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Abstract

We introduce two new complexity measures for Boolean functions, which we name sumPI
and maxPI. The quantity sumPI has been emerging through a line of research on quantum query
complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03,
Zha05, LM04], culminating in [ŠS05] with the realization that these many different formulations
are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function,
we begin to investigate this quantity in its own right and see that it also has applications to
classical complexity theory.

As a surprising application we show that sumPI2(f) is a lower bound on the formula size,
and even, up to a constant multiplicative factor, the probabilistic formula size of f . We show
that several formula size lower bounds in the literature, specifically Khrapchenko and its exten-
sions [Khr71, Kou93], including a key lemma of [H̊as98], are in fact special cases of our method.
The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is
derived from sumPI in such a way that maxPI2(f) remains a lower bound on formula size.

Our main result is proven via a combinatorial lemma which relates the square of the spectral
norm of a matrix to the squares of the spectral norms of its submatrices. The generality of this
lemma implies that our methods can also be used to lower bound the communication complexity
of relations, and a related combinatorial quantity, the rectangle partition number.

To exhibit the strengths and weaknesses of our methods, we look at the sumPI and maxPI
complexity of a few examples, including the recursive majority of three function, a function
defined by Ambainis [Amb03], and the collision problem.

1 Introduction

A central and longstanding open problem in complexity theory is to prove superlinear lower bounds
for the circuit size of an explicit Boolean function. While this seems quite difficult, a modest amount
of success has been achieved in the slightly weaker model of formula size, a formula being simply
a circuit where every gate has fan-out at most one. The current best formula size lower bound for
an explicit function is n3−o(1) by H̊astad [H̊as98].
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In this paper we show that part of the rich theory developed around proving lower bounds on
quantum query complexity, namely the so-called quantum adversary argument, can be brought to
bear on formula size lower bounds. This adds to the growing list of examples of how studying
quantum computing has led to new results in classical complexity, including [SV01, KW03, Aar04,
LM04], to cite a few.

The roots of the quantum adversary argument can be traced to the hybrid argument of [BBBV97],
who use it to show a Ω(

√
n) lower bound on quantum search. Ambainis developed a more sophis-

ticated adversary argument [Amb02] and later improved this method to the full-strength quantum
adversary argument [Amb03]. Further generalizations include Barnum, Saks, and Szegedy [BSS03]
with their spectral method and Zhang [Zha05] with his strong adversary method. Laplante and
Magniez [LM04] use Kolmogorov complexity to capture the adversary argument in terms of a min-
imization problem. This line of research culminates in recent work of Špalek and Szegedy [ŠS05]
who show that in fact all the methods of [Amb03, BSS03, Zha05, LM04] are equivalent.

The fact that the quantum adversary argument has so many equivalent definitions indicates
that it is a natural combinatorial property of Boolean functions which is worthwhile to investigate
on its own. We give this quantity its own name, sumPI, and adopt the following primal formulation
of the method, from [ŠS05, LM04]. Letting S ⊆ {0, 1}n and f : S → {0, 1}, be a Boolean function
we say

sumPI(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i

xi 6=yi

√
px(i)py(i)

, (1)

where p = {px : x ∈ S} is a family of probability distributions on the indices [n]. If Qε(f) is
the two sided error quantum query complexity of f then Qε(f) = Ω(sumPI(f)). We show further
that sumPI2(f) is a lower bound on the formula size of f . Moreover, sumPI2(f) generalizes several
formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71,
Kou93], and a key lemma of [H̊as98] used on the way to proving the current best formula size lower
bounds for an explicit function.

We also introduce

KI(f) = min
α∈Σ∗

max
x,y

f(x) 6=f(y)

min
i:xi 6=yi

K(i|x, α) + K(i|y, α),

where K is prefix-free Kolmogorov complexity. This formulation arises from the quantum and
randomized lower bounds of [LM04]. This formulation is especially interesting because of the
intuition that it provides. For example, it allows for a very simple proof that circuit depth d(f) ≥
KI(f), using the Karchmer-Wigderson characterization of circuit depth [KW88].

We define a quantity closely related to 2KI, which we call maxPI.

maxPI(f) = min
p

max
x,y

f(x) 6=f(y)

1
maxi:xi 6=yi

√
px(i)py(i)

. (2)

Notice that this is like sumPI but where the sum is replaced by a maximum. By definition, maxPI
is larger than sumPI, but its square is still a lower bound on formula size.

