Approximation norms and duality for communication complexity lower bounds

Troy Lee
Columbia University
Adi Shraibman
Weizmann Institute

From min to max

- The cost of a "best" algorithm is naturally phrased as a minimization problem
- Dealing with this universal quantifier is one of the main challenges for lower bounders
- Norm based framework for showing communication complexity lower bounds
- Duality allows one to obtain lower bound expressions formulated as maximization problems

Example: Yao’s principle

- One of the best known examples of this idea is Yao's minimax principle:

$$
R_{\epsilon}(f)=\max _{\mu} D_{\mu}(f)
$$

- To show lower bounds on randomized communication complexity, suffices to exhibit a hard distribution for deterministic protocols.
- The first step in many randomized lower bounds.

A few matrix norms

Let A be a matrix. The singular values of A are $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A A^{T}\right)}$.
Define

$$
\|A\|_{p}=\ell_{p}(\sigma)=\left(\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A)^{p}\right)^{1 / p}
$$

A few matrix norms

Let A be a matrix. The singular values of A are $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A A^{T}\right)}$.
Define

$$
\|A\|_{p}=\ell_{p}(\sigma)=\left(\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A)^{p}\right)^{1 / p}
$$

- Trace norm: $\|A\|_{1}$

A few matrix norms

Let A be a matrix. The singular values of A are $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A A^{T}\right)}$.
Define

$$
\|A\|_{p}=\ell_{p}(\sigma)=\left(\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A)^{p}\right)^{1 / p}
$$

- Trace norm: $\|A\|_{1}$
- Spectral norm: $\|A\|_{\infty}$

A few matrix norms

Let A be a matrix. The singular values of A are $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A A^{T}\right)}$.
Define

$$
\|A\|_{p}=\ell_{p}(\sigma)=\left(\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A)^{p}\right)^{1 / p}
$$

- Trace norm: $\|A\|_{1}$
- Spectral norm: $\|A\|_{\infty}$
- Frobenius norm $\|A\|_{2}=\left(\sum_{i, j}\left|A_{i j}\right|^{2}\right)^{1 / 2}$

Example: trace norm

As ℓ_{1} and ℓ_{∞} are dual, so too are trace norm and spectral norm:

$$
\|A\|_{1}=\max _{B} \frac{|\langle A, B\rangle|}{\|B\|_{\infty}}
$$

Example: trace norm

As ℓ_{1} and ℓ_{∞} are dual, so too are trace norm and spectral norm:

$$
\|A\|_{1}=\max _{B} \frac{|\langle A, B\rangle|}{\|B\|_{\infty}}
$$

- Thus to show that the trace norm of A is large, it suffices to find B with non-negligible inner product with A and small spectral norm.

Example: trace norm

As ℓ_{1} and ℓ_{∞} are dual, so too are trace norm and spectral norm:

$$
\|A\|_{1}=\max _{B} \frac{|\langle A, B\rangle|}{\|B\|_{\infty}}
$$

- Thus to show that the trace norm of A is large, it suffices to find B with non-negligible inner product with A and small spectral norm.
- We will refer to B as a witness.

Application to communication complexity

- For a function $f: X \times Y \rightarrow\{-1,+1\}$ we define the communication matrix $A_{f}[x, y]=f(x, y)$.
- For deterministic communication complexity, one of the best lower bounds available is log rank:

$$
D(f) \geq \log \operatorname{rk}\left(A_{f}\right)
$$

- The famous log rank conjecture states this lower bound is polynomially tight.

