ P ) and γ∞2 (A), respectively.

Theorem 16 (Linial and Shraibman) Let A, B be sign matrices. Then

1

8
γ∗2(A ◦ P ) ≤ discP (A) ≤ γ∗2(A ◦ P )

1

8

1

γ∞2 (A)
≤ disc(A) ≤ 1

γ∞2 (A)

4 Product theorems for γ2

In this section, we show that γ2, γ
∗
2 , and γ∞2 all behave nicely under the tensor product of their

arguments. This, together with Theorem 16, will immediately give our main results.

Theorem 17 Let A, B be real matrices. Then

1. γ2(A⊗B) = γ2(A)γ2(B)

2. γ∞2 (A⊗B) = γ∞2 (A)γ∞2 (B)

3. γ∗2(A⊗B) = γ∗2(A)γ∗2(B).

Item (3) has been previously shown by [CSUU07]. The following easy lemma will be useful
in the proof of the theorem.

Lemma 18 Let ‖ · ‖ be a norm on Euclidean space. If for every x ∈ Rm,y ∈ Rn

‖x⊗ y‖ ≤ ‖x‖‖y‖,

then, for every α ∈ Rm and β ∈ Rn

‖α⊗ β‖∗ ≥ ‖α‖∗‖β‖∗,

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
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Proof: For a vector γ denote by xγ a vector satisfying ‖xγ‖ = 1 and

〈γ, xγ〉 = max
x∈Rn,‖x‖=1

〈γ, x〉 = ‖γ‖∗.

Then, for every α ∈ Rm and β ∈ Rn

‖α⊗ β‖∗ = max
x∈Rmn,‖x‖=1

〈α⊗ β, x〉

≥ 〈α⊗ β, xα ⊗ xβ〉
= 〈α, xα〉〈β, xβ〉
= ‖α‖∗‖β‖∗.

For the first inequality recall that ‖xα ⊗ xβ‖ ≤ ‖xα‖‖xβ‖ = 1. 2

Now we are ready for the proof of Theorem 17
Proof of Theorem 17: We will first show items 1 and 2 .

To see γ2(A ⊗ B) ≥ γ2(A)γ2(B), let QA be a matrix with ‖QA‖ = 1, such that γ2(A) =
‖A ◦ QA‖, and similarly let QB satisfy ‖QB‖ = 1 and γ2(B) = ‖B ◦ QB‖. Now consider the
matrix QA ⊗QB. Notice that ‖QA ⊗QB‖ = 1. Thus

γ2(A⊗B) ≥ ‖(A⊗B) ◦ (QA ⊗QB)‖ = ‖(A ◦QA)⊗ (B ◦QB)‖ = ‖A ◦QA‖‖B ◦QB‖.

The same proof shows that γ∞2 (A ⊗ B) ≥ γ∞2 (A)γ∞2 (B) with the additional observation that
if QA ◦ A ≥ 0 and QB ◦B ≥ 0 then (QA ⊗QB) ◦ (A⊗B) ≥ 0.

For the other direction, we use the min formulation of γ2. Let XA, YA be such that XAYA =
A and γ2(A) = r(XA)c(YA) and similarly let XB, YB be such that XBYB = B and γ2(B) =
r(XB)c(YB). Then

(XA ⊗XB)(YA ⊗ YB) = A⊗B

gives a factorization of A ⊗ B, and r(XA ⊗ XB) = r(XA)r(XB) and similarly c(YA ⊗ YB) =
c(YA)c(YB).

The same proof shows that γ∞2 (A ⊗ B) ≤ γ∞2 (A)γ∞2 (B) with the additional observation that
if XAYA ◦ A ≥ 1 and XBYB ◦B ≥ 1 then (XA ⊗XB)(YA ⊗ YB) ◦ (A⊗B) ≥ 1.

We now turn to item 3. As we have already shown γ2(A ⊗ B) ≤ γ2(A)γ2(B), thus by
Lemma 18 it suffices to show that γ∗2(A⊗B) ≤ γ∗2(A)γ∗2(B).