We prove our main results by transforming in two steps the problem of proving formula size
lower bounds into a problem with a more combinatorial flavor which is easier to work with. First,
we use the elegant characterization given by Karchmer and Wigderson [KW88] of formula size in
terms of the communication complexity of a relation. We then use the well-known property that a
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successful communication protocol partitions a relation into rectangles of a certain form. We then
lower bound the size of the minimal such rectangle partition. A sufficient condition for a measure
to lower bound the size of such a partition is that it is subadditive on disjoint rectangles. Our main
lemma shows that the spectral norm squared of a matrix A is less than the sum of the squared
spectral norms of matrices AR which partition A.

We look at several concrete problems to illustrate the strengths and weaknesses of our methods.
We study the height h recursive majority of three problem, R−MAJh

3 , and show that Qε(R−MAJh
3) =

Ω(2h) and a lower bound of 4h for the formula size. We also look at a function defined by Ambai-
nis [Amb03] to separate the quantum query complexity of a function from the bound given by the
polynomial method [BBC+01]. This function gives an example where sumPI2 can give something
much better than Khraphchenko’s bound. For total functions, maxPI and sumPI are polynomially
related; however, we give an example of a partial function f , namely the collision problem, where
sumPI(f) = 2 and maxPI(f) = Θ(

√
n). This example shows that in general maxPI is not a lower

bound on quantum query complexity as for the collision problem maxPI(f) � Qε(f) = Θ(n1/3)
[AS04, BHT97].

1.1 Organization

In Section 2, we give the definitions, results, and notation that we use throughout the paper, and
introduce the quantities sumPI, maxPI, and KI. In Section 3 we prove some properties of sumPI
and maxPI. In Section 4, we show how sumPI and maxPI give rise to formula size lower bounds,
for deterministic and probabilistic formula size. In Section 5, we compare our new methods with
previous methods in formula size complexity. In Section 6, we investigate the limits of our and
other formula lower bound methods. Finally, in Section 7 we apply our techniques to some concrete
problems.

2 Preliminaries

We use standard notation such as [n] = {1, . . . , n}, |S| for the cardinality of a set S, and all
logarithms are base 2. Hamming distance is written dH .

2.1 Complexity measures of Boolean functions

We use standard measures of Boolean functions, such as sensitivity and certificate complexity.
We briefly recall these here, see [BW02] for more details. For a set S ⊆ {0, 1}n and Boolean
function f : S → {0, 1}, the sensitivity of f on input x is the number of positions i ∈ [n] such that
changing the value of x in position i changes the function value. The zero-sensitivity, written s0(f)
is the maximum over x ∈ f−1(0) of the sensitivity of f on x. The one-sensitivity, s1(f) is defined
analogously. The maximum of s0(f), s1(f) is the sensitivity of f , written s(f).

A certificate for f on input x ∈ S is a subset I ⊆ [n] such that for any y satisfying yi = xi for all
i ∈ I it must be the case that f(y) = f(x). The zero-certificate complexity of f , written C0(f) is
the maximum over all x ∈ f−1(0) of the minimum size certificate of x. Similarly, the one-certificate
complexity of f , written C1(f) is the maximum over all x ∈ f−1(1) of the minimum size certificate
of x.
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2.2 Linear algebra

For a matrix A (respectively, vector v) we write AT (resp. vT ) for the transpose of A, and A∗ (resp.
v∗) for the conjugate transpose of A. For two matrices A,B we let A◦B be the Hadamard product
of A and B, that is (A ◦ B)[x, y] = A[x, y]B[x, y]. We write A ≥ B if A is entrywise greater than
B, and A � B when A − B is positive semidefinite, that is ∀v : vT (A − B)v ≥ 0. We let rk(A)
denote the rank of the matrix A. We will use the notation Entrysum(A) for

∑
i,j A[i, j].

We will make extensive use of the spectral norm, denoted ‖A‖2. For a matrix A,

‖A‖2 = {
√

λ : λ is the largest eigenvalue of A∗A}.

For a vector v, we let |v| be the `2 norm of v.
We will also make use of some other matrix norms. The maximum absolute column sum norm,

written ‖A‖1 is defined as ‖A‖1 = maxj
∑

i |A[i, j]|, and the maximum absolute row sum norm,

written ‖A‖∞ is ‖A‖∞ = maxi
∑

j |A[i, j]|. The Fróbenius norm ‖A‖F =
√∑

i,j A[i, j]2 is the `2

norm of A thought of as a long vector.
We collect a few facts about the spectral norm. These can be found in for example [HJ99].

Proposition 1 Let A be an arbitrary m by n matrix. Then

1. ‖A‖2 = maxu,v
|u∗Av|
|u||v|

2. ‖A‖2
2 ≤ ‖A‖1‖A‖∞

3. For nonnegative matrices A,B, if A ≤ B then ‖A‖2 ≤ ‖B‖2

2.3 Deterministic and probabilistic formulae

A Boolean formula over the standard basis {∨,∧,¬} is a binary tree where each internal node
is labeled with ∨ or ∧, and each leaf is labeled with a literal, that is, a Boolean variable or its
negation. The size of a formula is its number of leaves. We naturally identify a formula with the
function it computes.

