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From min to max

• The cost of a “best” algorithm is naturally phrased as a minimization
problem

• Dealing with this universal quantifier is one of the main challenges for
lower bounders

• Norm based framework for showing communication complexity lower
bounds

• Duality allows one to obtain lower bound expressions formulated as
maximization problems



Example: Yao’s principle

• One of the best known examples of this idea is Yao’s minimax principle:

Rε(f) = max
µ

Dµ(f)

• To show lower bounds on randomized communication complexity, suffices
to exhibit a hard distribution for deterministic protocols.

• The first step in many randomized lower bounds.



A few matrix norms

Let A be a matrix. The singular values of A are σi(A) =
√

λi(AAT ).

Define

‖A‖p = `p(σ) =

rk(A)∑
i=1

σi(A)p

1/p
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• Trace norm: ‖A‖1

• Spectral norm: ‖A‖∞

• Frobenius norm ‖A‖2 = (
∑

i,j |Aij|2)1/2
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Example: trace norm

As `1 and `∞ are dual, so too are trace norm and spectral norm:

‖A‖1 = max
B

|〈A,B〉|
‖B‖∞

• Thus to show that the trace norm of A is large, it suffices to find B with
non-negligible inner product with A and small spectral norm.

• We will refer to B as a witness.



Application to communication complexity

• For a function f : X × Y → {−1,+1} we define the communication
matrix Af [x, y] = f(x, y).

• For deterministic communication complexity, one of the best lower bounds
available is log rank:

D(f) ≥ log rk(Af)

• The famous log rank conjecture states this lower bound is polynomially
tight.
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Application to communication complexity

• As the rank of a matrix is equal to the number of non-zero singular
values, we have

‖A‖1 =
rk(A)∑
i=1

σi(A) ≤
√

rk(A)

(∑
i

σ2
i (A)

)1/2

=
√

rk(A)‖A‖2

• For a M -by-N sign matrix ‖A‖2 =
√

MN so we have

2D(f) ≥ rk(Af) ≥ (‖Af‖1)2

MN

Call this the “trace norm method.”



Trace norm method (example)

• Let HN be a N -by-N Hadamard matrix (entries from {−1,+1}).

• Then ‖HN‖1 = N3/2.

• Trace norm method gives bound on rank of N3/N2 = N



Trace norm method (drawback)

• As a complexity measure, the trace norm method suffers one drawback—
it is not monotone. (

HN 1N

1N 1N

)
• Trace norm at most N3/2 + 3N



Trace norm method (drawback)

• As a complexity measure, the trace norm method suffers one drawback—
it is not monotone. (

HN 1N

1N 1N

)
• Trace norm at most N3/2 + 3N

• Trace norm method gives

(N3/2 + 3N)2

4N2

worse bound on whole than on HN submatrix!
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Trace norm method (a fix)

• We can fix this by considering

max
u,v:

‖u‖2=‖v‖2=1

‖A ◦ uvT‖1

• As rk(A ◦ uvT ) ≤ rk(A) we still have

rk(A) ≥
(
‖A ◦ uvT‖1

‖A ◦ uvT‖2

)2



The γ2 norm

• We have arrived at the γ2 norm introduced to communication complexity
by [LMSS07, LS07]

γ2(A) = max
u,v:

‖u‖2=‖v‖2=1

‖A ◦ uvT‖1

• By our previous discussion, for a sign matrix A

rk(A) ≥ max
u,v:

‖u‖2=‖v‖2=1

(
‖A ◦ uvT‖1

‖A ◦ uvT‖2

)2

= γ2(A)2
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γ2 norm: Surprising usefulness

• In matrix analysis known as “Schur product norm,” among others

• Schur (1911) showed that γ2(A) = maxi Aii if A psd.

• The dual norm γ∗2(A) = maxB〈A,B〉/γ2(B) satisfies

sdpval(G) =
1
2

+
γ∗2(G)

2

for XOR game G. Also, sdpval(G) equals value of game where Alice and
Bob share entanglement.

• discP (A) = Θ(γ∗2(A ◦ P )) [Linial, Shraibman 08]



Randomized and quantum communication complexity

• So far it is not clear what we have gained. Many techniques available to
bound matrix rank.

• But for randomized and quantum communication complexity the relevant
measure is no longer rank, but approximation rank. For a sign matrix A:

rkα(A) = min
B

{rk(B) : 1 ≤ A[x, y] ·B[x, y] ≤ α}

• NP-hard? Can be difficult even for basic matrices. Disjointness was
longstanding open problem resolved by [Razborov 03] who showed
optimal bound 2Ω(

√
n) using approximate version of trace norm method.



Approximation rank

• By [Buhrman, de Wolf 01]

Rε(Af) ≥ Qε(Af) ≥ (1/2) log rkαε(Af)

for αε = 1/(1− 2ε).

• Perhaps more plausible than the log rank conjecture: there exists c

Qε(f) ≤ (log rkαε(Af))c



Approximation norms

• We have seen how trace norm and γ2 lower bound rank.

