The Quantum Adversary Method and Classical Formula Size Lower Bounds

Troy Lee
CWI, University of Amsterdam

Joint work with: Sophie Laplante and Mario Szegedy

Circuit Complexity

- Million dollar question: Show an explicit function which requires superpolynomial size circuits
- For functions in NP the best circuit lower bound we know is $5 n-o(n)$ [Lachish and Raz 01, Iwama and Morizumi 02]
- The smallest complexity class we know to contain a function requiring superpolynomial size circuits is MAEXP [Buhrman, Fortnow, and Thierauf 98]

Formula Size

- Weakening of the circuit model-a formula is a binary tree with internal nodes labelled by AND, OR and leaves labelled by literals. The size of a formula, denoted $L(f)$, is its number of leaves.
- PARITY has formula size $\theta\left(n^{2}\right)$ [Khrapchenko 71].
- The best lower bound for a function in NP is $n^{3-o(1)}$ [Håstad 98].
- Showing superpolynomial formula size lower bounds for a function in NP would imply NP $\neq \mathrm{NC}^{1}$.

Two Step Transformation

- We transform the problem of proving lower bounds on formula size in two steps:
- First, we use the exact characterization of formula size in terms of a communication game [Karchmer and Wigderson 88]
- We then lower bound the well known "rectangle bound" from communication complexity

Karchmer-Wigderson Game [KW88]

- Elegant characterization of formula size in terms of a communication game.
- For a Boolean function f, let $X=f^{-1}(0)$ and $Y=f^{-1}(1)$. Consider $R_{f}=\left\{(x, y, i): x \in X, y \in Y, x_{i} \neq y_{i}\right\}$
- The game is then the following: Alice is given $x \in X, \mathrm{Bob}$ is given $y \in Y$ and they wish to find i such that $(x, y, i) \in R_{f}$.
- Karchmer-Wigderson Thm: The number of leaves in a best communication protocol for R_{f} equals the formula size of f.

Communication complexity of relations $R \subseteq X \times Y \times Z$

$$
a_{v}: X \rightarrow\{0,1\}
$$

Similarly, Bob's nodes labelled

$$
b_{v}: Y \rightarrow\{0,1\}
$$

Leaves labelled by elements $z \in Z$.

Denote by $C^{P}(R)$ the number of leaves in a best protocol for R.

Proof by picture: $C^{P}\left(R_{f}\right) \leq \mathrm{L}(f)$.

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Bob
Y

Communication Complexity and the Rectangle

Bound

$$
R \subseteq X \times Y \times Z
$$

Rectangle Bound

- We denote by $C^{D}(R)$ the size of a smallest partition of $X \times Y$ into monochromatic (with respect to R) rectangles. By the argument above, $C^{D}(R) \leq C^{P}(R)$.
- We can still hope to prove large lower bounds by focusing on the rectangle bound:

$$
C^{D}(R) \leq C^{P}(R) \leq 2^{\left(\log C^{D}(R)\right)^{2}}
$$

- Being a purely combinatorial quantity, the rectangle bound is often easier to think about. On the other hand, it is in general NP hard to compute.

Approximating the rectangle bound

- If a size measure (of matrices) is subadditive on rectangles, then we can get a bound of the form:

$$
\text { number of rectangles } \geq \frac{\text { size(everything })}{\text { size(largest rectangle) }} .
$$

- Many communication complexity bounds fit within this schema including rectangle area, or more generally probability mass, and matrix rank method of Razborov [Raz90].
- We add a new method within this framework based on the spectral norm.

Our main lemma: spectral norm squared is subadditive

- Spectral norm has several equivalent formulations. We use:

$$
\|A\|=\max _{u, v:\|u\|=\|v\|=1}\left|u^{T} A v\right|
$$

- Main Lemma: Let A be a matrix over $X \times Y$ and \mathcal{R} be a partition of $X \times Y$ into rectangles. Then

$$
\|A\|^{2} \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|^{2} .
$$

- Note that while $\|A+B\| \leq\|A\|+\|B\|$, for any A, B it is not true in general that $\|A+B\|^{2} \leq\|A\|^{2}+\|B\|^{2}$.

