The Quantum Adversary Method and Classical Formula Size Lower Bounds

Troy Lee

CWI, University of Amsterdam

Joint work with: Sophie Laplante and Mario Szegedy

Circuit Complexity

- Million dollar question: Show an explicit function which requires superpolynomial size circuits
- For functions in NP the best circuit lower bound we know is 5n o(n) [Lachish and Raz 01, Iwama and Morizumi 02]
- The smallest complexity class we know to contain a function requiring superpolynomial size circuits is MAEXP [Buhrman, Fortnow, and Thierauf 98]

Formula Size

- Weakening of the circuit model—a formula is a binary tree with internal nodes labelled by AND, OR and leaves labelled by literals. The size of a formula, denoted L(f), is its number of leaves.
- **PARITY** has formula size $\theta(n^2)$ [Khrapchenko 71].
- The best lower bound for a function in NP is $n^{3-o(1)}$ [Håstad 98].
- Showing superpolynomial formula size lower bounds for a function in NP would imply NP \neq NC¹.

Two Step Transformation

- We transform the problem of proving lower bounds on formula size in two steps:
 - First, we use the exact characterization of formula size in terms of a communication game [Karchmer and Wigderson 88]
 - We then lower bound the well known "rectangle bound" from communication complexity

Karchmer–Wigderson Game [KW88]

- Elegant characterization of formula size in terms of a communication game.
- For a Boolean function f, let $X = f^{-1}(0)$ and $Y = f^{-1}(1)$. Consider $R_f = \{(x, y, i) : x \in X, y \in Y, x_i \neq y_i\}$
- The game is then the following: Alice is given $x \in X$, Bob is given $y \in Y$ and they wish to find i such that $(x, y, i) \in R_f$.
- Karchmer–Wigderson Thm: The number of leaves in a best communication protocol for R_f equals the formula size of f.

Communication complexity of relations $R \subseteq X \times Y \times Z$

Communication protocol is a binary tree: Alice's nodes labelled by a function:

 $a_v: X \to \{0, 1\}$

Similarly, Bob's nodes labelled $b_v: Y \to \{0, 1\}$

> Leaves labelled by elements $z \in Z$. Denote by $C^P(R)$ the number of leaves in a best protocol for R.

General idea: Alice speaks at AND nodes and Bob speaks at OR nodes.

> Initially, $f(x) \neq f(y)$ and we maintain this disagreement on subformulas as we move down the tree.

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Bob

A rectangle S is monochromatic if there exists z such that $(x, y, z) \in S$ for all $(x, y) \in S$.

A successful protocol partitions $X \times Y$ into monochromatic rectangles.

Communication Complexity and the Rectangle Bound $R \subseteq X \times Y \times Z$

Bob Y

Rectangle Bound

- We denote by $C^D(R)$ the size of a smallest partition of $X \times Y$ into monochromatic (with respect to R) rectangles. By the argument above, $C^D(R) \leq C^P(R)$.
- We can still hope to prove large lower bounds by focusing on the rectangle bound:

$$C^D(R) \le C^P(R) \le 2^{(\log C^D(R))^2}$$

• Being a purely combinatorial quantity, the rectangle bound is often easier to think about. On the other hand, it is in general NP hard to compute.

Approximating the rectangle bound

• If a size measure (of matrices) is subadditive on rectangles, then we can get a bound of the form:

number of rectangles $\geq \frac{\text{size}(\text{everything})}{\text{size}(\text{largest rectangle})}$.

- Many communication complexity bounds fit within this schema including rectangle area, or more generally probability mass, and matrix rank method of Razborov [Raz90].
- We add a new method within this framework based on the spectral norm.

Our main lemma: spectral norm squared is subadditive

• Spectral norm has several equivalent formulations. We use:

$$||A|| = \max_{u,v : ||u|| = ||v|| = 1} |u^T A v|$$

• Main Lemma: Let A be a matrix over $X \times Y$ and \mathcal{R} be a partition of $X \times Y$ into rectangles. Then

$$||A||^2 \le \sum_{R \in \mathcal{R}} ||A_R||^2.$$

• Note that while $||A + B|| \le ||A|| + ||B||$, for any A, B it is not true in general that $||A + B||^2 \le ||A||^2 + ||B||^2$.