Definition 2 Let f : {0, 1}n → {0, 1} be a Boolean function. The formula size of f , denoted L(f),
is the size of the smallest formula which computes f . The formula depth of f , denoted d(f) is the
minimum depth of a formula computing f .

It is clear that L(f) ≤ 2d(f); that in fact the opposite inequality d(f) ≤ O(log L(f)) also holds is a
nontrivial result due to Spira [Spi71].

We will also consider probabilistic formulae, that is, a probability distribution over deterministic
formulae. We take a worst-case notion of the size of a probabilistic formula. Probabilistic formula
size has been studied before, for example in [Val84, Bop89, DZ97, Kla04].

Definition 3 Let {fj}j∈J be a set of functions with fj : S → {0, 1} for each j ∈ J . For a function
f : S → {0, 1}, we say that f is ε-approximated by {fj}j∈J if there is a probability distribution
α = {αj}j∈J over J such that for every x ∈ S,

Pr
α

[f(x) = fj(x)] ≥ 1− ε.

In particular, if maxj L(fj) ≤ s, then we say that f is ε-approximated by formulas of size s, denoted
Lε(f) ≤ s.

Note that even if a function depends on all its variables, it is possible that the probabilistic
formula size is less than the number of variables.
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2.4 Communication complexity of relations

Karchmer and Wigderson [KW88] give an elegant characterization of formula size in terms of a
communication game. We will use this formulation in our proofs. This has the advantage of letting
us work in the more general setting of communication complexity of relations and enabling us to
use the combinatorial tools of communication complexity. We now describe the setting.

Let X, Y, Z be finite sets, and R ⊆ X×Y×Z. In the communication game for R, Alice is given
some x ∈ X, Bob is given some y ∈ Y and their goal is to find some z ∈ Z such that (x, y, z) ∈ R,
if such a z exists. A communication protocol is a binary tree where each internal node v is labelled
by a either a function av : X → {0, 1} or bv : Y → {0, 1} describing either Alice’s or Bob’s message
at that node, and where each leaf is labelled with an element z ∈ Z. A communication protocol
computes R if for all (x, y) ∈ X×Y walking down the tree according to av, bv leads to a leaf labelled
with z such that (x, y, z) ∈ R, provided such a z exists. The communication cost D(R) of R is
the height of the smallest communication protocol computing R. The protocol partition number
CP (R) is the number of leaves in the smallest communication protocol computing R.

Definition 4 For any Boolean function f we associate a relation Rf = {(x, y, i) : f(x) = 0, f(y) =
1, xi 6= yi}.

Theorem 5 (Karchmer-Wigderson) For any Boolean function f , L(f) = CP (Rf ) and d(f) =
D(Rf ).

An advantage of the communication complexity approach to formula size is that we can use the
powerful combinatorial tools available for communication complexity lower bounds. At the heart
of this approach lies the idea of combinatorial rectangles. A combinatorial rectangle is simply a
set S ⊆ X × Y which can be expressed as S = X ′ × Y ′ for some X ′ ⊆ X, Y ′ ⊆ Y . We say that
a set S ⊆ X × Y is monochromatic with respect to the relation R if there is a z ∈ Z such that
(x, y, z) ∈ R for all (x, y) ∈ S. It can be shown that the leaves of a successful communication
protocol for R form a disjoint covering of X × Y by rectangles monochromatic with respect to R.
We let CD(R) be the size of the smallest disjoint covering of X × Y by monochromatic rectangles.
It follows that CD(R) ≤ CP (R). For more information on communication complexity and proofs
of the above results, we suggest [KN97].

2.5 sumPI and the quantum adversary method

Knowledge of quantum computing is not needed for reading this paper; for completeness, however,
we briefly sketch the quantum query model. More background on quantum query complexity and
quantum computing in general can be found in [BW02, NC00].

As with the classical counterpart, in the quantum query model we wish to compute some
function f : S → {0, 1}, where S ⊆ Σn, and we access the input through queries. The complexity
of f is the number of queries needed to compute f . Unlike the classical case, however, we can now
make queries in superposition. Formally, a query O corresponds to the unitary transformation

O : |i, b, z〉 7→ |i, b⊕ xi, z〉

where i ∈ [n], b ∈ {0, 1}, and z represents the workspace. A t-query quantum algorithm A has the
form A = UtOUt−1O · · ·OU1OU0, where the Uk are fixed unitary transformations independent of
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the input x. The computation begins in the state |0〉, and the result of the computation A is the
observation of the rightmost bit of A|0〉. We say that A ε-approximates f if the observation of the
rightmost bit of A|O〉 is equal to f(x) with probability at least 1 − ε, for every x. We denote by
Qε(f) the minimum query complexity of a quantum query algorithm which ε-approximates f .

