Resource Bounded Symmetry of Information

Troy Lee
CWI and University of Amsterdam
Andrei Romashchenko
Institute for Information Transmission Problems

Kolmogorov Complexity

- Developed as a way to measure randomness in individual strings
- $C_{T}(x \mid y)=\min _{p}\{|p|: T(p, y)=x\}$
- Invariance Theorem: We define $C(x \mid y)=C_{U}(x \mid y)$ for a universal machine U. This choice affects our definition by at most an additive constant factor.

Symmetry of Information

- $C(x, y)=C(x)+C(y \mid x)$ for any x, y. Proven independently by Kolmogorov and Levin.
- One direction is easy: $C(x, y) \leq C(x)+C(y \mid x)$. The other has clever proof.
- Symmetry of information is a useful tool in the Kolmogorov complexity toolbox. Proofs using symmetry of information are usually difficult to directly replace by counting arguments.

Resource Bounded Symmetry of Information

- $C^{t}(x \mid y)=\min _{p}\{|p|: U(p, y)=x$ in $t(|x|+|y|)$ steps. $\}$
- Standard proof works for exponential time, or polynomial space. Things become interesting for polynomial time bounds.
- Before P and NP, Kolmogorov suggested time bounded symmetry of information as a good way to show exhaustive search cannot be eliminated.
- We call polynomial time symmetry of information the statement: for any polynomial time bound q there exists polynomial q^{\prime} :

$$
C^{q}(x, y) \geq C^{q^{\prime}}(x)+C^{q^{\prime}}(y \mid x)
$$

What is Known

- If $\mathrm{P}=\mathrm{NP}$ then polynomial time symmetry of information holds (Longpré-Watanabe, 95)
- If polynomial time symmetry of information holds, then poly time computable functions can be inverted on large fraction of range (Longpré-Mocas, 93).
$-C^{q}(f(x) \mid x)=O(1)$
- If $C^{q}(x \mid f(x))=O(\log n)$ then we can invert f on $f(x)$.
- Can a weaker form of symmetry of information hold?

Can symmetry of information hold for other complexity measures?

Nondeterministic Printing Complexity

We define $\mathrm{CN}^{t}(x \mid y)$ as the length of a shortest program p such that

- $U_{n}(p, y)$ has at least one accepting path
- $U_{n}(p, y)$ outputs x on every accepting path
- $U_{n}(p, y)$ runs in $O(t(|x|))$ steps.

Similarly we define $\mathrm{CAM}^{t}(x \mid y)$ based on the complexity class AM.

Language Compression Theorems

Language Compression Theorem (Buhrman-L-van Melkebeek, 04):
For any $A \in \mathrm{NP}$, there is a polynomial q s.t. for all $x \in A^{=n}$

- $\mathrm{CN}^{q}(x) \leq \log \left\|A^{=n}\right\|+\tilde{O}\left(\sqrt{\log \left\|A^{=n}\right\|}\right)$
- $\operatorname{CAM}^{q}(x) \leq \log \left\|A^{=n}\right\|+O\left(\log ^{3} n\right)$

A Negative Result

There is an oracle A where

$$
(2-\varepsilon) \mathrm{CN}^{q, A}(x, y) \leq \mathrm{CN}^{q^{\prime}, A}(x)+\mathrm{CN}^{q^{\prime}, A}(y \mid x)
$$

- Notice this is tight as $\mathrm{CN}^{q}(x, y) \geq \max \left\{C N^{q}(x), C N^{q}(y)\right\}$
- Proof uses language compression theorem

The Hard Direction, Prerequisites

To show $C(x, y) \geq C(x)+C(y \mid x)$ we will use three facts:

1. The set $\{x: C(x) \leq m\}$ is of size less than 2^{m+1}.
2. The set $\{x: C(x) \leq m\}$ is recursively enumerable.
3. Language Compression Theorem: For any recursively enumerable set A, and all $x \in A^{=n}, C(x) \leq \log \left\|A^{=n}\right\|+O(\log n)$.

Proof of Symmetry of Information, Resource Unbounded Case

 To show: $C(x, y) \geq C(x)+C(y \mid x)$.Fix $x^{*}, y^{*} \in\{0,1\}^{n}$, and say $C\left(x^{*}, y^{*}\right)=m$.

Proof of Symmetry of Information, Resource Unbounded Case

 To show: $C(x, y) \geq C(x)+C(y \mid x)$.Consider the line $A_{x^{*}}=\left\{y: C\left(x^{*}, y\right) \leq m\right\}$, and say that $2^{k} \leq\left\|A_{x^{*}}\right\|<2^{k+1}$.

Proof of Symmetry of Information, Resource Unbounded Case

 To show: $C(x, y) \geq C(x)+C(y \mid x)$.Consider $B_{k}=\left\{x: \exists \geq 2^{k} y\right.$ such that $\left.C(x, y) \leq m\right\}$.
As $\|A\| \leq 2^{m+1}$, we have $\left\|B_{k}\right\| \leq 2^{m-k+1}$.

Adapting Proof to Resource Bounded Case

How do our three facts translate?

