The Quantum Adversary method and Classical Formula Size Lower Bounds

Troy Lee
CWI, University of Amsterdam
Joint work with: Sophie Laplante and Mario Szegedy

Circuit Complexity

- A million dollar question: Show an explicit function which requires superpolynomial size circuits!
- For functions in NP the best circuit lower bound we know is $5 n-o(n)$ [LR01, IM02]
- The smallest complexity class we know to contain a function requiring superpolynomial size circuits is MAEXP! [BFT98]

Formula Size

- Weakening of the circuit model-a formula is a binary tree with internal nodes labelled by AND, OR and leaves labelled by literals. The size of a formula is its number of leaves.
- PARITY has formula size $\theta\left(n^{2}\right)[K h r 71]$.
- Showing superpolynomial formula size lower bounds for a function in NP would imply NP $\neq \mathrm{NC}^{1}$.
- The best lower bound for a function in NP is $n^{3-o(1)}$ [Hås98].

An Aside: Lower Bound Philosophy

- Let's look at our job as computer scientists from the point of view of computer scientists.
- How difficult is the problem of proving lower bounds?
- We will consider a lower bound technique efficient if it can be computed in time polynomial in the size of the truth table of f.

Karchmer-Wigderson Game [KW88]

- Elegant characterization of formula size in terms of a communication game.
- For a Boolean function f, let $X=f^{-1}(0)$ and $Y=f^{-1}(1)$. Consider

$$
R_{f}=\left\{(x, y, i): x \in X, y \in Y, x_{i} \neq y_{i}\right\}
$$

- The game is then the following: Alice is given $x \in X$, Bob is given $y \in Y$ and they wish to find i such that $(x, y, i) \in R_{f}$.
- Karchmer-Wigderson Thm: The number of leaves in a best communication protocol for R_{f} equals the formula size of f.

Communication complexity of relations

$$
R \subseteq X \times Y \times Z
$$

Proof by picture: $C^{P}\left(R_{f}\right) \leq \mathrm{L}(f)$.

Communication Complexity and the Rectangle Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Communication Complexity and the Rectangle Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle Bound

$$
R \subseteq X \times Y \times Z
$$

Rectangle Bound

- We denote by $C^{D}(R)$ the size of a smallest partition of $X \times Y$ into monochromatic (with respect to R) rectangles. By the argument above, $C^{D}(R) \leq C^{P}(R)$.
- The rectangle bound is a purely combinatorial quantity.
- We can still hope to prove larger lower bounds by focusing on the rectangle bound:

$$
C^{D}(R) \leq C^{P}(R) \leq 2^{\left(\log C^{D}(R)\right)^{2}}
$$

- Major drawback-it is NP hard to compute.

Approximating the rectangle bound

- We will see that a measure on rectangles satisfying two properties, subadditivity and monotonicity, can be used to lower bound the rectangle bound.
- Several previous methods fit into this framework, including the rank method of Razborov [Raz90], and a probability on rectangles method (called B_{*} in Kushilevitz and Nisan).
- We add a new method within this framework based on the spectral norm.

An example: the rank method of Razborov

We know that $\operatorname{rk}(A+B) \leq \operatorname{rk}(A)+\operatorname{rk}(B)$ for any two matrices A, B. Thus if \mathcal{R} is an optimal monochromatic rectangle partition of R_{f}, then

$$
\max _{A} \frac{\mathrm{rk}(A)}{\max _{R \in \mathcal{R}} \mathrm{rk}\left(A_{R}\right)} \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f) .
$$

We want a method, however, that doesn't depend on knowing the optimal partition!

An example: the rank method of Razborov

We now use the monotonicity property. As the rectangles are monochromatic, each rectangle R is a subset of $D_{i}=\left\{(x, y): x \in X, y \in Y, x_{i} \neq y_{i}\right\}$, for some $i \in[n]$. For this i we have $\operatorname{rk}\left(A_{R}\right) \leq \operatorname{rk}\left(A \circ D_{i}\right)$. Thus

$$
\max _{A} \frac{\mathrm{rk}(A)}{\max _{i} \mathrm{rk}\left(A \circ D_{i}\right)} \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f) .
$$

Razborov uses this method to show superpolynomial monotone formula size lower bounds. He also shows, however, it is trivial for regular formula size [Raz92].

Our main lemma: spectral norm squared is subadditive

- Spectral norm has several equivalent formulations. We will use:

$$
\|A\|_{2}=\max _{u, v:|u|_{2}=\mid v v_{2}=1}\left|u^{T} A v\right|
$$

- Main Lemma: Let A be a matrix over $X \times Y$ and \mathcal{R} be a partition of $X \times Y$ into rectangles. Then

$$
\|A\|_{2}^{2} \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}^{2}
$$

- Note that it is not true in general that $\|A+B\|_{2}^{2} \leq\|A\|_{2}^{2}+\|B\|_{2}^{2}$.

