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Circuit Complexity

• Million dollar question: Show an explicit function which re-

quires superpolynomial size circuits

• For functions in NP the best circuit lower bound we know is

5n− o(n) [Lachish and Raz 01, Iwama and Morizumi 02]

• The smallest complexity class we know to contain a function

requiring superpolynomial size circuits is MAEXP [Buhrman,

Fortnow, and Thierauf 98]



Formula Size

• Weakening of the circuit model—a formula is a binary tree
with internal nodes labelled by AND, OR and leaves labelled
by literals. The size of a formula, denoted L(f), is its number
of leaves.

• PARITY has formula size θ(n2) [Khrapchenko 71].

• The best lower bound for a function in NP is n3−o(1)

[Håstad 98].

• Showing superpolynomial formula size lower bounds for a
function in NP would imply NP 6= NC1.



Two Step Transformation

• We transform the problem of proving lower bounds on for-

mula size in two steps:

– First, we use the exact characterization of formula size in

terms of a communication game [Karchmer and

Wigderson 88]

– We then lower bound the well known “rectangle bound”

from communication complexity



Karchmer–Wigderson Game [KW88]

• Elegant characterization of formula size in terms of a com-
munication game.

• For a Boolean function f , let X = f−1(0) and Y = f−1(1).
Consider Rf = {(x, y, i) : x ∈ X, y ∈ Y, xi 6= yi}

• The game is then the following: Alice is given x ∈ X, Bob is
given y ∈ Y and they wish to find i such that (x, y, i) ∈ Rf .

• Karchmer–Wigderson Thm: The number of leaves in a best
communication protocol for Rf equals the formula size of f .



Communication complexity of relations
R ⊆ X × Y × Z

ALICEBOB

ALICE

Communication protocol is a binary tree:

z1 z2 z3 z2 z4

bv : Y → {0, 1}

Similarly, Bob’s nodes labelled

Alice’s nodes labelled by a function:

av : X → {0, 1}

Leaves labelled by elements z ∈ Z.

Denote by CP (R) the number of leaves

in a best protocol for R.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

AND

x3 x2x1 ¬x2 ¬x4

General idea: Alice speaks at AND nodes

and Bob speaks at OR nodes.

Initially, f(x) 6= f(y) and we maintain this

disagreement on subformulas as we move

down the tree.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

ALICE

x3 x2x1 ¬x2 ¬x4

First we define Alice’s action at the top node:

If x does not satisfy the left subformula,

then Alice sends the bit 0;

otherwise she sends the bit 1.



Proof by picture: CP(Rf) ≤ L(f).

ANDOR

0
ALICE

x3 x2x1 ¬x2 ¬x4

Say that x does not satisfy the left

subformula.



Proof by picture: CP(Rf) ≤ L(f).

0

ALICE

ALICE

BOB

x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(Rf) ≤ L(f).
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x3 x2x1 ¬x2 ¬x4

Now Bob speaks at the OR gate:

If y satisfies the left subformula, Bob says 0.

Otherwise, he says 1.



Proof by picture: CP(Rf) ≤ L(f).
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ALICE

x3 x2x1 ¬x2 ¬x4

We continue down the tree in a similar fashion,

maintaining the property that x and y

take different values on subformulas.

Eventually, we reach a literal `i such that

`i(x) 6= `i(y) and so x and y differ on bit i.



Communication Complexity and the Rectangle

Bound
R ⊆ X × Y × Z
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X

Bob
Y

x

y

{z : (x, y, z) ∈ R}
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Communication Complexity and the Rectangle

Bound
R ⊆ X × Y × Z
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A rectangle S is monochromatic

if there exists z such that

(x, y, z) ∈ S for all (x, y) ∈ S.

A successful protocol partitions

X × Y into monochromatic

rectangles.



Communication Complexity and the Rectangle

Bound
R ⊆ X × Y × Z
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Rectangle Bound

• We denote by CD(R) the size of a smallest partition of X×Y

into monochromatic (with respect to R) rectangles. By the
argument above, CD(R) ≤ CP (R).

• We can still hope to prove large lower bounds by focusing on
the rectangle bound:

CD(R) ≤ CP (R) ≤ 2(logCD(R))2

• Being a purely combinatorial quantity, the rectangle bound
is often easier to think about. On the other hand, it is in
general NP hard to compute.