1. We still have $\left\{x: C^{t}(x) \leq m\right\}$ is of size less than 2^{m+1}.
2. If $t(n)$ is polynomial, then the set $\left\{x: C^{t}(x) \leq m\right\}$ is in NP (but probably not in P).
3. For any set $A \in \mathrm{NP}$ there is a polynomial $p(n)$ such that for all $x \in A^{=n}$

$$
\operatorname{CAM}^{p}(x) \leq \log \left\|A^{=n}\right\|+O\left(\log ^{3} n\right)
$$

Symmetry of Information, Resource Bounded Case

Fix $x^{*}, y^{*} \in\{0,1\}^{n}$, let $p(n)$ be a polynomial, and say $C^{p}\left(x^{*}, y^{*}\right)=m$.

Symmetry of Information, Resource Bounded Case

Consider the line $A_{x^{*}}=\left\{y: C^{p}\left(x^{*}, y\right) \leq m\right\}$, and say that $2^{k} \leq\left\|A_{x^{*}}\right\|<2^{k+1}$.

Proof of Symmetry of Information, Resource Bounded Case

Consider $B_{k}=\left\{x: \exists \geq 2^{k} y\right.$ such that $\left.C^{p}(x, y) \leq m\right\}$.
Again $\left\|B_{k}\right\| \leq 2^{m-k+1}$, but how can we decide if $x \in B_{k}$?

Lower Bound Counting and AM

- Sipser's Coding Lemma: If A_{x} is a set in NP then there is a NP predicate M such that
- if $\left\|A_{x}\right\| \geq 2^{k}$ then $\operatorname{Pr}_{r}[M(x, r)=1] \geq 2 / 3$
- if $\left\|A_{x}\right\| \leq 2^{k-1}$ then $\operatorname{Pr}_{r}[M(x, r)=1]<1 / 3$
- Extend Language Compression Theorem to work for these AM "gap" sets: Let $B \subseteq\{0,1\}^{*}$, suppose there is an NP predicate M such that:
- for all $x \in B^{=n}, \operatorname{Pr}_{r}[M(x, r)=1] \geq 2 / 3$
- $\left\|\left\{x: \operatorname{Pr}_{r}[M(x, r)=1]>1 / 3\right\}\right\| \leq 2^{\ell}$

Then for all $x \in B^{=n}, \mathrm{CAM}^{q}(x) \leq \ell+O\left(\log ^{3} n\right)$.

Proof of Symmetry of Information, Resource Bounded Case

$B_{k}=\left\{x: \exists \geq 2^{k} y\right.$ such that $\left.C^{p}(x, y) \leq m\right\}$. If $x \notin B_{k-1}$ then success probability of M is less than $1 / 3$. Thus number of elements accepted with success probability greater than $1 / 3$ is less than 2^{m-k+2}.

What We've Shown

- For any polynomial p and $x, y \in\{0,1\}^{n}$ there is a polynomial q such that

$$
C^{p}(x, y) \geq \operatorname{CAM}^{q}(x)+\operatorname{CAM}^{q}(y \mid x)-O\left(\log ^{3} n\right)
$$

- Recall: It was known that $P=N P$ implies polynomial time symmetry of information
- Thus we obtain polynomial time symmetry of information holds under the (seemingly weaker) assumption: for all $x, y \in\{0,1\}^{n}$,

$$
\begin{equation*}
C^{p}(x \mid y) \leq \operatorname{CAM}^{q}(x \mid y)+O(\log n) \tag{*}
\end{equation*}
$$

- It turns out that $(*)$ implies $\mathrm{P}=\mathrm{NP}$

$$
(*) \Rightarrow \mathrm{P}=\mathrm{NP}
$$

- Recall $(*)=C^{p}(x \mid y) \leq \operatorname{CAM}^{q}(x \mid y)+O(\log n)$
- $C^{p}(x \mid y) \leq \mathrm{CN}^{q}(x \mid y)+O(\log n) \Rightarrow \mathrm{NP}=\mathrm{RP}$ (Buhrman-Fortnow-Laplante, 02)
- let ϕ be formula with exactly one satisfying assignment a. $\operatorname{Then~}^{\mathrm{CN}^{q}}(a \mid \phi)=$ $O(1)$.
- There is a string x^{*} with $C^{q}\left(x^{*}\right)=\left|x^{*}\right|$ and $C^{q^{\prime}, \Sigma_{2}^{p}}\left(x^{*}\right)=O(\log n)$.
- By the collapse, $\mathrm{CAM}^{q^{\prime}}\left(x^{*}\right)=O(\log n)$ and so $C^{p}\left(x^{*}\right)=O(\log n)$ by $(*)$.
- $C^{q}\left(x^{*}\right)=\left|x^{*}\right|$ and $C^{q^{\prime}}\left(x^{*}\right)=O(\log n)$ lets us derandomize RP.

Summary and Open Problems

- $C^{q}(x, y) \geq \mathrm{CAM}^{q^{\prime}}(x)+\operatorname{CAM}^{q^{\prime}}(y \mid x)-O\left(\log ^{3} n\right)$
- Can you improve this to $C^{q}(x, y) \geq \mathrm{CN}^{q^{\prime}}(x)+\mathrm{CN}^{q^{\prime}}(y \mid x)-O(\log n)$?
- Doing this would imply $\mathrm{FP}^{\mathrm{NP}} \|=\mathrm{FP}^{\mathrm{NP}[\log n]} \Rightarrow \mathrm{P}=\mathrm{NP}$
- Does $C^{q}(x \mid y) \leq \mathrm{CN}^{q^{\prime}}(x \mid y)+O(\log n)$ imply $P=N P$?