Application to communication complexity

- As the rank of a matrix is equal to the number of non-zero singular values, we have

$$
\|A\|_{1}=\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A)
$$

Application to communication complexity

- As the rank of a matrix is equal to the number of non-zero singular values, we have

$$
\|A\|_{1}=\sum_{i=1}^{\mathrm{rk}(A)} \sigma_{i}(A) \leq \sqrt{\mathrm{rk}(A)}\left(\sum_{i} \sigma_{i}^{2}(A)\right)^{1 / 2}
$$

Application to communication complexity

- As the rank of a matrix is equal to the number of non-zero singular values, we have

$$
\|A\|_{1}=\sum_{i=1}^{\operatorname{rk}(A)} \sigma_{i}(A) \leq \sqrt{\operatorname{rk}(A)}\left(\sum_{i} \sigma_{i}^{2}(A)\right)^{1 / 2}=\sqrt{\mathrm{rk}(A)}\|A\|_{2}
$$

Application to communication complexity

- As the rank of a matrix is equal to the number of non-zero singular values, we have

$$
\|A\|_{1}=\sum_{i=1}^{\operatorname{rk}(A)} \sigma_{i}(A) \leq \sqrt{\operatorname{rk}(A)}\left(\sum_{i} \sigma_{i}^{2}(A)\right)^{1 / 2}=\sqrt{\mathrm{rk}(A)}\|A\|_{2}
$$

- For a M-by- N sign matrix $\|A\|_{2}=\sqrt{M N}$ so we have

$$
2^{D(f)} \geq \operatorname{rk}\left(A_{f}\right) \geq \frac{\left(\left\|A_{f}\right\|_{1}\right)^{2}}{M N}
$$

Call this the "trace norm method."

Trace norm method (example)

- Let H_{N} be a N-by- N Hadamard matrix (entries from $\{-1,+1\}$).
- Then $\left\|H_{N}\right\|_{1}=N^{3 / 2}$.
- Trace norm method gives bound on rank of $N^{3} / N^{2}=N$

Trace norm method (drawback)

- As a complexity measure, the trace norm method suffers one drawbackit is not monotone.

$$
\left(\begin{array}{ll}
H_{N} & 1_{N} \\
1_{N} & 1_{N}
\end{array}\right)
$$

- Trace norm at most $N^{3 / 2}+3 N$

Trace norm method (drawback)

- As a complexity measure, the trace norm method suffers one drawbackit is not monotone.

$$
\left(\begin{array}{ll}
H_{N} & 1_{N} \\
1_{N} & 1_{N}
\end{array}\right)
$$

- Trace norm at most $N^{3 / 2}+3 N$
- Trace norm method gives

$$
\frac{\left(N^{3 / 2}+3 N\right)^{2}}{4 N^{2}}
$$

worse bound on whole than on H_{N} submatrix!

Trace norm method (a fix)

- We can fix this by considering

$$
\max _{\substack{u, v: \\\|u\|_{2}=\|v\|_{2}=1}}\left\|A \circ u v^{T}\right\|_{1}
$$

Trace norm method (a fix)

- We can fix this by considering

$$
\max _{\substack{u, v: \\\|u\|_{2}=\|v\|_{2}=1}}\left\|A \circ u v^{T}\right\|_{1}
$$

- As $\operatorname{rk}\left(A \circ u v^{T}\right) \leq \operatorname{rk}(A)$ we still have

$$
\operatorname{rk}(A) \geq\left(\frac{\left\|A \circ u v^{T}\right\|_{1}}{\left\|A \circ u v^{T}\right\|_{2}}\right)^{2}
$$

The γ_{2} norm

- We have arrived at the γ_{2} norm introduced to communication complexity by [LMSS07, LS07]

$$
\gamma_{2}(A)=\max _{\substack{u, v: \\\|u\|_{2}=\|v\|_{2}=1}}\left\|A \circ u v^{T}\right\|_{1}
$$

- By our previous discussion, for a sign matrix A

$$
\operatorname{rk}(A) \geq \max _{\substack{u, v: \\\|u\|_{2}=\|v\|_{2}=1}}\left(\frac{\left\|A \circ u v^{T}\right\|_{1}}{\left\|A \circ u v^{T}\right\|_{2}}\right)^{2}=\gamma_{2}(A)^{2}
$$

γ_{2} norm: Surprising usefulness

- In matrix analysis known as "Schur product norm," among others

γ_{2} norm: Surprising usefulness

- In matrix analysis known as "Schur product norm," among others
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A psd.