Along with the polynomial method [BBC+01], one of the main techniques for showing lower
bounds in quantum query complexity is the quantum adversary method [Amb02, Amb03, BSS03,
Zha05, LM04]. Recently, Špalek and Szegedy [ŠS05] have shown that all the strong versions of the
quantum adversary method are equivalent, and further that these methods can be nicely charac-
terized as primal and dual.

We give the primal characterization as our principal definition of sumPI.

Definition 6 (sumPI) Let S ⊆ {0, 1}n and f : S → {0, 1} be a Boolean function. For every
x ∈ S let px : [n] → R be a probability distribution, that is, px(i) ≥ 0 and

∑
i px(i) = 1. Let

p = {px : x ∈ S}. We define the sum probability of indices to be

sumPI(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i

xi 6=yi

√
px(i)py(i)

We will also use two versions of the dual method, both a weight scheme and the spectral
formulation. The most convenient weight scheme for us is the “probability scheme”, given in
Lemma 4 of [LM04].

Definition 7 (Probability Scheme) Let S ⊆ {0, 1}n and f : S → {0, 1} be a Boolean function,
and X = f−1(0), Y = f−1(1). Let q be a probability distribution on X×Y , and pA, pB be probability
distributions on X, Y respectively. Finally let {p′x,i : x ∈ X, i ∈ [n]} and {p′y,i : y ∈ Y, i ∈ [n]} be
families of probability distributions on X, Y respectively. Assume that q(x, y) = 0 when f(x) = f(y).
Let P range over all possible tuples (q, pA, pB, {p′x,i}x,i) of distributions as above. Then

PA(f) = max
P

min
x,y,i

f(x) 6=f(y),xi 6=yi

√
pA(x)pB(y)p′x,i(y)p′y,i(x)

q(x, y)

We will also use the spectral adversary method.

Definition 8 (Spectral Adversary) Let S ⊆ {0, 1}n and f : S → {0, 1} be a Boolean function.
Let X = f−1(0), Y = f−1(1). Let Γ 6= 0 be an arbitrary |X|×|Y | nonnegative matrix. For i ∈ [n],
let Γi be the matrix:

Γi[x, y] =
{

0 if xi = yi

Γ[x, y] if xi 6= yi

Then
SA(f) = max

Γ

‖Γ‖2

maxi ‖Γi‖2

Note that the spectral adversary method was initially defined [BSS03] for symmetric matrices over
X ∪ Y . The above definition is equivalent: if A is a symmetric matrix over X ∪ Y satisfying the

constraint A[x, y] = 0 when f(x) = f(y), then A is of the form A =
[

0 B
BT 0

]
, for some matrix
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B over X×Y . Then the spectral norm of A is equal to that of B. Similarly, for any X×Y matrix
A we can form a symmetrized version of A as above preserving the spectral norm.

We will often use the following theorem implicitly in taking the method most convenient for
the particular bound we wish to demonstrate.

Theorem 9 (Špalek-Szegedy) Let n ≥ 1 be an integer, S ⊆ {0, 1}n and f : S → {0, 1}. Then

sumPI(f) = SA(f) = PA(f)

2.6 The KI and maxPI complexity measures

The definition of KI arises from the Kolmogorov complexity adversary method [LM04]. The Kol-
mogorov complexity CU (x) of a string x, with respect to a universal Turing machine U is the length
of the shortest program p such that U(p) = x. The complexity of x given y, denoted C(x|y) is the
length of the shortest program p such that U(〈p, y〉) = x. When U is such that the set of outputs is
prefix-free (no string in the set is prefix of another in the set), we write KU (x|y). From this point
onwards, we fix U and simply write K(x|y). For more background on Kolmogorov complexity
consult [LV97].

Definition 10 Let S ⊆ {0, 1}n and f : S → {0, 1}, let

KI(f) = min
α∈{0,1}∗

max
x,y

f(x) 6=f(y)

min
i:xi 6=yi

K(i|x, α) + K(i|y, α).

The advantage of using concepts based on Kolmogorov complexity is that they often naturally
capture the information theoretic content of lower bounds. As an example of this, we give a simple
proof that KI is a lower bound on circuit depth.

Theorem 11 For any Boolean function f , KI(f) ≤ d(f).

