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From min to max

The cost of a “best” algorithm is naturally phrased as a minimization
problem

Dealing with this universal quantifier is one of the main challenges for
lower bounders

Norm based framework for showing communication complexity lower
bounds

Duality allows one to obtain lower bound expressions formulated as
maximization problems



Example: Yao's principle

e One of the best known examples of this idea is Yao's minimax principle:

R.(f) = max D,,(f)

i

e To show lower bounds on randomized communication complexity, suffices
to exhibit a hard distribution for deterministic protocols.

e The first step in many randomized lower bounds.



A few matrix norms

Let A be a matrix. The singular values of A are o;(A4) = \/\;(AAT).
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A few matrix norms

Let A be a matrix. The singular values of A are o;(A4) = \/\;(AAT).

Define

rk(A) 1/p

4l = () = | D ai(ay

e Trace norm: ||Al;

e Spectral norm: ||Al|s

e Frobenius norm [[All2 = (3_; ; |4;]2)1/2
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Example: trace norm

As /1 and /., are dual, so too are trace norm and spectral norm:

|All1 = max
B

e Thus to show that the trace norm of A is large, it suffices to find B with
non-negligible inner product with A and small spectral norm.

e \We will refer to B as a witness.



Application to communication complexity

e For a function f : X xY — {—1,+1} we define the communication
matrix Az, y| = f(z,y).

e For deterministic communication complexity, one of the best lower bounds

available is log rank:
D(f) > logrk(Ay)

e The famous log rank conjecture states this lower bound is polynomially
tight.
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Application to communication complexity

e As the rank of a matrix is equal to the number of non-zero singular
values, we have

rk(A)

1/2
[Allx = Z 0i(A) < /1k(A) (Z 0?%)) = V1k(A)[|All2

e For a M-by-N sign matrix ||All2 = VM N so we have

Agll1)?
5D(f) > 11e( A >(|| f
> rk(dy) = =

Call this the “trace norm method.”



Trace norm method (example)

o Let Hy be a N-by-N Hadamard matrix (entries from {—1,+1}).
e Then |Hyll1 = N3/2.

e Trace norm method gives bound on rank of N°/N? = N



Trace norm method (drawback)

e As a complexity measure, the trace norm method suffers one drawback—

It IS not monotone.
Hy 1y
Iy 1n

e Trace norm at most N3/2 + 3N



Trace norm method (drawback)

e As a complexity measure, the trace norm method suffers one drawback—

It IS not monotone.
Hy 1y
Iy 1n

e Trace norm at most N3/2 + 3N

e Trace norm method gives

4N?

worse bound on whole than on Hj submatrix!
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Trace norm method (a fix)

e We can fix this by considering

max  ||Aowv!|;
u,v:

)
[ull2=]lv]l2=1

o As rk(A ouv?) < rk(A) we still have

2
HAouvTH1

k(A) >

kl4) 2 <HAOWTH2



The > norm

e \We have arrived at the 75 norm introduced to communication complexity
by [LMSSO07, LS07]

12(A) = max [Aouv’|:

Y
[ull2=]|v][2=1

e By our previous discussion, for a sign matrix A

T N\ 2
rk(4) > max (HAOUU Hl) = 72(A)?

B Ao wT],
[ull2=llv]|l2=1
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In matrix analysis known as “Schur product norm,” among others

~vo norm: Surprising usefulness

Schur (1911) showed that v5(A) = max; A;; if A psd.

The dual norm v35(A) = maxpg(A, B)/v2(B) satisfies

for XOR game G. Also, sdpval(G) equals value of game where Alice and

75(G)

1
sdpval(G) = 5 5

Bob share entanglement.

discp(A)

O(v4(A o P)) [Linial, Shraibman 08]



Randomized and quantum communication complexity

e So far it is not clear what we have gained. Many techniques available to
bound matrix rank.

e But for randomized and quantum communication complexity the relevant
measure is no longer rank, but approximation rank. For a sign matrix A:

rko(A) = mBin {rk(B) : 1 < Alx,y] - Blz,y] < o}

e NP-hard? Can be difficult even for basic matrices. Disjointness was
longstanding open problem resolved by [Razborov 03] who showed
optimal bound 2(v™) using approximate version of trace norm method.



Approximation rank

e By [Buhrman, de Wolf 01]
R(Ay) > Qe(Af) > (1/2)log ko, (A7)
for a. = 1/(1 — 2e).
e Perhaps more plausible than the log rank conjecture: there exists c

Qc(f) < (logrka (Af))¢



Approximation norms

We have seen how trace norm and 5 lower bound rank.