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\|A\|_{2}=\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right|
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\|_{2} & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right|
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\|_{2} & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}\left|u_{R}\right|_{2}\left|v_{R}\right|_{2}
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\|_{2} & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}\left|u_{R}\right|_{2}\left|v_{R}\right|_{2} \\
& \leq \sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}^{2}} \sqrt{\sum_{R \in \mathcal{R}}\left|u_{R}\right|_{2}^{2}\left|v_{r}\right|_{2}^{2}}
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\|_{2} & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}\left|u_{R}\right|_{2}\left|v_{R}\right|_{2} \\
& \leq \sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}^{2}} \sqrt{\sum_{R \in \mathcal{R}}\left|u_{R}\right|_{2}^{2}\left|v_{R}\right|_{2}^{2}} \\
& =\sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}^{2}}
\end{aligned}
$$

Applying the lemma

From the lemma it follows that if \mathcal{R} is an optimal rectangle partition of R_{f}, then

$$
\max _{A} \frac{\|A\|_{2}^{2}}{\max _{R \in \mathcal{R}}\left\|A_{R}\right\|_{2}^{2}} \leq C^{D}\left(R_{f}\right)
$$

We want a method, however, that doesn't depend on knowing the optimal partition!

Monotonicity

- the rectangles in \mathcal{R} are monochromatic, thus each rectangle is a subset of $D_{i}=\left\{(x, y): x \in X, y \in Y, x_{i} \neq y_{i}\right\}$, for some $i \in[n]$.
- If A is nonnegative, then $\left\|A_{R}\right\|_{2} \leq\left\|A \circ D_{i}\right\|_{2}$
- Thus we obtain

$$
\max _{A} \frac{\|A\|_{2}^{2}}{\max _{i}\left\|A_{i} \circ D_{i}\right\|_{2}^{2}} \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f)
$$

- We now have a bound which can be computed in time polynomial in the truth table of f

The quantum adversary method emerges

Define

$$
\operatorname{sumPI}(f)=\max _{A} \frac{\|A\|_{2}}{\max _{i}\left\|A_{i} \circ D_{i}\right\|_{2}}
$$

- We have shown that $\operatorname{sumPI}^{2}(f) \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f)$
- It turns out that $\operatorname{sumPI}(f)$ is a lower bound on the quantum query complexity of f ! [BSS03]
- The quantity sumPI (f) has emerged over several years [Amb02, Amb03, BSS03, LM04] in the context of quantum query complexity, and has many nice properties and equivalent formulations [ŠS05].

More on the quantum adversary method

- The name sumPI comes from the following equivalent min max formulation

$$
\operatorname{sumPI}(f)=\min _{p} \max _{x \in X, y \in Y} \frac{1}{\sum_{i: x_{i} \neq y_{i}} \sqrt{p_{x}(i) p_{y}(i)}}
$$

- Using both the max min and min max formulations appropriately makes it easy to give exact characterizations of $\operatorname{sumPI}(f)$.
- For example, one can show sumPI (f) behaves very well under composition: $\operatorname{sumPI}\left(f^{k}\right)=(\operatorname{sumPI}(f))^{k}$ for any Boolean function f [Amb03, LLS05].

Khrapchenko's Method

- Define a bipartite graph, with left hand side a subset of $f^{-1}(0)$ and right hand side $f^{-1}(1)$.
- Connect x, y with an edge if they have Hamming distance 1
- Khrapchenko's bound is the product of the average degree of the left hand side with the average degree on the right hand side.

Generalizing Khrapchenko's Method

$$
\max _{p_{0}, p_{1}, q} \min _{x, y} \frac{p_{0}(x) p_{1}(y)}{q^{2}(x, y)} \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f)
$$

- Define the matrix $A[x, y]=q(x, y) / \sqrt{p_{0}(x) p_{1}(y)}$.
- Then $\|A\|_{2} \geq 1$.
- Each matrix $A \circ D_{i}$ has at most one entry in each row and column.
- Thus $\left\|A \circ D_{i}\right\|_{2} \leq \max _{x, y} q(x, y) / \sqrt{p_{0}(x) p_{1}(y)}$.

Open problems

- Is quantum query complexity squared a lower bound on formula size?
- How about approximate polynomial degree?
- Are the rectangle bound and formula size polynomially related?
- How large is the rectangle bound for a random function?