Approximating the rectangle bound

• If a size measure (of matrices) is subadditive on rectangles,

then we can get a bound of the form:

number of rectangles ≥
size(everything)

size(largest rectangle)
.

• Many communication complexity bounds fit within this schema

including rectangle area, or more generally probability mass,

and matrix rank method of Razborov [Raz90].

• We add a new method within this framework based on the

spectral norm.



Our main lemma: spectral norm squared is
subadditive

• Spectral norm has several equivalent formulations. We use:

‖A‖ = max
u,v :‖u‖=‖v‖=1

|uTAv|

• Main Lemma: Let A be a matrix over X × Y and R be a
partition of X × Y into rectangles. Then

‖A‖2 ≤
∑

R∈R
‖AR‖2.

• Note that while ‖A + B‖ ≤ ‖A‖+ ‖B‖, for any A, B it is not
true in general that ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2.



Proof of main lemma

Fix unit vectors u, v which maximize |uTAv|. By definition,

‖A‖ = |uTAv| = |uT (
∑

R∈R
AR)v|
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Proof of main lemma

Fix unit vectors u, v which maximize |uTAv|. By definition,

‖A‖ = |uTAv| = |uT (
∑

R∈R
AR)v|

≤
∑

R∈R
|uTARv|

≤
∑

R∈R
‖AR‖ ‖uR‖ ‖vR‖

≤
√ ∑

R∈R
‖AR‖2

√ ∑
R∈R

‖uR‖2‖vR‖2

=
√ ∑

R∈R
‖AR‖2.



Applying the lemma

From the lemma it follows that if R is an optimal rectangle

partition of Rf , then

max
A6=0

‖A‖2

maxR∈R ‖AR‖2
≤ CD(Rf).

We want a method, however, that doesn’t depend on knowing

the optimal partition.



Monotonicity

• the rectangles in R are monochromatic, thus each rectangle

is a subset of Di = {(x, y) : x ∈ X, y ∈ Y, xi 6= yi}, for some

i ∈ [n].

• If A is nonnegative, then ‖AR‖ ≤ ‖A ◦Di‖

• Thus we obtain

max
A≥0

‖A‖2

maxi ‖Ai ◦Di‖2
≤ CD(Rf) ≤ L(f).



An example: PARITY

• Consider a 2n−1×2n−1 matrix A with rows indexed by strings

of even parity, columns with strings of odd parity.

• Let A[x, y] = 1 if (x, y) have Hamming distance 1, and 0

otherwise.

• For the all 1 vector u we have uTAu = n2n−1, thus ‖A‖ ≥ n.

• Each submatrix A ◦Di is identity matrix, thus ‖A ◦Di‖ = 1.



The quantum adversary method emerges

Define

adv(f) = max
A≥0

‖A‖
maxi ‖Ai ◦Di‖

• We have shown that adv2(f) ≤ CD(Rf) ≤ L(f)



The quantum adversary method emerges

Define

adv(f) = max
A≥0

‖A‖
maxi ‖Ai ◦Di‖

• We have shown that adv2(f) ≤ CD(Rf) ≤ L(f)

• It turns out that adv(f) is a lower bound on the quantum

query complexity of f [Barnum, Saks, and Szegedy, 03]



More on the quantum adversary method

• The quantity adv(f) emerged over several years [Ambainis
02, Amb03, BSS03, Laplante and Magniez 04] in the context
of quantum query complexity. Its many formulations were
shown equivalent by [Špalek and Szegedy 05].

• It further follows from [ŠS05] that adv(f) can be computed
in time polynomial in the size of the truth table of f , by
reduction to semidefinite programming.

• Like some other bounds arising from semidefinite program-
ming, the adversary method behaves very nicely under com-
position: in fact, adv(fk) = (adv(f))k for any Boolean func-
tion f [Amb03, LLS05].



s(f)2

n2

Formula size

Rectangle bound

Koutsoupias

Linear programming bound

[KKN95]

(Adversary method)2

Khrapchenko

H̊astad



Open problems

• Is quantum query complexity squared a lower bound on for-
mula size?

• Is approximate polynomial degree squared a lower bound on
formula size?

• How does the linear programming bound of [Karchmer,
Kushilevitz, and Nisan 95] relate to the adversary method?

• Are the rectangle bound and formula size polynomially
related?