Proof: Let P be a protocol for Rf . Fix x, y with different values under f , and let TA be a
transcript of the messages sent from A to B, on input x, y. Similarly, let TB be a transcript of
the messages sent from B to A. Let i be the output of the protocol, with xi 6= yi. To print i
given x, simulate P using x and TB. To print i given y, simulate P using y and TA. This shows
that ∀x, y : f(x) 6= f(y),∃i : xi 6= yi,K(i|x, α) + K(i|y, α) ≤ |TA| + |TB| ≤ D(Rf ), where α is a
description of A’s and B’s algorithms. 2

Remark A similar proof in fact shows that KI(f) ≤ 2N(Rf ), where N is the nondeterministic
communication complexity. Since the bound does not take advantage of interaction between the
two players, in many cases we cannot hope to get optimal lower bounds using these techniques.

An argument similar to that in [ŠS05] shows that

2KI(f) = Θ

(
min

p
max

x,y
f(x) 6=f(y)

1
maxi

√
px(i)py(i)

)
Notice that the right hand side of the equation is identical to the definition of sumPI, except that the
sum in the denominator is replaced by a maximum. This led us to define the complexity measure
maxPI, in order to get stronger formula size lower bounds.
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Definition 12 (maxPI) Let S ⊆ {0, 1}n and f : S → {0, 1}. For every x ∈ S let px : [n] → R be a
probability distribution. Let p = {px : x ∈ S}. We define the maximum probability of indices to be

maxPI(f) = min
p

max
x,y

f(x) 6=f(y)

1
maxi

√
px(i)py(i)

It can be easily seen from the definitions that sumPI(f) ≤ maxPI(f) for any f . The following lemma
is also straightforward from the definitions:

Lemma 13 If S′ ⊆ S and f ′ : S′ → {0, 1} is a domain restriction of f : S → {0, 1} to S′, then
sumPI(f ′) ≤ sumPI(f) and maxPI(f ′) ≤ maxPI(f).

3 Properties of sumPI and maxPI

3.1 Properties of sumPI

Although in general, as we shall see, sumPI gives weaker formula size lower bounds than maxPI, the
measure sumPI has several nice properties which make it more convenient to use in practice.

The next lemma shows that sumPI behaves like most other complexity measures with respect
to composition of functions:

Lemma 14 Let g1, . . . , gn be Boolean functions, and h be a function, h : {0, 1}n → {0, 1}. If
sumPI(gj) ≤ a for 1 ≤ j ≤ n and sumPI(h) ≤ b, then for f = h(g1, . . . , gn), sumPI(f) ≤ ab.

Proof: Let p be an optimal family of distribution functions associated with h and pj be optimal
families of distribution functions associated with gj . Define the distribution function

qx(i) =
∑
j∈[n]

pg(x)(j)pj,x(i).

Assume that for x, y ∈ S we have f(x) 6= f(y). It is enough to show that∑
i: xi 6=yi

√∑
j∈[n]

pg(x)(j)pj,x(i)
√∑

j∈[n]

pg(y)(j)pj,y(i)

≥ 1
ab

. (3)

By Cauchy–Schwarz, the left hand side of Eq. 3 is greater than or equal to∑
i:xi 6=yi

∑
j∈[n]

√
pg(x)(j)pj,x(i)

√
pg(y)(j)pj,y(i)

=
∑
j∈[n]

√pg(x)(j)pg(y)(j)
∑

i:xi 6=yi

√
pj,x(i)pj,y(i)

 . (4)

As long as gj(x) 6= gj(y), by the definition of pj , we have
∑

i:xi 6=yi

√
pj,x(i)

√
pj,y(i) ≥ 1/a. Thus

we can estimate the expression in Eq. 4 from below by:
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1
a

∑
j:gj(x) 6=gj(y)

√
pg(x)(j)pg(y)(j).

By the definition of p we can estimate the sum (without the 1/a coefficient) in the above
expression from below by 1/b, which finishes the proof. 2

Another advantage of working with sumPI complexity is the following very powerful lemma of
Ambainis [Amb03] which makes it easy to lower bound the sumPI complexity of iterated functions.

Definition 15 Let f : {0, 1}n → {0, 1} be any Boolean function. We define the dth iteration of f ,
written fd : {0, 1}nd → {0, 1}, inductively as f1(x) = f(x) and

fd+1(x) = f(fd(x1, . . . , xnd), fd(xnd+1, . . . , x2nd), . . . ,

fd(x(n−1)nd+1, . . . , xnd+1))

Lemma 16 (Ambainis) Let f be any Boolean function and fd the dth iteration of f . Then
sumPI(fd) ≥ (sumPI(f))d.

