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Conventions
Identify a communication function f : X × Y → {−1,+1}

with the associated X-by-Y matrix A(x,y)=f(x,y).

Denote by D(A) the deterministic communication 
complexity of the sign matrix A.

the randomized complexity withDenote by Rε(A)
error at most ε.
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Log rank bound
A    bit protocol partitions the communication matrix 
into at most      many rectangles.2c

c

If the protocol is correct, each rectangle will be 
monochromatic, and so rank one.

By subadditivity of rank, this gives

D(A) ≥ log rank(A)

One of the greatest open problems in communication 
complexity, the log rank conjecture of Lovasz and 
Saks, states that this bound is polynomially tight
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Approximation rank
For randomized (and quantum) models, one can show 
that a lower bound is given by approximation rank.  
[Krause96, Buhrman and de Wolf 01]

Given a target matrix A, approximation rank looks at 
the minimal rank matrix entrywise close to A:

rankε(A) = min
X

rank(X)

|X(i, j)−A(i, j)| ≤ ε for all i, j.
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Approximation rank
In analogy with the log rank conjecture, can also 
conjecture that log approximation rank is polynomially 
tight for randomized communication complexity.

We do not know if approximation rank is NP-hard to 
compute, but similar rank minimization problems are 
NP-hard.

While approximation rank gives a lower bound on 
quantum communication complexity, not known to 
work for model with entanglement.
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Main result
We show a semidefinite programming quantity 
which is polynomially related to approximation rank 
for constant 0 < ε< 1/2

Moreover, this quantity is known to be a lower 
bound even in the quantum model with 
entanglement.
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Convex relaxation
Part of what makes rank minimization problems 
hard is that rank is not a convex function.

As is common in approximation algorithms, we look 
at a convex relaxation of the problem.

For this, we need to introduce some matrix norms.
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Matrix norms
• Define the ith singular value as

• Denote 

σi(A) =
√

λi(AAt)

‖A‖1 =
∑

i

σi(A)

‖A‖∞ = σ1(A)

‖A‖2 =
√∑

i

σ2
i (A)

“Trace Norm”

“Spectral Norm”

“Frobenius Norm”

=
√∑

i,j

A(i, j)2



Trace norm method

∑

i

σi(A) ≤
√

rank(A) ‖A‖2

For a M-by-N sign matrix this gives

rank(A) ≥ ‖A‖2
1

MN

Replace the rank objective function by the trace norm.

As rank equals the number of nonzero singular values, 
we have
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Example:  Trace Norm
Let H be a N-by-N Hadamard matrix.

‖H‖1 = N3/2Then HHt = NI and so

Thus trace norm method gives a bound on the 
rank of

‖H‖2
1

‖H‖2
2

=
N3

N2
= N
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Trace norm method: 
drawback

Trace norm bound is not monotone.  Consider
(

HN 1N

1N 1N

)

Trace norm is at most N3/2 + 3N

Trace norm method gives
(N3/2 + 3N)2

4N2
=

N

4
+ O(

√
N)

Worse bound than on Hadamard submatrix!



A fix
We can fix this by considering

max
u,v

‖u‖=‖v‖=1

‖A ◦ uvt‖1

As this entrywise product does not increase the rank
we still have

rank(A) ≥
(
‖A ◦ uvt‖1

‖A ◦ uvt‖2

)2

For a sign matrix A, this simplifies nicely:

rank(A) ≥
(
‖A ◦ uvt‖1

)2
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We have arrived
γ2At the norm, introduced in communication

complexity by [LMSS07, LS07].

Known by a variety of names in matrix analysis:
Hadamard/Schur product operator/trace norm

Has many nice properties.  For this talk, we use the 
fact that it can be written as a semidefinite program 
and computed to high accuracy in polynomial time.

γ2(A) = max
u,v

‖u‖=‖v‖=1

‖A ◦ uvt‖1
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Application to 
approximation rank

Use γ2 norm as surrogate in rank minimization problem

γε
2(A) = min

B
γ2(B)

|A(i, j)−B(i, j)| ≤ ε for all i, j.

As argued above, 

γε
2(A)2

(1 + ε)2
≤ rankε(A).
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A = X Y

!2 norm

!2 norm

γ2(A) = min
X,Y

XY =A

‖X‖r‖Y ‖c

γ2
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norm as factorization

A = X Y

!2 norm

!2 norm

γ2(A) = min
X,Y

XY =A

‖X‖r‖Y ‖c

γ2



Now shrink the rows
Take X,Y optimal factorization realizing

Obtain matrices X’,Y’ by randomly projecting 
columnspace down to dimension about 

X R=X’

γε
2(A).

γε
2(A)2 log N

γε
2(A)2 log N



Johnson-Lindenstrauss 
Lemma

Now X’Y’ will be a matrix of the desired rank.

Furthermore, by the Johnson-Lindenstrauss lemma 
and a union bound, the inner products between all 
rows of X’ and columns of Y’will approximately 
equal those between X and Y.  

Thus X’Y’ will still be entrywise close to A.



Error-reduction

Can fix this by applying low degree polynomial 
approximation of the sign function entrywise to the 
matrix.

Applying a degree d polynomial blows up rank by at 
most a power of d.

Can argue that if we started with an ε approximation, 

2ε approximation.now will have



Error-reduction
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Final result
For any M-by-N sign matrix A and constant 0 < ε< 1

γε
2(A)2

(1 + ε)2
≤ rankε(A) = O

(
γε
2(A)2 log(MN)

)3

Implies that the log approximation rank conjecture is 
essentially equivalent to the existence of a constant c 
such that

Rε(A) ≤ (log γε
2(A))c + O(log n).



Open questions

• What is the complexity of the real vector 
inner product function?

• Does the log rank conjecture imply the log 
approximation rank conjecture?

• Approximation algorithm for the limiting 
case of sign rank?