To this end, let XA, YA be an optimal factorization for A and similarly XB, YB for B. That
is, XT

AYA = A, XT
BYB = B, the columns of XA, YA, XB, YB are orthogonal, and γ∗2(A) =

‖XA‖F‖YA‖F and γ∗2(B) = ‖XB‖F‖YB‖F .
Now consider the factorization (XT

A ⊗ XT
B)(YA ⊗ YB) = A ⊗ B. It is easy to check that the

columns of XA ⊗XB and YA ⊗ YB remain orthogonal, and so

γ∗2(A⊗B) ≤ ‖XA ⊗XB‖F‖YA ⊗ YB‖F

= ‖XA‖F‖YA‖F‖XB‖F‖YB‖F

= γ∗2(A)γ∗2(B).

2
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5 Direct product theorem for discrepancy
Shaltiel showed a direct product theorem for discrepancy under the uniform distribution as follows:

discU⊗k(A⊗k) = O(discU(A)k/3)

Our first result generalizes and improves Shaltiel’s result to give an optimal product theorem, up
to constant factors.

Theorem 19 For any sign matrices A, B and probability distributions on their entries P, Q

discP (A)discQ(B) ≤ discP⊗Q(A⊗B) ≤ 64 discP (A)discQ(B)

Proof: It follows directly from the definition of discrepancy that

discP (A)discQ(B) ≤ discP⊗Q(A⊗B).

For the other inequality, we have

discP⊗Q(A⊗B) ≤ γ∗2((A⊗B) ◦ (P ⊗Q))

= γ∗2((A ◦ P )⊗ (B ◦Q))

= γ∗2(A ◦ P )γ∗2(B ◦Q)

≤ 64 discP (A)discQ(B)

2

A simple example shows that we cannot expect a perfect product theorem. Let H be the 2-by-2
Hadamard matrix

H =

[
1 1
1 −1

]
which also represents the communication problem inner product on one bit. It is not too difficult
to verify disc(H) = discU(H) = 1/2, where U represents the uniform distribution. On the other
hand discU⊗U(H ⊗H) ≥ 5/16 as witnessed by the vector x = [1, 1, 1, 0].

Shaltiel also asked whether a direct product theorem holds for general discrepancy disc(A) =
minP discP (A). The function inner product can also be used here to show we cannot expect a
perfect product theorem. As stated above, for the inner product function on one bit, disc(H) = 1/2.
Thus if discrepancy obeyed a perfect product theorem, then, disc(H⊗k) = 2−k. On the other hand,
γ∞2 (H⊗k) = 2k/2—for the upper bound look at the trivial factorization IH⊗k, and for the lower
bound take the matrix Q to be H⊗k itself. Thus we obtain a contradiction for sufficiently large k
as γ∞2 (A) and 1/disc(A) differ by at most a multiplicative factor of 8.

Our next theorem shows that this example is nearly the largest violation possible.

13



Theorem 20 Let A, B be sign matrices. Then

1

8
disc(A)disc(B) ≤ disc(A⊗B) ≤ 64 disc(A)disc(B).

Proof: By Theorem 16 and Theorem 17 we have

disc(A⊗B) ≤ 1

γ∞2 (A⊗B)
=

1

γ∞2 (A)γ∞2 (B)
≤ 64 disc(A)disc(B).

Similarly,

disc(A⊗B) ≥ 1

8

1

γ∞2 (A⊗B)
=

1

8

1

γ∞2 (A)γ∞2 (B)
≥ 1

8
disc(A)disc(B)

2

These two theorems taken together mean that for a tensor product A ⊗ B there is a tensor
product distribution P ⊗ Q that gives a nearly optimal bound for discrepancy. We state this as a
corollary:

Corollary 21 Let A, B be sign matrices. Then

1

512
discP⊗Q(A⊗B) ≤ disc(A⊗B) ≤ 64 discP⊗Q(A⊗B),

where P is the optimal distribution for disc(A) and Q is the optimal distribution for disc(B).

5.1 Applications
Now we discuss some applications of our product theorem for discrepancy. We first show how our
results give a strong direct product theorem in distributional complexity, for bounds shown by the
discrepancy method.

Theorem 22 Let f : X × Y → {0, 1}n be a Boolean function and P a probability distribution
over X × Y . If Corrc,P (Mf ) ≤ w is proved by the discrepancy method (Fact 5), then

Corrkc,P⊗k(M⊗k
f ) ≤ (8w)k

Proof: By generalizing Theorem 19 to tensor products of more matrices,

Corrkc,P⊗k(M⊗k
f ) ≤ 2kcdiscP⊗k(M⊗k

f )

≤ 2kc(8 · discP (Mf ))
k

≤ (8 · 2cdiscP (Mf ))
k
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2

This is a strong direct product theorem as even with k times the original amount c of commu-
nication, the correlation still decreases exponentially. Note, however, that we can only show this
for bounds shown by the discrepancy method—it remains an interesting open problem if a direct
product theorem holds for distributional complexity in general.