In a similar fashion to approximation rank, we can define approximation
norms. For an arbitrary norm ||| - ||| let

A" = min {|[ B[] : 1 < Alz, y] - Blz,y] < a}

Note that an approximation norm is not itself necessarily a norm

However, we we can still use duality to obtain a max expression

o (1+0){4,B) +(1—a)u(B)
4]]1% = ma SPIE
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Approximate -

e From our discussion, for a sign matrix A

e (A) > V5 (A)

2 (Al
a2 T a?MN

e We show that for any sign matrix A and constant o > 1

tka(4) = O (75/(A)? log(MN))’



Remarks

e When o = 1 theorem does not hold. For equality function (sign matrix)
I‘k(QIN — 1N) > N — 1, but

Y2(2In — 1n) < 2%2(IN) + 72(1n) = 3,
by Schur's theorem.

e This example also shows that the log N factor is necessary, as
approximation rank of identity matrix is 2(log N) [Alon 08].



Advantages of

e <5 can be formulated as a max expression

af gy oo (L a)(A B) 4 (1 — a)f(B)
(A =g 293 (B)

e 75 is polynomial time computable by semidefinite programming

e ~5 is also known to lower bound quantum communication with shared
entanglement, which was not known for approximation rank.



Proof sketch

e Look at the min formulation of ~5

72(4) = min ¢(X)e(Y)

xTy—=A4

where ¢(X) is the maximum ¢5 norm of a column of X.

e Similarly rank can be phrased as

rk(A) = )I?lgl min{d(X),d(Y)}
xTy=A

where d(X) is the number of rows of X.
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First step: dimension reduction

Look at XY = A’ factorization realizing v§(A). Say X,Y are K-by-N.

Know that the columns of X,Y have squared ¢5 norm at most v5(A'),
but X, Y might still have many rows...

Consider RX and RY where R is random matrix of size K'-by-K for
K' = O(v$(A)?log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX)! (RY); ~ XY, will be approximately preserved.

This shows there is a matrix A” = (RX)I(RY) which is, say, a 2«
approximation to A and has rank O(7$(A4)?log N).



Second step: Error reduction

Now we have a matrix A” which is of the desired rank, but is only a 2«
approximation to A, whereas we wanted an o approximation of A.

Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of
the matrix. Can show rk(p(A)) < (d+1)rk(A)¢ for degree d polynomial.

Taking p to be low degree approximation of sign function makes p(A")

better approximation of A. For our purposes, can get by with degree 3
polynomial.

Completes the proof rk,(A) = O (75(A)? lOg(MN))3



Norms for multiparty complexity

e In multiparty complexity, have a function f : X; x ... X X —
{—1,+1}. Instead of communication matrix, have communication tensor

Af[xl,...,ﬁlfk] :f(xla'“axk)'

e One difficulty about proving lower bounds is that linear algebraic concepts
like rank, trace norm, spectral norm, either become very difficult to use
or have no analog with tensors.

e Only method known for general model of number-on-the-forehead is
discrepancy method. While can show bounds of n/2%* for generalized
inner product [BNS89] for other functions like disjointness can only show
O(logn) bounds.



Norms for multiparty complexity

Basic fact: A successful c-bit NOF protocol partitions the communication
tensor into at most 2° many monochromatic cylinder intersections.

This allows us to define our norm
p(A) =min{) |yl: A=) ~7Ci}
C’; is a cylinder intersection.
We have D(A) > log u(A). For matrices u(A) = O(vy2(A))

Also by usual arguments get R.(A) > u“(A).



e The dual norm is

The dual norm



The dual norm

e The dual norm is

pr(A) = max - [(A,B)

B:u(B)<1

e So we see *(A) = maxe [(A,C)| where C'is a cylinder intersection.



The dual norm

e The dual norm is
“(A) = A, B
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The dual norm

The dual norm is

“(A) = A, B
i) = | max (4, B)
So we see u*(A) = maxec |(A,C)| where C' is a cylinder intersection.

discp(A) = p*(A o P)

Bound p*(A) in the following form. Standard discrepancy method is
exactly pu°

o ay_ o (1+a)(4,B) + (1 - a)li(B)
HEA) = g 21%(B)




Choosing a witness

e Use framework of pattern matrices [Sherstov 07, 08] and generalization
to pattern tensors in multiparty case [Chattopadhyay 07]: Choose witness

derived from dual polynomial witnessing that f has high approximate
degree.

e Degree/Discrepancy Theorem [Sherstov 07,08 Chattopadhyay 08]:
Pattern tensor derived from function with pure high degree will have

small discrepancy. In multiparty case, this uses [BNS 89| technique of
bounding discrepancy.



Final result

e Final result: Randomized k-party complexity of disjointness
1/(k+1)
° (")
92

e Independently shown by Chattopadhyay and Ada

e Beame and Huynh-Ngoc have recently shown non-trivial lower bounds
on disjointness for up to logl/gn players (though not as strong as ours
for small k).



