
The Quantum Adversary method and
Classical Formula Size Lower Bounds

Troy Lee

CWI, University of Amsterdam

Joint work with: Sophie Laplante and Mario Szegedy



Circuit Complexity

• A million dollar question: Show an explicit function which requires superpoly-

nomial size circuits!

• For functions in NP the best circuit lower bound we know is 5n−o(n)

[LR01, IM02]

• The smallest complexity class we know to contain a function requiring super-

polynomial size circuits is MAEXP! [BFT98]



Formula Size

• Weakening of the circuit model—a formula is a binary tree with internal nodes

labelled by AND, OR and leaves labelled by literals. The size of a formula is

its number of leaves.

• PARITY has formula size θ(n2) [Khr71].

• Showing superpolynomial formula size lower bounds for a function in NP

would imply NP 6= NC1.

• The best lower bound for a function in NP is n3−o(1) [Hås98].



An Aside: Lower Bound Philosophy

• Let’s look at our job as computer scientists from the point of view of computer

scientists.

• How difficult is the problem of proving lower bounds?

• We will consider a lower bound technique efficient if it can be computed in

time polynomial in the size of the truth table of f .



Karchmer–Wigderson Game [KW88]

• Elegant characterization of formula size in terms of a communication game.

• For a Boolean function f , let X = f−1(0) and Y = f−1(1). Consider

R f = {(x,y, i) : x ∈ X , y ∈ Y, xi 6= yi}

• The game is then the following: Alice is given x ∈ X , Bob is given y ∈ Y and

they wish to find i such that (x,y, i) ∈ R f .

• Karchmer–Wigderson Thm: The number of leaves in a best communication

protocol for R f equals the formula size of f .



Communication complexity of relations
R ⊆ X ×Y ×Z

ALICEBOB

ALICE

Communication protocol is a binary tree:

z1 z2 z3 z2 z4

bv : Y → {0, 1}

Similarly, Bob’s nodes labelled

Alice’s nodes labelled by a function:

av : X → {0, 1}

Leaves labelled by elements z ∈ Z.

Denote by CP (R) the number of leaves

in a best protocol for R.



Proof by picture: CP(R f ) ≤ L( f ).

ANDOR

AND

x3 x2x1 ¬x2 ¬x4

General idea: Alice speaks at AND nodes

and Bob speaks at OR nodes.

Initially, f(x) 6= f(y) and we maintain this

disagreement on subformulas as we move

down the tree.



Proof by picture: CP(R f ) ≤ L( f ).

ANDOR

ALICE

x3 x2x1 ¬x2 ¬x4

First we define Alice’s action at the top node:

If x does not satisfy the left subformula,

then Alice sends the bit 0;

otherwise she sends the bit 1.



Proof by picture: CP(R f ) ≤ L( f ).

ANDOR

0
ALICE

x3 x2x1 ¬x2 ¬x4

Say that x does not satisfy the left

subformula.



Proof by picture: CP(R f ) ≤ L( f ).

0

ALICE

ALICE

BOB

x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(R f ) ≤ L( f ).
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x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(R f ) ≤ L( f ).
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x3 x2x1 ¬x2 ¬x4

We continue down the tree in a similar fashion,

maintaining the property that x and y

take different values on subformulas.

Eventually, we reach a literal `i such that

`i(x) 6= `i(y) and so x and y differ on bit i.



Communication Complexity and the Rectangle Bound
R ⊆ X ×Y ×Z
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Y
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y

{z : (x, y, z) ∈ R}
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Communication Complexity and the Rectangle Bound
R ⊆ X ×Y ×Z
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A rectangle S is monochromatic

if there exists z such that

(x, y, z) ∈ S for all (x, y) ∈ S.

A successful protocol partitions

X × Y into monochromatic

rectangles.



Communication Complexity and the Rectangle Bound
R ⊆ X ×Y ×Z
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Rectangle Bound

• We denote by CD(R) the size of a smallest partition of X ×Y into monochro-

matic (with respect to R) rectangles. By the argument above, CD(R)≤CP(R).

• The rectangle bound is a purely combinatorial quantity.

• We can still hope to prove larger lower bounds by focusing on the rectangle

bound:

CD(R) ≤CP(R) ≤ 2(logCD(R))2

• Major drawback—it is NP hard to compute.



Approximating the rectangle bound

• We will see that a measure on rectangles satisfying two properties, subaddi-

tivity and monotonicity, can be used to lower bound the rectangle bound.

• Several previous methods fit into this framework, including the rank method

of Razborov [Raz90], and a probability on rectangles method (called B∗ in

Kushilevitz and Nisan).

• We add a new method within this framework based on the spectral norm.



An example: the rank method of Razborov

We know that rk(A + B) ≤ rk(A)+ rk(B) for any two matrices A,B. Thus if R is

an optimal monochromatic rectangle partition of R f , then

max
A

rk(A)

maxR∈R rk(AR)
≤CD(R f ) ≤ L( f ).

We want a method, however, that doesn’t depend on knowing the optimal partition!