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\|A\|=\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right|
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\| & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right|
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\| & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|\left\|u_{R}\right\|\left\|v_{R}\right\|
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\| & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|\left\|u_{R}\right\|\left\|v_{R}\right\| \\
& \leq \sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|^{2}} \sqrt{\sum_{R \in \mathcal{R}}\left\|u_{R}\right\|^{2}\left\|v_{R}\right\|^{2}}
\end{aligned}
$$

Proof of main lemma

Fix unit vectors u, v which maximize $\left|u^{T} A v\right|$. By definition,

$$
\begin{aligned}
\|A\| & =\left|u^{T} A v\right|=\left|u^{T}\left(\sum_{R \in \mathcal{R}} A_{R}\right) v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left|u^{T} A_{R} v\right| \\
& \leq \sum_{R \in \mathcal{R}}\left\|A_{R}\right\|\left\|u_{R}\right\|\left\|v_{R}\right\| \\
& \leq \sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|^{2}} \sqrt{\sum_{R \in \mathcal{R}}\left\|u_{R}\right\|^{2}\left\|v_{R}\right\|^{2}} \\
& =\sqrt{\sum_{R \in \mathcal{R}}\left\|A_{R}\right\|^{2}} .
\end{aligned}
$$

Applying the Iemma

From the lemma it follows that if \mathcal{R} is an optimal rectangle partition of R_{f}, then

$$
\max _{A \neq 0} \frac{\|A\|^{2}}{\max _{R \in \mathcal{R}}\left\|A_{R}\right\|^{2}} \leq C^{D}\left(R_{f}\right)
$$

We want a method, however, that doesn't depend on knowing the optimal partition.

Monotonicity

- the rectangles in \mathcal{R} are monochromatic, thus each rectangle is a subset of $D_{i}=\left\{(x, y): x \in X, y \in Y, x_{i} \neq y_{i}\right\}$, for some $i \in[n]$.
- If A is nonnegative, then $\left\|A_{R}\right\| \leq\left\|A \circ D_{i}\right\|$
- Thus we obtain

$$
\max _{A \geq 0} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i} \circ D_{i}\right\|^{2}} \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f) .
$$

An example: PARITY

- Consider a $2^{n-1} \times 2^{n-1}$ matrix A with rows indexed by strings of even parity, columns with strings of odd parity.
- Let $A[x, y]=1$ if (x, y) have Hamming distance 1 , and 0 otherwise.
- For the all 1 vector u we have $u^{T} A u=n 2^{n-1}$, thus $\|A\| \geq n$.
- Each submatrix $A \circ D_{i}$ is identity matrix, thus $\left\|A \circ D_{i}\right\|=1$.

The quantum adversary method emerges

Define

$$
\operatorname{adv}(f)=\max _{A \geq 0} \frac{\|A\|}{\max _{i}\left\|A_{i} \circ D_{i}\right\|}
$$

- We have shown that $\operatorname{adv}^{2}(f) \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f)$

The quantum adversary method emerges

Define

$$
\operatorname{adv}(f)=\max _{A \geq 0} \frac{\|A\|}{\max _{i}\left\|A_{i} \circ D_{i}\right\|}
$$

- We have shown that $\operatorname{adv}^{2}(f) \leq C^{D}\left(R_{f}\right) \leq \mathrm{L}(f)$
- It turns out that $\operatorname{adv}(f)$ is a lower bound on the quantum query complexity of f [Barnum, Saks, and Szegedy, 03]

More on the quantum adversary method

- The quantity $\operatorname{adv}(f)$ emerged over several years [Ambainis 02, Amb03, BSS03, Laplante and Magniez 04] in the context of quantum query complexity. Its many formulations were shown equivalent by [Špalek and Szegedy 05].
- It further follows from [ŠS05] that $\operatorname{adv}(f)$ can be computed in time polynomial in the size of the truth table of f, by reduction to semidefinite programming.
- Like some other bounds arising from semidefinite programming, the adversary method behaves very nicely under composition: in fact, $\operatorname{adv}\left(f^{k}\right)=(\operatorname{adv}(f))^{k}$ for any Boolean function f [Amb03, LLSO5].

Linear programming bound
[KKN95]

Koutsoupias
Håstad

Khrapchenko

Open problems

- Is quantum query complexity squared a lower bound on formula size?
- Is approximate polynomial degree squared a lower bound on formula size?
- How does the linear programming bound of [Karchmer, Kushilevitz, and Nisan 95] relate to the adversary method?
- Are the rectangle bound and formula size polynomially related?