γ_{2} norm: Surprising usefulness

- In matrix analysis known as "Schur product norm," among others
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A psd.
- The dual norm $\gamma_{2}^{*}(A)=\max _{B}\langle A, B\rangle / \gamma_{2}(B)$ satisfies

$$
\operatorname{sdpval}(G)=\frac{1}{2}+\frac{\gamma_{2}^{*}(G)}{2}
$$

for XOR game G. Also, $\operatorname{sdpval}(G)$ equals value of game where Alice and Bob share entanglement.

γ_{2} norm: Surprising usefulness

- In matrix analysis known as "Schur product norm," among others
- Schur (1911) showed that $\gamma_{2}(A)=\max _{i} A_{i i}$ if A psd.
- The dual norm $\gamma_{2}^{*}(A)=\max _{B}\langle A, B\rangle / \gamma_{2}(B)$ satisfies

$$
\operatorname{sdpval}(G)=\frac{1}{2}+\frac{\gamma_{2}^{*}(G)}{2}
$$

for XOR game G. Also, $\operatorname{sdpval}(G)$ equals value of game where Alice and Bob share entanglement.

- $\operatorname{disc}_{P}(A)=\Theta\left(\gamma_{2}^{*}(A \circ P)\right)$ [Linial, Shraibman 08]

Randomized and quantum communication complexity

- So far it is not clear what we have gained. Many techniques available to bound matrix rank.
- But for randomized and quantum communication complexity the relevant measure is no longer rank, but approximation rank. For a sign matrix A :

$$
\operatorname{rk}_{\alpha}(A)=\min _{B}\{\operatorname{rk}(B): 1 \leq A[x, y] \cdot B[x, y] \leq \alpha\}
$$

- NP-hard? Can be difficult even for basic matrices. Disjointness was longstanding open problem resolved by [Razborov 03] who showed optimal bound $2^{\Omega(\sqrt{n})}$ using approximate version of trace norm method.

Approximation rank

- By [Buhrman, de Wolf 01]

$$
R_{\epsilon}\left(A_{f}\right) \geq Q_{\epsilon}\left(A_{f}\right) \geq(1 / 2) \log \mathrm{rk}_{\alpha_{\epsilon}}\left(A_{f}\right)
$$

for $\alpha_{\epsilon}=1 /(1-2 \epsilon)$.

- Perhaps more plausible than the log rank conjecture: there exists c

$$
Q_{\epsilon}(f) \leq\left(\log \mathrm{rk}_{\alpha_{\epsilon}}\left(A_{f}\right)\right)^{c}
$$

Approximation norms

- We have seen how trace norm and γ_{2} lower bound rank.
- In a similar fashion to approximation rank, we can define approximation norms. For an arbitrary norm ||| •||| let

$$
\||A|\|^{\alpha}=\min _{B}\{\| \| B\| \|: 1 \leq A[x, y] \cdot B[x, y] \leq \alpha\}
$$

- Note that an approximation norm is not itself necessarily a norm
- However, we we can still use duality to obtain a max expression

$$
\|\|A\|\|^{\alpha}=\max _{B} \frac{(1+\alpha)\langle A, B\rangle+(1-\alpha) \ell_{1}(B)}{2\| \| B\| \|^{*}}
$$

Approximate γ_{2}

- From our discussion, for a sign matrix A

$$
\operatorname{rk}_{\alpha}(A) \geq \frac{\gamma_{2}^{\alpha}(A)^{2}}{\alpha^{2}} \geq \frac{\left(\|A\|_{1}^{\alpha}\right)^{2}}{\alpha^{2} M N}
$$

Approximate γ_{2}

- From our discussion, for a sign matrix A

$$
\operatorname{rk}_{\alpha}(A) \geq \frac{\gamma_{2}^{\alpha}(A)^{2}}{\alpha^{2}} \geq \frac{\left(\|A\|_{1}^{\alpha}\right)^{2}}{\alpha^{2} M N}
$$

- We show that for any sign matrix A and constant $\alpha>1$

$$
\operatorname{rk}_{\alpha}(A)=O\left(\gamma_{2}^{\alpha}(A)^{2} \log (M N)\right)^{3}
$$

Remarks

- When $\alpha=1$ theorem does not hold. For equality function (sign matrix) $\operatorname{rk}\left(2 I_{N}-1_{N}\right) \geq N-1$, but

$$
\gamma_{2}\left(2 I_{N}-1_{N}\right) \leq 2 \gamma_{2}\left(I_{N}\right)+\gamma_{2}\left(1_{N}\right)=3,
$$

by Schur's theorem.