$$||A|| = |u^T A v| = |u^T (\sum_{R \in \mathcal{R}} A_R) v|$$

$$||A|| = |u^T A v| = |u^T (\sum_{R \in \mathcal{R}} A_R) v|$$

$$\leq \sum_{R \in \mathcal{R}} |u^T A_R v|$$

$$||A|| = |u^{T}Av| = |u^{T}(\sum_{R \in \mathcal{R}} A_{R})v|$$
$$\leq \sum_{R \in \mathcal{R}} |u^{T}A_{R}v|$$
$$\leq \sum_{R \in \mathcal{R}} ||A_{R}|| ||u_{R}|| ||v_{R}||$$

$$||A|| = |u^{T}Av| = |u^{T}(\sum_{R \in \mathcal{R}} A_{R})v|$$

$$\leq \sum_{R \in \mathcal{R}} |u^{T}A_{R}v|$$

$$\leq \sum_{R \in \mathcal{R}} ||A_{R}|| ||u_{R}|| ||v_{R}||$$

$$\leq \sqrt{\sum_{R \in \mathcal{R}} ||A_{R}||^{2}} \sqrt{\sum_{R \in \mathcal{R}} ||u_{R}||^{2} ||v_{R}||^{2}}$$

$$||A|| = |u^{T}Av| = |u^{T}(\sum_{R \in \mathcal{R}} A_{R})v|$$

$$\leq \sum_{R \in \mathcal{R}} |u^{T}A_{R}v|$$

$$\leq \sum_{R \in \mathcal{R}} ||A_{R}|| ||u_{R}|| ||v_{R}||$$

$$\leq \sqrt{\sum_{R \in \mathcal{R}} ||A_{R}||^{2}} \sqrt{\sum_{R \in \mathcal{R}} ||u_{R}||^{2} ||v_{R}||^{2}}$$

$$= \sqrt{\sum_{R \in \mathcal{R}} ||A_{R}||^{2}}.$$

Applying the lemma

From the lemma it follows that if \mathcal{R} is an optimal rectangle partition of R_f , then

$$\max_{A \neq 0} \frac{\|A\|^2}{\max_{R \in \mathcal{R}} \|A_R\|^2} \le C^D(R_f).$$

We want a method, however, that doesn't depend on knowing the optimal partition.

Monotonicity

- the rectangles in \mathcal{R} are monochromatic, thus each rectangle is a subset of $D_i = \{(x, y) : x \in X, y \in Y, x_i \neq y_i\}$, for some $i \in [n]$.
- If A is nonnegative, then $||A_R|| \le ||A \circ D_i||$
- Thus we obtain

$$\max_{A\geq 0} \frac{\|A\|^2}{\max_i \|A_i \circ D_i\|^2} \leq C^D(R_f) \leq \mathsf{L}(f).$$

An example: **PARITY**

- Consider a $2^{n-1} \times 2^{n-1}$ matrix A with rows indexed by strings of even parity, columns with strings of odd parity.
- Let A[x,y] = 1 if (x,y) have Hamming distance 1, and 0 otherwise.
- For the all 1 vector u we have $u^T A u = n 2^{n-1}$, thus $||A|| \ge n$.
- Each submatrix $A \circ D_i$ is identity matrix, thus $||A \circ D_i|| = 1$.

The quantum adversary method emerges

Define

$$\operatorname{adv}(f) = \max_{A \ge 0} \frac{\|A\|}{\max_i \|A_i \circ D_i\|}$$

• We have shown that $\mathrm{adv}^2(f) \leq C^D(R_f) \leq \mathsf{L}(f)$

The quantum adversary method emerges

Define

$$\operatorname{adv}(f) = \max_{A \ge 0} \frac{\|A\|}{\max_i \|A_i \circ D_i\|}$$

- We have shown that $\mathrm{adv}^2(f) \leq C^D(R_f) \leq \mathsf{L}(f)$
- It turns out that adv(f) is a lower bound on the quantum query complexity of f [Barnum, Saks, and Szegedy, 03]

More on the quantum adversary method

- The quantity adv(f) emerged over several years [Ambainis 02, Amb03, BSS03, Laplante and Magniez 04] in the context of quantum query complexity. Its many formulations were shown equivalent by [Spalek and Szegedy 05].
- It further follows from [SS05] that adv(f) can be computed in time polynomial in the size of the truth table of f, by reduction to semidefinite programming.
- Like some other bounds arising from semidefinite programming, the adversary method behaves very nicely under composition: in fact, $adv(f^k) = (adv(f))^k$ for any Boolean function f [Amb03, LLS05].

Open problems

- Is quantum query complexity squared a lower bound on formula size?
- Is approximate polynomial degree squared a lower bound on formula size?
- How does the linear programming bound of [Karchmer, Kushilevitz, and Nisan 95] relate to the adversary method?
- Are the rectangle bound and formula size polynomially related?