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• Set intersection: Alice holds x ∈ {0, 1}n, Bob y ∈ {0, 1}n. Do they
share a common element?

• Deterministic communication complexity n bits

• Nondeterministic complexity is O(log n).

• Randomized complexity Θ(n) [KS87, Raz92]

• Quantum complexity Θ(
√

n) [lower Raz03, upper AA03]



Number-on-the-forehead model

• k-players, input x1, . . . , xk. Player i knows everything but xi.

• Large overlap in information makes showing lower bounds difficult.

• Lower bounds have application to powerful models like circuit complexity
and complexity of proof systems.

• Best lower bounds are of the form n/2k. Bound of n/22k for generalized
inner product function ⊕(x1 ∧ . . . ∧ xk) [BNS89].
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• Best lower bound Ω(log n
k−1 ), and best upper bound O(kn/2k) [lower Tes02,

BPSW06, upper Gro94].

• Kushilevitz and Nisan: “The only technique from two-party complexity
that generalizes to multiparty complexity is the discrepancy method.”
For disjointness, discrepancy can only show bounds of O(log n).

• Researchers have studied restricted models—bound of n1/3 for three
players where first player speaks and dies [BPSW06]. Bound of n1/k/kk

in one-way model [VW07].
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• We show disjointness requires randomized communication

Ω
(

n1/(k+1)
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)
in the general k-party number-on-the-forehead model.

• Chattopadhyay and Ada independently obtained similar results

• Separates multiparty communication complexity versions of NP and BPP
for up to k = log log n−O(log log log n) many players.
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fare on NP-complete problems.
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Application to proof systems

• As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

• One way to formalize this is through proof complexity: for example
cutting planes, Lovász-Schrijver proof systems.

• Beame, Pitassi, and Segerlind show that lower bounds on NOF
disjointness imply lower bounds for a very general class of proof systems,
including the above [BPS06].



Tree-like semantically entailed proof systems

• Say trying to show a CNF formula φ is not satisfiable

• Refutation is a binary tree with nodes labeled by degree d polynomial
inequalities and derives 0 ≥ 1.

• Axioms are clauses of φ, represented as inequalities.

• Derivation rule is Boolean soundness: if every 0/1 assignment which
satisfies f and g also satisfies h, then one may conclude h from f, g.



Example: (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b)

a(1-a)+b(1-b)+
a(1-b)+b(1-a) >= 1

a(1-a)+b(1-b)+
ba+(1-a)(1-b) >= 1

a+b >= 1 1-a+1-b >= 1 1-a+b >= 1 a+1-b >= 1

a(1-b)+b(1-a) >= 1 ab+(1-a)(1-b) >= 1

1 >= 2



Application to proof systems

• Via [BPS06] and our results on disjointness, we obtain subexponential
lower bounds on the size of tree-like degree d semantically entailed proofs
needed to refute certain CNFs for any constant d.

• Examples: cutting planes (d = 1), Lovász-Schrijver systems (d = 2).

• Exponential bounds known for (general) cutting planes [Pud97] and
tree-like Lovász-Schrijver systems [KI06], but rely heavily on specific
properties of these proof systems. Even for d = 2 no nontrivial bounds
were known on semantically entailed proof systems.
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• Recall for two players, letting A[x, y] = (−1)f(x,y).

discP (A) = max
x∈{0,1}|X|

y∈{0,1}|Y |

|xT (A ◦ P )y|

= max
C

|〈A ◦ P,C〉|

where C is a combinatorial rectangle.



Cylinder intersections

• Analog of combinatorial rectangle in multiparty case is a cylinder
intersection

• Action of player i does not depend on xi. Described by a function
φi(x1, . . . , xk) invariant under setting of xi.

• Cylinder intersection C = φ1(x1, . . . , xk) · · ·φk(x1, . . . , xk) where each
φi is a 0/1 valued function which does not depend on xi.

• A successful c-bit NOF protocol decomposes communication tensor into
2c many monochromatic cylinder intersections.



Discrepancy method: multi-party

• In the multiparty case, A[x1, . . . , xk] = (−1)f(x1,...,xk) becomes
communication tensor

discP (A) = max
C

cylinder intersection

|〈A ◦ P,C〉|

• Function is hard if discrepancy is small: R1/3(A) = Ω(1/disc(A)) where
disc(A) = minP discP (A).
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Rewriting discrepancy

1
disc(A)

= max
P

`1(P )=1,P≥0

|〈A,A ◦ P 〉|
discP (A)

= max
P :P≥0

|〈A,A ◦ P 〉|
discP (A)

= max
Q:A◦Q≥0

|〈A,Q〉|
µ∗(Q)

where we define discP (A) = µ∗(A ◦ P ).
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Norm based approach

• Dropping restriction on sign of Q arrive exactly at definition of dual
norm:

µ(A) = max
Q

|〈A,Q〉|
µ∗(Q)

• This remains a lower bound on communication complexity—If A
correlates with Q and Q is hard, then A must be hard as well.

• For two parties, µ norm is equal to γ2 norm, up to constant factors.

• Difficult part of showing lower bounds is how to choose Q.



Pattern matrix method

• Pattern matrix method of [She07, She08], and generalization to
multiparty case by [Cha07], reduces high dimensional task of choosing Q
to a one-dimensional task.

• Focus on a structured subtensor A of disjointness OR(x1 ∧ . . . ∧ xk).

• Choose Q to be similarly structured subtensor of q(x1 ∧ . . . ∧ xk). This
structure gives 〈A,Q〉 ∼ 〈OR, q〉.

• Degree/Discrepancy theorem: if q has pure high degree, µ∗(Q) (or
discrepancy) will be small.
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• Pattern matrix method of [She07, She08], and generalization to
multiparty case by [Cha07], reduces high dimensional task of choosing Q
to a one-dimensional task.

• Focus on a structured subtensor A of disjointness OR(x1 ∧ . . . ∧ xk).

• Choose Q to be similarly structured subtensor of q(x1 ∧ . . . ∧ xk). This
structure gives 〈A,Q〉 ∼ 〈OR, q〉.

• Degree/Discrepancy theorem: if q has pure high degree, µ∗(Q) (or
discrepancy) will be small. Use the original (and still only) technique of
[BNS92] to upper bound multiparty discrepancy.



Conclusion

• Beame and Huynh-Ngoc recently show a bound of nΩ(1/k)/2O(k) on
complexity of an AC0 function. By reduction they get non-trivial bounds
on disjointness for up to (log n)1/3 players.

• They use a stronger property of the function, going beyond just its
approximate degree.

• Follow-up work [LSS08] extends γ2 to the multiparty case to lower bound
multiparty quantum communication. We show that k-party µ and γ2

are related up to multiplicative factor 2k and can thus transfer bounds
shown here and by discrepancy method to the quantum case.