• In a similar fashion to approximation rank, we can define approximation
norms. For an arbitrary norm ||| · ||| let

|||A|||α = min
B

{|||B||| : 1 ≤ A[x, y] ·B[x, y] ≤ α}

• Note that an approximation norm is not itself necessarily a norm

• However, we we can still use duality to obtain a max expression

|||A|||α = max
B

(1 + α)〈A,B〉+ (1− α)`1(B)
2|||B|||∗



Approximate γ2

• From our discussion, for a sign matrix A
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Approximate γ2

• From our discussion, for a sign matrix A

rkα(A) ≥ γα
2 (A)2

α2
≥ (‖A‖α

1 )2

α2MN

• We show that for any sign matrix A and constant α > 1

rkα(A) = O
(
γα
2 (A)2 log(MN)

)3



Remarks

• When α = 1 theorem does not hold. For equality function (sign matrix)
rk(2IN − 1N) ≥ N − 1, but

γ2(2IN − 1N) ≤ 2γ2(IN) + γ2(1N) = 3,

by Schur’s theorem.

• This example also shows that the log N factor is necessary, as
approximation rank of identity matrix is Ω(log N) [Alon 08].



Advantages of γα
2

• γα
2 can be formulated as a max expression

γα
2 (A) = max

B

(1 + α)〈A,B〉+ (1− α)`1(B)
2γ∗2(B)

• γα
2 is polynomial time computable by semidefinite programming

• γα
2 is also known to lower bound quantum communication with shared

entanglement, which was not known for approximation rank.



Proof sketch

• Look at the min formulation of γ2

γ2(A) = min
X,Y :

XT Y =A

c(X)c(Y )

where c(X) is the maximum `2 norm of a column of X.

• Similarly rank can be phrased as

rk(A) = min
X,Y :

XT Y =A

min{d(X), d(Y )}

where d(X) is the number of rows of X.
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First step: dimension reduction

• Look at XTY = A′ factorization realizing γα
2 (A). Say X, Y are K-by-N .

• Know that the columns of X, Y have squared `2 norm at most γ2(A′),
but X, Y might still have many rows...

• Consider RX and RY where R is random matrix of size K ′-by-K for
K ′ = O(γα

2 (A)2 log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX)T

i (RY )j ≈ XT
i Yj will be approximately preserved.

• This shows there is a matrix A′′ = (RX)T (RY ) which is, say, a 2α
approximation to A and has rank O(γα

2 (A)2 log N).



Second step: Error reduction

• Now we have a matrix A′′ which is of the desired rank, but is only a 2α
approximation to A, whereas we wanted an α approximation of A.

• Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of
the matrix. Can show rk(p(A)) ≤ (d+1)rk(A)d for degree d polynomial.

• Taking p to be low degree approximation of sign function makes p(A′′)
better approximation of A. For our purposes, can get by with degree 3
polynomial.

• Completes the proof rkα(A) = O
(
γα
2 (A)2 log(MN)

)3



Norms for multiparty complexity

• In multiparty complexity, have a function f : X1 × . . . × Xk →
{−1,+1}. Instead of communication matrix, have communication tensor
Af [x1, . . . , xk] = f(x1, . . . , xk).

• One difficulty about proving lower bounds is that linear algebraic concepts
like rank, trace norm, spectral norm, either become very difficult to use
or have no analog with tensors.

• Only method known for general model of number-on-the-forehead is
discrepancy method. While can show bounds of n/22k for generalized
inner product [BNS89] for other functions like disjointness can only show
O(log n) bounds.



Norms for multiparty complexity

• Basic fact: A successful c-bit NOF protocol partitions the communication
tensor into at most 2c many monochromatic cylinder intersections.

• This allows us to define our norm

µ(A) = min{
∑

|γi| : A =
∑

γiCi}

Ci is a cylinder intersection.

• We have D(A) ≥ log µ(A). For matrices µ(A) = Θ(γ2(A))

• Also by usual arguments get Rε(A) ≥ µα(A).
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The dual norm

• The dual norm is
µ∗(A) = max

B:µ(B)≤1
|〈A,B〉|

• So we see µ∗(A) = maxC |〈A,C〉| where C is a cylinder intersection.

• discP (A) = µ∗(A ◦ P )

• Bound µα(A) in the following form. Standard discrepancy method is
exactly µ∞

µα(A) = max
B

(1 + α)〈A,B〉+ (1− α)`1(B)
2µ∗(B)



Choosing a witness

• Use framework of pattern matrices [Sherstov 07, 08] and generalization
to pattern tensors in multiparty case [Chattopadhyay 07]: Choose witness
derived from dual polynomial witnessing that f has high approximate
degree.

• Degree/Discrepancy Theorem [Sherstov 07,08 Chattopadhyay 08]:
Pattern tensor derived from function with pure high degree will have
small discrepancy. In multiparty case, this uses [BNS 89] technique of
bounding discrepancy.



Final result

• Final result: Randomized k-party complexity of disjointness

Ω
(

n1/(k+1)

22k

)

• Independently shown by Chattopadhyay and Ada

• Beame and Huynh-Ngoc have recently shown non-trivial lower bounds
on disjointness for up to log1/3 n players (though not as strong as ours
for small k).


