The Quantum Adversary method and Classical Formula Size Lower Bounds

Troy Lee

CWI, University of Amsterdam

Joint work with: Sophie Laplante and Mario Szegedy

Circuit Complexity

- A million dollar question: Show an explicit function which requires superpolynomial size circuits!
- For functions in NP the best circuit lower bound we know is 5n o(n) [LR01, IM02]
- The smallest complexity class we know to contain a function requiring superpolynomial size circuits is MAEXP! [BFT98]

Formula Size

- Weakening of the circuit model—a formula is a binary tree with internal nodes labelled by AND, OR and leaves labelled by literals. The size of a formula is its number of leaves.
- PARITY has formula size $\theta(n^2)$ [Khr71].
- Showing superpolynomial formula size lower bounds for a function in NP would imply $NP \neq NC^1$.
- The best lower bound for a function in NP is $n^{3-o(1)}$ [Hås98].

An Aside: Lower Bound Philosophy

- Let's look at our job as computer scientists from the point of view of computer scientists.
- How difficult is the problem of proving lower bounds?
- We will consider a lower bound technique efficient if it can be computed in time polynomial in the size of the truth table of *f*.

Karchmer–Wigderson Game [KW88]

- Elegant characterization of formula size in terms of a communication game.
- For a Boolean function f, let $X = f^{-1}(0)$ and $Y = f^{-1}(1)$. Consider

$$R_f = \{(x, y, i) : x \in X, y \in Y, x_i \neq y_i\}$$

- The game is then the following: Alice is given *x* ∈ *X*, Bob is given *y* ∈ *Y* and they wish to find *i* such that (*x*, *y*, *i*) ∈ *R*_{*f*}.
- Karchmer–Wigderson Thm: The number of leaves in a best communication protocol for R_f equals the formula size of f.

Communication complexity of relations $R \subseteq X \times Y \times Z$

Initially, $f(x) \neq f(y)$ and we maintain this disagreement on subformulas as we move down the tree.

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Bob Y

Alice

Rectangle Bound

- We denote by $C^{D}(R)$ the size of a smallest partition of $X \times Y$ into monochromatic (with respect to *R*) rectangles. By the argument above, $C^{D}(R) \leq C^{P}(R)$.
- The rectangle bound is a purely combinatorial quantity.
- We can still hope to prove larger lower bounds by focusing on the rectangle bound:

$$C^D(R) \le C^P(R) \le 2^{(\log C^D(R))^2}$$

• Major drawback—it is NP hard to compute.

Approximating the rectangle bound

- We will see that a measure on rectangles satisfying two properties, subadditivity and monotonicity, can be used to lower bound the rectangle bound.
- Several previous methods fit into this framework, including the rank method of Razborov [Raz90], and a probability on rectangles method (called B_{*} in Kushilevitz and Nisan).
- We add a new method within this framework based on the spectral norm.

An example: the rank method of Razborov

We know that $rk(A + B) \le rk(A) + rk(B)$ for any two matrices A, B. Thus if \mathcal{R} is an optimal monochromatic rectangle partition of R_f , then

$$\max_{A} \frac{\operatorname{rk}(A)}{\max_{R \in \mathcal{R}} \operatorname{rk}(A_R)} \le C^D(R_f) \le \mathcal{L}(f).$$

We want a method, however, that doesn't depend on knowing the optimal partition!

An example: the rank method of Razborov

We now use the monotonicity property. As the rectangles are monochromatic, each rectangle *R* is a subset of $D_i = \{(x,y) : x \in X, y \in Y, x_i \neq y_i\}$, for some $i \in [n]$. For this *i* we have $rk(A_R) \leq rk(A \circ D_i)$. Thus

$$\max_{A} \frac{\operatorname{rk}(A)}{\max_{i} \operatorname{rk}(A \circ D_{i})} \leq C^{D}(R_{f}) \leq \mathcal{L}(f).$$

Razborov uses this method to show superpolynomial *monotone* formula size lower bounds. He also shows, however, it is trivial for regular formula size [Raz92].

Our main lemma: spectral norm squared is subadditive

• Spectral norm has several equivalent formulations. We will use:

$$||A||_2 = \max_{u,v:|u|_2 = |v|_2 = 1} |u^T A v|$$

• Main Lemma: Let *A* be a matrix over *X* × *Y* and *R* be a partition of *X* × *Y* into rectangles. Then

$$||A||_2^2 \le \sum_{R \in \mathcal{R}} ||A_R||_2^2.$$

• Note that it is not true in general that $||A + B||_2^2 \le ||A||_2^2 + ||B||_2^2$.

