Disjointness is hard in the multi-party number-on-the-forehead model

Troy Lee
Rutgers University
Adi Shraibman
Weizmann Institute of Science

A brief history of disjointness

- Set intersection: Alice holds $x \in\{0,1\}^{n}$, Bob $y \in\{0,1\}^{n}$. Do they share a common element?

A brief history of disjointness

- Set intersection: Alice holds $x \in\{0,1\}^{n}$, Bob $y \in\{0,1\}^{n}$. Do they share a common element?
- Deterministic communication complexity n bits

A brief history of disjointness

- Set intersection: Alice holds $x \in\{0,1\}^{n}$, Bob $y \in\{0,1\}^{n}$. Do they share a common element?
- Deterministic communication complexity n bits
- Nondeterministic complexity is $O(\log n)$.

A brief history of disjointness

- Set intersection: Alice holds $x \in\{0,1\}^{n}$, Bob $y \in\{0,1\}^{n}$. Do they share a common element?
- Deterministic communication complexity n bits
- Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]

A brief history of disjointness

- Set intersection: Alice holds $x \in\{0,1\}^{n}$, Bob $y \in\{0,1\}^{n}$. Do they share a common element?
- Deterministic communication complexity n bits
- Nondeterministic complexity is $O(\log n)$.
- Randomized complexity $\Theta(n)$ [KS87, Raz92]
- Quantum complexity $\Theta(\sqrt{n})$ [lower Raz03, upper AA03]

Number-on-the-forehead model

- k-players, input x_{1}, \ldots, x_{k}. Player i knows everything but x_{i}.
- Large overlap in information makes showing lower bounds difficult.
- Lower bounds have application to powerful models like circuit complexity and complexity of proof systems.
- Best lower bounds are of the form $n / 2^{k}$. Bound of $n / 2^{2 k}$ for generalized inner product function $\oplus\left(x_{1} \wedge \ldots \wedge x_{k}\right)$ [BNS89].

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower Tes02, BPSW06, upper Gro94].

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method."

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of $O(\log n)$.

Disjointness in the number-on-the-forehead model

- Best lower bound $\Omega\left(\frac{\log n}{k-1}\right)$, and best upper bound $O\left(k n / 2^{k}\right)$ [lower Tes02, BPSW06, upper Gro94].
- Kushilevitz and Nisan: "The only technique from two-party complexity that generalizes to multiparty complexity is the discrepancy method." For disjointness, discrepancy can only show bounds of $O(\log n)$.
- Researchers have studied restricted models—bound of $n^{1 / 3}$ for three players where first player speaks and dies [BPSW06]. Bound of $n^{1 / k} / k^{k}$ in one-way model [VW07].

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 /(k+1)}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 /(k+1)}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

- Chattopadhyay and Ada independently obtained similar results

Our results

- We show disjointness requires randomized communication

$$
\Omega\left(\frac{n^{1 /(k+1)}}{2^{2^{k}}}\right)
$$

in the general k-party number-on-the-forehead model.

- Chattopadhyay and Ada independently obtained similar results
- Separates multiparty communication complexity versions of NP and BPP for up to $k=\log \log n-O(\log \log \log n)$ many players.

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.

Application to proof systems

- As linear and semidefinite programming are some of the most sophisticated algorithms we have developed, natural to see how they fare on NP-complete problems.
- One way to formalize this is through proof complexity: for example cutting planes, Lovász-Schrijver proof systems.
- Beame, Pitassi, and Segerlind show that lower bounds on NOF disjointness imply lower bounds for a very general class of proof systems, including the above [BPS06].

Tree-like semantically entailed proof systems

- Say trying to show a CNF formula ϕ is not satisfiable
- Refutation is a binary tree with nodes labeled by degree d polynomial inequalities and derives $0 \geq 1$.
- Axioms are clauses of ϕ, represented as inequalities.
- Derivation rule is Boolean soundness: if every $0 / 1$ assignment which satisfies f and g also satisfies h, then one may conclude h from f, g.

Example: $(a \vee b) \wedge(\neg a \vee \neg b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)$

Application to proof systems

- Via [BPS06] and our results on disjointness, we obtain subexponential lower bounds on the size of tree-like degree d semantically entailed proofs needed to refute certain CNFs for any constant d.
- Examples: cutting planes $(d=1)$, Lovász-Schrijver systems $(d=2)$.
- Exponential bounds known for (general) cutting planes [Pud97] and tree-like Lovász-Schrijver systems [KI06], but rely heavily on specific properties of these proof systems. Even for $d=2$ no nontrivial bounds were known on semantically entailed proof systems.

Discrepancy method: two-party

- Recall for two players, letting $A[x, y]=(-1)^{f(x, y)}$.

$$
\operatorname{disc}_{P}(A)=\max _{\substack{x \in\{0,1\} \\ y \in\{0,1\} \mid}}\left|x^{T}(A \circ P) y\right|
$$

Discrepancy method: two-party

- Recall for two players, letting $A[x, y]=(-1)^{f(x, y)}$.

$$
\begin{aligned}
\operatorname{disc}_{P}(A) & =\max _{\substack{x \in\{0,1\} \\
y \in\{0,1\} \\
|Y|}}\left|x^{T}(A \circ P) y\right| \\
& =\max _{C}|\langle A \circ P, C\rangle|
\end{aligned}
$$

where C is a combinatorial rectangle.