Combining this with Lemma 14, we get:

Corollary 17 Let f be any Boolean function and fd the dth iteration of f . Then sumPI(fd) =
(sumPI(f))d.

Ambainis shows that for total Boolean functions the square root of block sensitivity is a lower
bound on the sumPI complexity [Amb02]. This, together with Lemmas 13 and 14 and the results
of [NS94, BBC+01] imply the following:

Lemma 18 (Ambainis) For total Boolean functions the sumPI complexity is in polynomial re-
lation with the various (deterministic, randomized, quantum) decision tree complexities and the
Fourier degree of the function.

3.2 Properties of maxPI

One thing that makes sumPI so convenient to use is that it dualizes [ŠS05]. In this section we
partially dualize the expression maxPI. The final expression remains a minimization problem, but
we minimize over discrete index selection functions, instead of families of probability distributions,
which makes it much more tractable. Still, we remark that maxPI can take exponential time (in
the size of the truth table of f) whereas, sumPI takes polynomial time in the size of the truth table
of f to compute by reduction to semidefinite programming.

Definition 19 (Index selection functions) Let f : {0, 1}n → {0, 1} be a Boolean function,
X=f−1(0), and Y =f−1(1). For i ∈ [n] let Di be |X|×|Y | be defined by Di[x, y] = 1 − δxi,yi. We
call the set of n Boolean (0− 1) matrices {Pi}i∈n index selection functions if

1.
∑

i Pi = E, where E[x, y] = 1 for every x ∈ X, y ∈ Y . (informally: for every x ∈ X, y ∈ Y
we select a unique index)
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2. Pi ≤ Di (informally: for every x ∈ X, y ∈ Y the index we select is an i such that xi 6= yi).

Notice that index selection functions correspond to partitioning X×Y , in such a way that if
x, y are in the ith part, then xi 6= yi.

Theorem 20 (Spectral adversary version of maxPI) Let f,X, Y be as in the previous defini-
tion. Let A be an arbitrary |X|×|Y | nonnegative matrix satisfying A[x, y] = 0 whenever f(x) =
f(y). Then

maxPI(f) = min
{Pi}i

max
A

‖A‖2

maxi ‖A ◦ Pi‖2
,

where {Pi}i runs through all index selection functions.

Proof: For a fixed family of probability distributions p = {px}, and for the expression

max
x,y

f(x) 6=f(y)

1
maxi:xi 6=yi

√
px(i)py(i)

, (5)

let us define the index selection function Pi[x, y] = 1 if i = argmaxi:xi 6=yi

√
px(i)py(i) and 0 other-

wise. (Argmax is the smallest argument for which the expression attains its maximal value.) Then
the denominator in Eq. 5 becomes equal to

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]. If we replace the above sys-

tem of Pis with any other choice of index selection function the value of
∑

i:xi 6=yi

√
px(i)py(i)Pi[x, y]

will not increase. Thus we can rewrite Eq. 5 as

max
x,y

f(x) 6=f(y)

1
max{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]

,

where here Pi[x, y] runs through all index selection functions. Thus:

maxPI(f) =

1
/

max
p

min
x,y

f(x) 6=f(y)

max
{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]. (6)

Notice that in Eq. 6 the minimum is interchangeable with the second maximum. The reason for
this is that for a fixed p there is a fixed {Pi[x, y]}i system that maximizes

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]

for all x, y : f(x) 6= f(y). Thus:
maxPI(f) =

1
/

max
{Pi}i

max
p

min
x,y

f(x) 6=f(y)

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y].

Following the proof of the main theorem of Špalek and Szegedy we can create the semidefinite
version of the above expression. The difference here, however, is that we have to treat {Pi}i

(the index selection functions) as a “parameter” of the semidefinite system over which we have to
maximize. Unfortunately it also appears in the final expression.

10



Semidefinite version of maxPI: For fixed {Pi}i let µ′max be the solution of the following semidef-
inite program:

maximize µ′

subject to (∀i) Ri � 0,∑
i Ri ◦ I = I,∑

i Ri ◦ Pi ≥ µ′F.

Define µmax as the maximum of µ′max, where Pi (1 ≤ i ≤ n) run through all index selection
functions. Then maxPI = 1/µmax.

We can dualize the above program and simplify it in same way as was done in Špalek and
Szegedy for the case of sumPI with the only change that Di needs to be replaced with Pi, and that
we have to minimize over all choices of {Pi}i. 2

4 Formula size lower bounds

We transform in two steps the problem of proving lower bounds on formula size steps into a
combinatorial problem which is easier to work with. First we apply the theorem of Karchmer and
Wigderson [KW88], Theorem 5 which gives an exact characterization of the formula size of f in
terms of the communication complexity of a relation associated with f . We then use the well-known
fact that the size of the smallest partition of a relation into monochromatic rectangles is a lower
bound on the smallest number of leaves in a communication protocol for the relation. We then
lower bound the size of such a partition.

