Disjointness is hard in the multi-party number-on-the-forehead model

Troy Lee Rutgers University

Adi Shraibman Weizmann Institute of Science

• Set intersection: Alice holds $x \in \{0,1\}^n$, Bob $y \in \{0,1\}^n$. Do they share a common element?

- Set intersection: Alice holds $x \in \{0,1\}^n$, Bob $y \in \{0,1\}^n$. Do they share a common element?
- Deterministic communication complexity \boldsymbol{n} bits

- Set intersection: Alice holds $x \in \{0,1\}^n$, Bob $y \in \{0,1\}^n$. Do they share a common element?
- Deterministic communication complexity \boldsymbol{n} bits
- Nondeterministic complexity is $O(\log n)$.

- Set intersection: Alice holds $x \in \{0,1\}^n$, Bob $y \in \{0,1\}^n$. Do they share a common element?
- Deterministic communication complexity n bits
- Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]

- Set intersection: Alice holds $x \in \{0,1\}^n$, Bob $y \in \{0,1\}^n$. Do they share a common element?
- Deterministic communication complexity n bits
- Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]
- Quantum complexity $\Theta(\sqrt{n})$ [lower Raz03, upper AA03]

Number-on-the-forehead model

- k-players, input x_1, \ldots, x_k . Player i knows everything but x_i .
- Large overlap in information makes showing lower bounds difficult.
- Lower bounds have application to powerful models like circuit complexity and complexity of proof systems.
- Best lower bounds are of the form $n/2^k$. Bound of $n/2^{2k}$ for generalized inner product function $\oplus (x_1 \wedge \ldots \wedge x_k)$ [BNS89].

• Best lower bound $\Omega(\frac{\log n}{k-1})$, and best upper bound $O(kn/2^k)$ [lower Tes02, BPSW06, upper Gro94].

- Best lower bound $\Omega(\frac{\log n}{k-1})$, and best upper bound $O(kn/2^k)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method."

- Best lower bound $\Omega(\frac{\log n}{k-1})$, and best upper bound $O(kn/2^k)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of $O(\log n)$.

- Best lower bound $\Omega(\frac{\log n}{k-1})$, and best upper bound $O(kn/2^k)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of O(log n).
- Researchers have studied restricted models—bound of $n^{1/3}$ for three players where first player speaks and dies [BPSW06]. Bound of $n^{1/k}/k^k$ in one-way model [VW07].

Our results

• We show disjointness requires randomized communication

$$\Omega\left(\frac{n^{1/(k+1)}}{2^{2^k}}\right)$$

in the general k-party number-on-the-forehead model.

Our results

• We show disjointness requires randomized communication

$$\Omega\left(\frac{n^{1/(k+1)}}{2^{2^k}}\right)$$

in the general k-party number-on-the-forehead model.

• Chattopadhyay and Ada independently obtained similar results

Our results

• We show disjointness requires randomized communication

$$\Omega\left(\frac{n^{1/(k+1)}}{2^{2^k}}\right)$$

in the general k-party number-on-the-forehead model.

- Chattopadhyay and Ada independently obtained similar results
- Separates multiparty communication complexity versions of NP and BPP for up to $k = \log \log n O(\log \log \log n)$ many players.

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.
- Beame, Pitassi, and Segerlind show that lower bounds on NOF disjointness imply lower bounds for a very general class of proof systems, including the above [BPS06].

Tree-like semantically entailed proof systems

- Say trying to show a CNF formula ϕ is not satisfiable
- Refutation is a binary tree with nodes labeled by degree d polynomial inequalities and derives $0 \ge 1$.
- Axioms are clauses of ϕ , represented as inequalities.
- Derivation rule is Boolean soundness: if every 0/1 assignment which satisfies f and g also satisfies h, then one may conclude h from f, g.

Example:
$$(a \lor b) \land (\neg a \lor \neg b) \land (\neg a \lor b) \land (a \lor \neg b)$$

Application to proof systems

- Via [BPS06] and our results on disjointness, we obtain subexponential lower bounds on the size of tree-like degree d semantically entailed proofs needed to refute certain CNFs for any constant d.
- Examples: cutting planes (d = 1), Lovász-Schrijver systems (d = 2).
- Exponential bounds known for (general) cutting planes [Pud97] and tree-like Lovász-Schrijver systems [Kl06], but rely heavily on specific properties of these proof systems. Even for d = 2 no nontrivial bounds were known on semantically entailed proof systems.

Discrepancy method: two-party

• Recall for two players, letting $A[x, y] = (-1)^{f(x, y)}$.

$$\operatorname{disc}_{P}(A) = \max_{\substack{x \in \{0,1\}^{|X|} \\ y \in \{0,1\}^{|Y|}}} |x^{T}(A \circ P)y|$$

Discrepancy method: two-party

• Recall for two players, letting $A[x, y] = (-1)^{f(x, y)}$.

$$\operatorname{disc}_{P}(A) = \max_{\substack{x \in \{0,1\}^{|X|} \\ y \in \{0,1\}^{|Y|}}} |x^{T}(A \circ P)y|$$
$$= \max_{C} |\langle A \circ P, C \rangle|$$

where C is a combinatorial rectangle.