Cylinder intersections

- Analog of combinatorial rectangle in multiparty case is a cylinder intersection
- Action of player i does not depend on x_{i}. Described by a function $\phi^{i}\left(x_{1}, \ldots, x_{k}\right)$ invariant under setting of x_{i}.
- Cylinder intersection $C=\phi^{1}\left(x_{1}, \ldots, x_{k}\right) \cdots \phi^{k}\left(x_{1}, \ldots, x_{k}\right)$ where each ϕ^{i} is a $0 / 1$ valued function which does not depend on x_{i}.
- A successful c-bit NOF protocol decomposes communication tensor into 2^{c} many monochromatic cylinder intersections.

Discrepancy method: multi-party

- In the multiparty case, $A\left[x_{1}, \ldots, x_{k}\right]=(-1)^{f\left(x_{1}, \ldots, x_{k}\right)}$ becomes communication tensor

$$
\operatorname{disc}_{P}(A)=\max _{C}^{\text {cylinder intersection }}|\langle A \circ P, C\rangle|
$$

- Function is hard if discrepancy is small: $R_{1 / 3}(A)=\Omega(1 / \operatorname{disc}(A))$ where $\operatorname{disc}(A)=\min _{P} \operatorname{disc}_{P}(A)$.

Rewriting discrepancy

$$
\frac{1}{\operatorname{disc}(A)}=\max _{\substack{P \\ \ell_{1}(P)=1, P \geq 0}} \frac{|\langle A, A \circ P\rangle|}{\operatorname{disc}_{P}(A)}
$$

Rewriting discrepancy

$$
\begin{aligned}
\frac{1}{\operatorname{disc}(A)} & =\max _{\substack{P \\
\ell_{1}(P)=1, P \geq 0}} \frac{|\langle A, A \circ P\rangle|}{\operatorname{disc}_{P}(A)} \\
& =\max _{P: P \geq 0} \frac{|\langle A, A \circ P\rangle|}{\operatorname{disc}_{P}(A)}
\end{aligned}
$$

Rewriting discrepancy

$$
\begin{aligned}
\frac{1}{\operatorname{disc}(A)} & =\max _{\substack{P \\
\ell_{1}(P)=1, P \geq 0}} \frac{|\langle A, A \circ P\rangle|}{\operatorname{disc}_{P}(A)} \\
& =\max _{P: P \geq 0} \frac{|\langle A, A \circ P\rangle|}{\operatorname{disc}_{P}(A)} \\
& =\max _{Q: A \circ Q \geq 0} \frac{|\langle A, Q\rangle|}{\mu^{*}(Q)}
\end{aligned}
$$

where we define $\operatorname{disc}_{P}(A)=\mu^{*}(A \circ P)$.

Norm based approach

- Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$
\mu(A)=\max _{Q} \frac{|\langle A, Q\rangle|}{\mu^{*}(Q)}
$$

Norm based approach

- Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$
\mu(A)=\max _{Q} \frac{|\langle A, Q\rangle|}{\mu^{*}(Q)}
$$

- This remains a lower bound on communication complexity-If A correlates with Q and Q is hard, then A must be hard as well.

Norm based approach

- Dropping restriction on sign of Q arrive exactly at definition of dual norm:

$$
\mu(A)=\max _{Q} \frac{|\langle A, Q\rangle|}{\mu^{*}(Q)}
$$

- This remains a lower bound on communication complexity-If A correlates with Q and Q is hard, then A must be hard as well.
- For two parties, μ norm is equal to γ_{2} norm, up to constant factors.
- Difficult part of showing lower bounds is how to choose Q.

Pattern matrix method

- Pattern matrix method of [She07, She08], and generalization to multiparty case by [Cha07], reduces high dimensional task of choosing Q to a one-dimensional task.
- Focus on a structured subtensor A of disjointness $\operatorname{OR}\left(x_{1} \wedge \ldots \wedge x_{k}\right)$.
- Choose Q to be similarly structured subtensor of $q\left(x_{1} \wedge \ldots \wedge x_{k}\right)$. This structure gives $\langle A, Q\rangle \sim\langle\mathrm{OR}, q\rangle$.
- Degree/Discrepancy theorem: if q has pure high degree, $\mu^{*}(Q)$ (or discrepancy) will be small.

Pattern matrix method

- Pattern matrix method of [She07, She08], and generalization to multiparty case by [Cha07], reduces high dimensional task of choosing Q to a one-dimensional task.
- Focus on a structured subtensor A of disjointness $\operatorname{OR}\left(x_{1} \wedge \ldots \wedge x_{k}\right)$.
- Choose Q to be similarly structured subtensor of $q\left(x_{1} \wedge \ldots \wedge x_{k}\right)$. This structure gives $\langle A, Q\rangle \sim\langle\mathrm{OR}, q\rangle$.
- Degree/Discrepancy theorem: if q has pure high degree, $\mu^{*}(Q)$ (or discrepancy) will be small. Use the original (and still only) technique of [BNS92] to upper bound multiparty discrepancy.

Conclusion

- Beame and Huynh-Ngoc recently show a bound of $n^{\Omega(1 / k)} / 2^{O(k)}$ on complexity of an AC^{0} function. By reduction they get non-trivial bounds on disjointness for up to $(\log n)^{1 / 3}$ players.
- They use a stronger property of the function, going beyond just its approximate degree.
- Follow-up work [LSS08] extends γ_{2} to the multiparty case to lower bound multiparty quantum communication. We show that k-party μ and γ_{2} are related up to multiplicative factor 2^{k} and can thus transfer bounds shown here and by discrepancy method to the quantum case.