A natural way to lower bound the size of the smallest partition is to find a measure which is
subadditive on rectangles. Then the measure of the whole space divided by the size of the largest
rectangle in the partition will lower bound the number of rectangles in the partition. In the next
section we show our key lemma that the spectral norm squared of a matrix is one such measure.

4.1 Key combinatorial lemma

We first prove a combinatorial lemma which is the key to our main result. This lemma relates the
spectral norm squared of a matrix to the spectral norm squared of its submatrices, and may also
be of independent interest.

Let X and Y be finite sets. A set system S (over X×Y ) will be called a covering if ∪S∈SS =
X×Y . Further, S will be called a partition if S is a covering and the intersection of any two distinct
sets from S is empty. A rectangle (over X×Y ) is an arbitrary subset of X×Y of the form X0×Y0

for some X0 ⊆ X and Y0 ⊆ Y . A set system R will be called a rectangle partition if R is a partition
and each R ∈ R is a rectangle. For a subset S ⊆ X×Y we define:

AS [x, y] = A[x, y], if (x, y) ∈ S and 0 otherwise. (7)

We are now ready to state the lemma:

Lemma 21 Let A be an arbitrary |X|×|Y | matrix (possibly with complex entries), and R a parti-
tion of X×Y . Then ‖A‖2

2 ≤
∑

R∈R ‖AR‖2
2

11



Proof: By Proposition 1, ‖A‖2 = maxu,v |u∗Av|, where the maximum is taken over all unit vectors
u, v. Let u, v be the unit vectors realizing this maximimum. Then we have

‖A‖2 = |u∗Av| =

∣∣∣∣∣u∗
(∑

R∈R
AR

)
v

∣∣∣∣∣ =
∣∣∣∣∣∑
R∈R

u∗ARv

∣∣∣∣∣ .
As each R ∈ R is a rectangle, it can be expressed as R = X0 × Y0 for some X0 ⊆ X and Y0 ⊆ Y .
Let uR[x] = u[x] if x ∈ X0 and 0 otherwise, and similarly vR[y] = v[y] if y ∈ Y0 and 0 otherwise.
Notice that {uR}R∈R do not in general form a partition of u. We now have

‖A‖2 =

∣∣∣∣∣∑
R∈R

u∗RARvR

∣∣∣∣∣ ≤ ∑
R∈R

|u∗RARvR|

≤
∑
R∈R

‖AR‖2|uR||vR|

by Proposition 1. Applying the Cauchy–Schwarz inequality, we obtain

‖A‖2 ≤

(∑
R∈R

‖AR‖2
2

)1/2(∑
R∈R

|uR|2|vR|2
)1/2

.

Now it simply remains to observe that∑
R∈R

|uR|2|vR|2 =
∑
R∈R

∑
(x,y)∈R

u[x]2v[y]2 = |u|2|v|2 = 1,

as R is a partition of X×Y . 2

4.2 Deterministic formulae

In this section, we prove our main result that maxPI is a lower bound on formula size. We first
identify two natural properties which are sufficient for a function to be a formula size lower bound.

Definition 22 A function µ : 2X×Y → R+ is called a rectangle measure if the following properties
hold.

1. (Subadditivity) For any rectangle partition R of X×Y , µ(X×Y ) ≤
∑

R∈R µ(R).
2. (Monotonicity) For any rectangle R ⊆ X×Y , and subset S ⊆ X×Y , if R ⊆ S then µ(R) ≤

µ(S).

Theorem 21 and item 3 of Proposition 1 imply that for any |X|×|Y | matrix A with non-negative
entries S → ‖AS‖2

2 of is a rectangle measure. Other examples include the rank of AS for any matrix
A over any field (see Section 5.4), and the µ-rectangle size bounds of [KKN95] (see Section 5.5).

Let S1,S2 be two families of sets over the same universe. We say that S1 is embedded in S2

(S1 ≺ S2) if for every S ∈ S1 there is a S′ ∈ S2 such that S ⊆ S′.

12



Proposition 23 Let µ be a rectangle measure over 2X×Y , S be a covering of X×Y and R a
rectangle partition of X×Y such that R ≺ S. Then |R| ≥ µ(X×Y )

maxS∈S µ(S) .

The proof follows by subadditivity and monotonicity of µ.

Theorem 24 (Main Theorem)

sumPI2(f) ≤ maxPI2(f) ≤ CD(Rf ) ≤ L(f)

Proof: We have seen that sumPI2(f) ≤ maxPI2(f), and CD(Rf ) ≤ L(f) follows from the Karchmer–
Wigderson communication game characterization of formula size, thus we focus on the inequality
maxPI2(f) ≤ CD(Rf ).