Cylinder intersections

- Analog of combinatorial rectangle in multiparty case is a cylinder intersection
- Action of player *i* does not depend on x_i . Described by a function $\phi^i(x_1, \ldots, x_k)$ invariant under setting of x_i .
- Cylinder intersection $C = \phi^1(x_1, \ldots, x_k) \cdots \phi^k(x_1, \ldots, x_k)$ where each ϕ^i is a 0/1 valued function which does not depend on x_i .
- A successful c-bit NOF protocol decomposes communication tensor into 2^c many monochromatic cylinder intersections.

Discrepancy method: multi-party

• In the multiparty case, $A[x_1,\ldots,x_k] = (-1)^{f(x_1,\ldots,x_k)}$ becomes communication tensor

$$\operatorname{disc}_{P}(A) = \max_{\substack{C \\ \text{cylinder intersection}}} |\langle A \circ P, C \rangle|$$

• Function is hard if discrepancy is small: $R_{1/3}(A) = \Omega(1/\operatorname{disc}(A))$ where $\operatorname{disc}(A) = \min_P \operatorname{disc}_P(A)$.

Rewriting discrepancy

Rewriting discrepancy

$$\frac{1}{\operatorname{disc}(A)} = \max_{\substack{P\\\ell_1(P)=1, P \ge 0}} \frac{|\langle A, A \circ P \rangle|}{\operatorname{disc}_P(A)}$$
$$= \max_{\substack{P:P \ge 0}} \frac{|\langle A, A \circ P \rangle|}{\operatorname{disc}_P(A)}$$

Rewriting discrepancy

$$\frac{1}{\operatorname{disc}(A)} = \max_{\substack{P\\\ell_1(P)=1, P \ge 0}} \frac{|\langle A, A \circ P \rangle|}{\operatorname{disc}_P(A)}$$
$$= \max_{\substack{P:P \ge 0}} \frac{|\langle A, A \circ P \rangle|}{\operatorname{disc}_P(A)}$$
$$= \max_{\substack{Q:A \circ Q \ge 0}} \frac{|\langle A, Q \rangle|}{\mu^*(Q)}$$

where we define $\operatorname{disc}_P(A) = \mu^*(A \circ P)$.

Norm based approach

• Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$\mu(A) = \max_{Q} \frac{|\langle A, Q \rangle|}{\mu^*(Q)}$$

Norm based approach

• Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$\mu(A) = \max_{Q} \frac{|\langle A, Q \rangle|}{\mu^*(Q)}$$

• This remains a lower bound on communication complexity—If A correlates with Q and Q is hard, then A must be hard as well.

Norm based approach

 Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$\mu(A) = \max_{Q} \frac{|\langle A, Q \rangle|}{\mu^*(Q)}$$

- This remains a lower bound on communication complexity—If A correlates with Q and Q is hard, then A must be hard as well.
- For two parties, μ norm is equal to γ_2 norm, up to constant factors.
- Difficult part of showing lower bounds is how to choose Q.

Pattern matrix method

- Pattern matrix method of [She07, She08], and generalization to multiparty case by [Cha07], reduces high dimensional task of choosing Q to a one-dimensional task.
- Focus on a structured subtensor A of disjointness $OR(x_1 \land \ldots \land x_k)$.
- Choose Q to be similarly structured subtensor of q(x₁ ∧ ... ∧ x_k). This structure gives ⟨A, Q⟩ ~ ⟨OR, q⟩.
- Degree/Discrepancy theorem: if q has pure high degree, $\mu^*(Q)$ (or discrepancy) will be small.

Pattern matrix method

- Pattern matrix method of [She07, She08], and generalization to multiparty case by [Cha07], reduces high dimensional task of choosing Q to a one-dimensional task.
- Focus on a structured subtensor A of disjointness $OR(x_1 \land \ldots \land x_k)$.
- Choose Q to be similarly structured subtensor of q(x₁ ∧ ... ∧ x_k). This structure gives ⟨A, Q⟩ ~ ⟨OR, q⟩.
- Degree/Discrepancy theorem: if q has pure high degree, $\mu^*(Q)$ (or discrepancy) will be small. Use the original (and still only) technique of [BNS92] to upper bound multiparty discrepancy.

Conclusion

- Beame and Huynh-Ngoc recently show a bound of $n^{\Omega(1/k)}/2^{O(k)}$ on complexity of an AC⁰ function. By reduction they get non-trivial bounds on disjointness for up to $(\log n)^{1/3}$ players.
- They use a stronger property of the function, going beyond just its approximate degree.
- Follow-up work [LSS08] extends γ_2 to the multiparty case to lower bound multiparty quantum communication. We show that k-party μ and γ_2 are related up to multiplicative factor 2^k and can thus transfer bounds shown here and by discrepancy method to the quantum case.