$$||A||_2 = |u^T A v| = |u^T (\sum_{R \in \mathcal{R}} A_R) v|$$

$$||A||_2 = |u^T A v| = |u^T (\sum_{R \in \mathcal{R}} A_R) v|$$
$$\leq \sum_{R \in \mathcal{R}} |u^T A_R v|$$

$$||A||_{2} = |u^{T}Av| = |u^{T}(\sum_{R \in \mathcal{R}} A_{R})v|$$

$$\leq \sum_{R \in \mathcal{R}} |u^{T}A_{R}v|$$

$$\leq \sum_{R \in \mathcal{R}} ||A_{R}||_{2} |u_{R}|_{2} |v_{R}|_{2}$$

$$||A||_{2} = |u^{T}Av| = |u^{T}(\sum_{R \in \mathcal{R}} A_{R})v|$$

$$\leq \sum_{R \in \mathcal{R}} |u^{T}A_{R}v|$$

$$\leq \sum_{R \in \mathcal{R}} ||A_{R}||_{2} |u_{R}|_{2} |v_{R}|_{2}$$

$$\leq \sqrt{\sum_{R \in \mathcal{R}} ||A_{R}||_{2}^{2}} \sqrt{\sum_{R \in \mathcal{R}} |u_{R}|_{2}^{2} |v_{r}|_{2}^{2}}$$

$$\begin{split} \|A\|_{2} &= \|u^{T}Av\| = \|u^{T}(\sum_{R \in \mathcal{R}} A_{R})v\| \\ &\leq \sum_{R \in \mathcal{R}} \|u^{T}A_{R}v\| \\ &\leq \sum_{R \in \mathcal{R}} \|A_{R}\|_{2} \|u_{R}\|_{2} \|v_{R}\|_{2} \\ &\leq \sqrt{\sum_{R \in \mathcal{R}} \|A_{R}\|_{2}^{2}} \sqrt{\sum_{R \in \mathcal{R}} \|u_{R}\|_{2}^{2} |v_{R}|_{2}^{2}} \\ &= \sqrt{\sum_{R \in \mathcal{R}} \|A_{R}\|_{2}^{2}}. \end{split}$$

Applying the lemma

From the lemma it follows that if \mathcal{R} is an optimal rectangle partition of R_f , then

$$\max_{A} \frac{\|A\|_{2}^{2}}{\max_{R \in \mathcal{R}} \|A_{R}\|_{2}^{2}} \le C^{D}(R_{f}).$$

We want a method, however, that doesn't depend on knowing the optimal partition!

Monotonicity

- the rectangles in \mathcal{R} are monochromatic, thus each rectangle is a subset of $D_i = \{(x, y) : x \in X, y \in Y, x_i \neq y_i\}$, for some $i \in [n]$.
- If A is nonnegative, then $||A_R||_2 \le ||A \circ D_i||_2$
- Thus we obtain

$$\max_{A} \frac{\|A\|_{2}^{2}}{\max_{i} \|A_{i} \circ D_{i}\|_{2}^{2}} \leq C^{D}(R_{f}) \leq \mathcal{L}(f).$$

• We now have a bound which can be computed in time polynomial in the truth table of f

The quantum adversary method emerges

Define

$$\operatorname{sumPI}(f) = \max_{A} \frac{\|A\|_2}{\max_{i} \|A_i \circ D_i\|_2}$$

- We have shown that $\operatorname{sum}\operatorname{PI}^2(f) \leq C^D(R_f) \leq \operatorname{L}(f)$
- It turns out that sumPI(f) is a lower bound on the quantum query complexity of f! [BSS03]
- The quantity sumPI(f) has emerged over several years [Amb02, Amb03, BSS03, LM04] in the context of quantum query complexity, and has many nice properties and equivalent formulations [ŠS05].

More on the quantum adversary method

• The name sumPI comes from the following equivalent min max formulation

sumPI(f) = min max
_p max
_{x \in X, y \in Y}
$$\frac{1}{\sum_{i:x_i \neq y_i} \sqrt{p_x(i)p_y(i)}}$$

- Using both the max min and min max formulations appropriately makes it easy to give exact characterizations of sumPI(*f*).
- For example, one can show $\operatorname{sumPI}(f)$ behaves very well under composition: $\operatorname{sumPI}(f^k) = (\operatorname{sumPI}(f))^k$ for any Boolean function f [Amb03, LLS05].

Khrapchenko's Method

- Define a bipartite graph, with left hand side a subset of $f^{-1}(0)$ and right hand side $f^{-1}(1)$.
- Connect *x*, *y* with an edge if they have Hamming distance 1
- Khrapchenko's bound is the product of the average degree of the left hand side with the average degree on the right hand side.

Generalizing Khrapchenko's Method

$$\max_{p_0, p_1, q} \min_{x, y} \frac{p_0(x) p_1(y)}{q^2(x, y)} \le C^D(R_f) \le \mathcal{L}(f)$$

- Define the matrix $A[x,y] = q(x,y)/\sqrt{p_0(x)p_1(y)}$.
- Then $||A||_2 \ge 1$.
- Each matrix $A \circ D_i$ has at most one entry in each row and column.
- Thus $||A \circ D_i||_2 \le \max_{x,y} q(x,y) / \sqrt{p_0(x)p_1(y)}$.

Open problems

- Is quantum query complexity squared a lower bound on formula size?
- How about approximate polynomial degree?
- Are the rectangle bound and formula size polynomially related?
- How large is the rectangle bound for a random function?