An example: the rank method of Razborov

We now use the monotonicity property. As the rectangles are monochromatic,

each rectangle R is a subset of Di = {(x,y) : x ∈ X ,y ∈ Y,xi 6= yi}, for some

i ∈ [n]. For this i we have rk(AR) ≤ rk(A◦Di). Thus

max
A

rk(A)

maxi rk(A◦Di)
≤CD(R f ) ≤ L( f ).

Razborov uses this method to show superpolynomial monotone formula size lower

bounds. He also shows, however, it is trivial for regular formula size [Raz92].



Our main lemma: spectral norm squared is subadditive

• Spectral norm has several equivalent formulations. We will use:

‖A‖2 = max
u,v :|u|2=|v|2=1

|uT Av|

• Main Lemma: Let A be a matrix over X ×Y and R be a partition of X ×Y into

rectangles. Then

‖A‖2
2 ≤ ∑

R∈R
‖AR‖

2
2.

• Note that it is not true in general that ‖A+B‖2
2 ≤ ‖A‖2

2 +‖B‖2
2.



Proof of main lemma

Fix unit vectors u,v which maximize |uT Av|. By definition,

‖A‖2 = |uT Av| = |uT ( ∑
R∈R

AR)v|



Proof of main lemma

Fix unit vectors u,v which maximize |uT Av|. By definition,

‖A‖2 = |uT Av| = |uT ( ∑
R∈R

AR)v|

≤ ∑
R∈R

|uT ARv|



Proof of main lemma

Fix unit vectors u,v which maximize |uT Av|. By definition,

‖A‖2 = |uT Av| = |uT ( ∑
R∈R

AR)v|

≤ ∑
R∈R

|uT ARv|

≤ ∑
R∈R

‖AR‖2 |uR|2 |vR|2



Proof of main lemma

Fix unit vectors u,v which maximize |uT Av|. By definition,

‖A‖2 = |uT Av| = |uT ( ∑
R∈R

AR)v|

≤ ∑
R∈R

|uT ARv|

≤ ∑
R∈R

‖AR‖2 |uR|2 |vR|2

≤

√

∑
R∈R

‖AR‖
2
2

√

∑
R∈R

|uR|
2
2|vr|

2
2
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Fix unit vectors u,v which maximize |uT Av|. By definition,
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Applying the lemma

From the lemma it follows that if R is an optimal rectangle partition of R f , then

max
A

‖A‖2
2

maxR∈R ‖AR‖
2
2
≤CD(R f ).

We want a method, however, that doesn’t depend on knowing the optimal partition!



Monotonicity

• the rectangles in R are monochromatic, thus each rectangle is a subset of
Di = {(x,y) : x ∈ X ,y ∈ Y,xi 6= yi}, for some i ∈ [n].

• If A is nonnegative, then ‖AR‖2 ≤ ‖A◦Di‖2

• Thus we obtain

max
A

‖A‖2
2

maxi‖Ai ◦Di‖
2
2
≤CD(R f ) ≤ L( f ).

• We now have a bound which can be computed in time polynomial in the truth
table of f



The quantum adversary method emerges

Define

sumPI( f ) = max
A

‖A‖2
maxi‖Ai ◦Di‖2

• We have shown that sumPI2( f ) ≤CD(R f ) ≤ L( f )

• It turns out that sumPI( f ) is a lower bound on the quantum query complexity
of f ! [BSS03]

• The quantity sumPI( f ) has emerged over several years [Amb02, Amb03,
BSS03, LM04] in the context of quantum query complexity, and has many
nice properties and equivalent formulations [ŠS05].



More on the quantum adversary method

• The name sumPI comes from the following equivalent min max formulation

sumPI( f ) = min
p

max
x∈X ,y∈Y

1

∑i:xi 6=yi

√

px(i)py(i)

• Using both the max min and min max formulations appropriately makes it easy

to give exact characterizations of sumPI( f ).

• For example, one can show sumPI( f ) behaves very well under composition:

sumPI( f k) = (sumPI( f ))k for any Boolean function f [Amb03, LLS05].



Khrapchenko’s Method

• Define a bipartite graph, with left hand side a subset of f−1(0) and right hand

side f−1(1).

• Connect x,y with an edge if they have Hamming distance 1

• Khrapchenko’s bound is the product of the average degree of the left hand

side with the average degree on the right hand side.



Generalizing Khrapchenko’s Method

max
p0,p1,q

min
x,y

p0(x)p1(y)
q2(x,y)

≤CD(R f ) ≤ L( f )

• Define the matrix A[x,y] = q(x,y)/
√

p0(x)p1(y).

• Then ‖A‖2 ≥ 1.

• Each matrix A◦Di has at most one entry in each row and column.

• Thus ‖A◦Di‖2 ≤ maxx,y q(x,y)/
√

p0(x)p1(y).



Open problems

• Is quantum query complexity squared a lower bound on formula size?

• How about approximate polynomial degree?

• Are the rectangle bound and formula size polynomially related?

• How large is the rectangle bound for a random function?