As results of Klauck (stated in our Theorem 7) show that discrepancy captures the complexity
of weakly-unbounded error protocols, we can show an unconditional direct sum theorem for this
entire class.

Theorem 23 Let fi : {0, 1}n × {0, 1}n → {0, 1} be Boolean functions, for 1 ≤ i ≤ k. Then

UPC

(
k⊕

i=1

fi

)
≥ 1

3

(
k∑

i=1

UPC(fi)

)
− k

3
log n−O(1).

Similarly one also obtains direct sum results for lower bounds on randomized or quantum commu-
nication complexity with entanglement shown via the discrepancy method.

5.2 Connections to recent work
There have been several recent papers which discuss issues related to those here. We now explain
some of the connections between our work and these results.

Viola and Wigderson [VW07] study direct product theorems for, among other things, multi-
party communication complexity. For the two-party case, they are able to recover Shaltiel’s result,
with a slightly worse constant in the exponent. The quantity which they bound is correlation with
two-bit protocols, which they remark is equal to discrepancy, up to a constant factor. Indeed, in our
language, the maximum correlation of a sign matrix A with a two-bit protocol under a distribution
P is exactly ‖A ◦ P‖∞→1. This is because a two-bit protocol in the ±1 representation is described
by a rank one sign matrix.

The infinity-to-one norm also plays an important role in a special class of two-prover games
known as XOR games. Here the verifier wants to evaluate some function f : X × Y → {−1, 1},
and with probability P [x, y], sends question x to Alice and question y to Bob. The provers Alice
and Bob are all powerful, but cannot communicate. Alice and Bob send responses ax, by ∈ {−1, 1}
back to the verifier who checks if ax · by = f(x, y). Here we see that a strategy of Alice is given
by a sign vector a of length |S|, and similarly for Bob. Thus the maximum correlation the provers
can achieve with f is

max
a∈{−1,1}|S|,b∈{−1,1}|T |

aT (Mf ◦ P )b,

which is exactly ‖Mf ◦ P‖∞→1.
Two-prover XOR games have also been studied where the provers are allowed to share entan-

glement. In this case, results of Tsirelson [Tsi87] show that the best correlation achievable can
be described by a semidefinite program [CHTW04]. In fact, the best correlation achievable by
entangled provers under distribution P turns out to be given exactly by γ∗2(Mf ◦ P ). In studying a
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parallel repetition theorem for XOR games with entanglement, [CSUU07] have already shown, in
our language, that γ∗2(A⊗B) = γ∗2(A)γ∗2(B).

This connection to XOR games also gives another possible interpretation of the quantity γ∞2 (A).
The best correlation the provers can achieve with Mf under the “hardest” probability distribution
P is given by 1/γ∞2 (A).

Finally, inspired by the work of [CSUU07], Mittal and Szegedy [MS07] have begun to develop
a general theory of when semidefinite programs obey a product theorem. While γ2 and γ∗2 fit into
their framework, interestingly γ∞2 does not.

6 Conclusion
We have shown a tight product theorem for discrepancy by looking at semidefinite relaxation of
discrepancy which gives a constant factor approximation, and which composes perfectly under
tensor product. With the great success of semidefinite programming in approximation algorithms
we feel that such an approach should find further applications.

Many open questions remain. Can one show a product theorem for γε
2? We have only been able

to show a very weak result in this direction:

γ
ε2/2(1+ε)
2 (A⊗ A) ≥ γε

2(A)γε
2(A)

It would be nice to continue in the line of work of Mittal and Szegedy [MS07] to understand
what conditions are necessary and sufficient for a semidefinite program to obey a product rule.
While their sufficient condition captures γ2, γ

∗
2 , it does not yet work for programs like γ∞2 , or the

semidefinite relaxation of two-prover games studied by Feige and Lovasz [FL92].
Finally, an outstanding open question which remains is if a direct product theorem holds for

the randomized communication complexity of disjointness. Razborov’s [Raz92] proof of the Ω(n)
lower bound for disjointness uses a one-sided version of discrepancy under a non-product distri-
bution. Could a similar proof technique apply by first characterizing one sided discrepancy as a
semidefinite program?
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