- This example also shows that the $\log N$ factor is necessary, as approximation rank of identity matrix is $\Omega(\log N)$ [Alon 08].

Advantages of γ_{2}^{α}

- γ_{2}^{α} can be formulated as a max expression

$$
\gamma_{2}^{\alpha}(A)=\max _{B} \frac{(1+\alpha)\langle A, B\rangle+(1-\alpha) \ell_{1}(B)}{2 \gamma_{2}^{*}(B)}
$$

- γ_{2}^{α} is polynomial time computable by semidefinite programming
- γ_{2}^{α} is also known to lower bound quantum communication with shared entanglement, which was not known for approximation rank.

Proof sketch

- Look at the min formulation of γ_{2}

$$
\gamma_{2}(A)=\min _{\substack{X, Y: \\ X^{T} Y=A}} c(X) c(Y)
$$

where $c(X)$ is the maximum ℓ_{2} norm of a column of X.

- Similarly rank can be phrased as

$$
\operatorname{rk}(A)=\min _{\substack{X, Y: \\ X^{T} Y=A}} \min \{d(X), d(Y)\}
$$

where $d(X)$ is the number of rows of X.

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{\alpha}(A)$. Say X, Y are K-by- N.

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{\alpha}(A)$. Say X, Y are K-by- N.
- Know that the columns of X, Y have squared ℓ_{2} norm at most $\gamma_{2}\left(A^{\prime}\right)$, but X, Y might still have many rows...

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{\alpha}(A)$. Say X, Y are K-by- N.
- Know that the columns of X, Y have squared ℓ_{2} norm at most $\gamma_{2}\left(A^{\prime}\right)$, but X, Y might still have many rows...
- Consider $R X$ and $R Y$ where R is random matrix of size K^{\prime}-by- K for $K^{\prime}=O\left(\gamma_{2}^{\alpha}(A)^{2} \log N\right)$. By Johnson-Lindenstrauss lemma whp all the inner products $(R X)_{i}^{T}(R Y)_{j} \approx X_{i}^{T} Y_{j}$ will be approximately preserved.

First step: dimension reduction

- Look at $X^{T} Y=A^{\prime}$ factorization realizing $\gamma_{2}^{\alpha}(A)$. Say X, Y are K-by- N.
- Know that the columns of X, Y have squared ℓ_{2} norm at most $\gamma_{2}\left(A^{\prime}\right)$, but X, Y might still have many rows...
- Consider $R X$ and $R Y$ where R is random matrix of size K^{\prime}-by- K for $K^{\prime}=O\left(\gamma_{2}^{\alpha}(A)^{2} \log N\right)$. By Johnson-Lindenstrauss lemma whp all the inner products $(R X)_{i}^{T}(R Y)_{j} \approx X_{i}^{T} Y_{j}$ will be approximately preserved.
- This shows there is a matrix $A^{\prime \prime}=(R X)^{T}(R Y)$ which is, say, a 2α approximation to A and has rank $O\left(\gamma_{2}^{\alpha}(A)^{2} \log N\right)$.

Second step: Error reduction

- Now we have a matrix $A^{\prime \prime}$ which is of the desired rank, but is only a 2α approximation to A, whereas we wanted an α approximation of A.
- Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of the matrix. Can show $\operatorname{rk}(p(A)) \leq(d+1) \operatorname{rk}(A)^{d}$ for degree d polynomial.
- Taking p to be low degree approximation of sign function makes $p\left(A^{\prime \prime}\right)$ better approximation of A. For our purposes, can get by with degree 3 polynomial.
- Completes the proof $\mathrm{rk}_{\alpha}(A)=O\left(\gamma_{2}^{\alpha}(A)^{2} \log (M N)\right)^{3}$

Norms for multiparty complexity

- In multiparty complexity, have a function $f: X_{1} \times \ldots \times X_{k} \rightarrow$ $\{-1,+1\}$. Instead of communication matrix, have communication tensor $A_{f}\left[x_{1}, \ldots, x_{k}\right]=f\left(x_{1}, \ldots, x_{k}\right)$.
- One difficulty about proving lower bounds is that linear algebraic concepts like rank, trace norm, spectral norm, either become very difficult to use or have no analog with tensors.
- Only method known for general model of number-on-the-forehead is discrepancy method. While can show bounds of $n / 2^{2 k}$ for generalized inner product [BNS89] for other functions like disjointness can only show $O(\log n)$ bounds.

Norms for multiparty complexity

- Basic fact: A successful c-bit NOF protocol partitions the communication tensor into at most 2^{c} many monochromatic cylinder intersections.
- This allows us to define our norm

$$
\mu(A)=\min \left\{\sum\left|\gamma_{i}\right|: A=\sum \gamma_{i} C_{i}\right\}
$$

C_{i} is a cylinder intersection.

- We have $D(A) \geq \log \mu(A)$. For matrices $\mu(A)=\Theta\left(\gamma_{2}(A)\right)$
- Also by usual arguments get $R_{\epsilon}(A) \geq \mu^{\alpha}(A)$.

The dual norm

- The dual norm is

$$
\mu^{*}(A)=\max _{B: \mu(B) \leq 1}|\langle A, B\rangle|
$$

The dual norm

- The dual norm is

$$
\mu^{*}(A)=\max _{B: \mu(B) \leq 1}|\langle A, B\rangle|
$$

- So we see $\mu^{*}(A)=\max _{C}|\langle A, C\rangle|$ where C is a cylinder intersection.

The dual norm

- The dual norm is

$$
\mu^{*}(A)=\max _{B: \mu(B) \leq 1}|\langle A, B\rangle|
$$

- So we see $\mu^{*}(A)=\max _{C}|\langle A, C\rangle|$ where C is a cylinder intersection.
- $\operatorname{disc}_{P}(A)=\mu^{*}(A \circ P)$

The dual norm

- The dual norm is

$$
\mu^{*}(A)=\max _{B: \mu(B) \leq 1}|\langle A, B\rangle|
$$

- So we see $\mu^{*}(A)=\max _{C}|\langle A, C\rangle|$ where C is a cylinder intersection.
- $\operatorname{disc}_{P}(A)=\mu^{*}(A \circ P)$
- Bound $\mu^{\alpha}(A)$ in the following form. Standard discrepancy method is exactly μ^{∞}

$$
\mu^{\alpha}(A)=\max _{B} \frac{(1+\alpha)\langle A, B\rangle+(1-\alpha) \ell_{1}(B)}{2 \mu^{*}(B)}
$$

Choosing a witness

- Use framework of pattern matrices [Sherstov 07, 08] and generalization to pattern tensors in multiparty case [Chattopadhyay 07]: Choose witness derived from dual polynomial witnessing that f has high approximate degree.
- Degree/Discrepancy Theorem [Sherstov 07,08 Chattopadhyay 08]: Pattern tensor derived from function with pure high degree will have small discrepancy. In multiparty case, this uses [BNS 89] technique of bounding discrepancy.

Final result

- Final result: Randomized k-party complexity of disjointness

$$
\Omega\left(\frac{n^{1 /(k+1)}}{2^{2^{k}}}\right)
$$

- Independently shown by Chattopadhyay and Ada
- Beame and Huynh-Ngoc have recently shown non-trivial lower bounds on disjointness for up to $\log ^{1 / 3} n$ players (though not as strong as ours for small k).