Let R be a monochromatic rectangle partition of Rf such that |R| = CD(Rf ), and let A be an
arbitrary |X|×|Y | matrix with nonnegative real entries. For R ∈ R let color(R) be the least index
c such that xc 6= yc holds for all (x, y) ∈ R. By assumption each R is monochromatic, thus such a
color exists. Define

Sc = ∪ color(R)=cR.

Then R is naturally embedded in the covering {Sc}c∈[n]. For any S ⊆ X×Y , let µA(S) = ‖AS‖2
2.

By Lemma 21, and item 3 of Proposition 1, µA is a rectangle measure. Hence by Proposition 23,

max
A

‖A‖2
2

maxc ‖ASc‖2
2

≤ CD(Rf ).

We have exhibited a particular index selection function, the {Sc}c, for which this inequality holds,
thus it also holds for maxPI2(f) which is the minimum over all index selection functions. 2

4.3 Probabilistic Formulae

The properties of sumPI allow us to show that it can be used to lower bound the probabilistic
formula size.

Lemma 25 Let ε < 1/2. If f : S → {0, 1} is ε-approximated by functions {fj}j∈J with sumPI(fj) ≤
s for every j ∈ J , then sumPI(f) ≤ s/(1− 2ε).

Proof: By assumption there is a probability distribution α = {αj}j∈J such that Pr[f(x) = fj(x)] ≥
1 − ε. Thus for a fixed x ∈ S, letting Jx = {j ∈ J : f(x) = fj(x)}, we have

∑
j∈Jx

αj ≥ 1 − ε.
Hence for any x, y ∈ S we have

∑
j∈Jx∩Jy

αj ≥ 1− 2ε. For convenience, we write Jx,y for Jx ∩ Jy.
As sumPI(fj) ≤ s there is a family of probability distributions pj such that whenever fj(x) 6= fj(y)∑

i
xi 6=yi

√
pj,x(i)pj,y(i) ≥ 1/s.
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Define px(i) =
∑

j∈J αjpj,x(i). Let x, y be such that f(x) 6= f(y).∑
i

xi 6=yi

√
px(i)py(i)

=
∑

i
xi 6=yi

√∑
j∈J

αjpj,x(i)
√∑

j∈J

αjpj,y(i))

≥
∑

i
xi 6=yi

√ ∑
j∈Jx,y

αjpj,x(i)
√ ∑

j∈Jx,y

αjpj,y(i)

≥
∑

i
xi 6=yi

∑
j∈Jx,y

√
αjpj,x(i)

√
αjpj,y(i)

=
∑

j∈Jx,y

αj

∑
i

xi 6=yi

√
pj,x(i)pj,y(i)


≥ 1− 2ε

s
,

where for the third step we have used the Cauchy–Schwarz Inequality. 2

This lemma immediately shows that the sumPI method can give lower bounds on probabilistic
formula size.

Theorem 26 Let S ⊆ {0, 1}n and f : S → {0, 1}. Then Lε(f) ≥ ((1− 2ε)sumPI(f))2 for any
ε < 1/2.

Proof: Suppose that {fj}j∈J gives an ε-approximation to f . Using Lemma 25 in the contrapositive
implies that there exists some j ∈ J with sumPI(fj) ≥ (1− 2ε)sumPI(f). Theorem 24 then implies
L(fj) ≥ ((1− 2ε)sumPI(f))2 which gives the statement of the theorem. 2

5 Comparison among methods

In this section we look at several formula size lower bound techniques in the literature and see how
they compare with our methods. A bottleneck in formula size lower bounds seems to have been
to go beyond methods which only consider pairs (x, y) with f(x) 6= f(y) which have Hamming
distance 1. In fact, the methods of Khrapchenko, Koutsoupias, and a lemma of H̊astad can all be
seen as special cases of the sumPI method where only pairs of Hamming distance 1 are considered.

5.1 Khrapchenko’s method

One of the oldest and most general techniques available for showing formula size lower bounds is
Khrapchenko’s method [Khr71], originally used to give a tight Ω(n2) lower bound for the parity
function. This method considers a bipartite graph whose left vertices are the 0-inputs to f and
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whose right vertices are the 1-inputs. The bound given is the product of the average degree of the
right and left hand sides.

Theorem 27 (Khrapchenko) Let S ⊆ {0, 1}n and f : S → {0, 1}. Let A ⊆ f−1(0) and B ⊆
f−1(1). Let C be the set of pairs (x, y) ∈ A×B with Hamming distance 1, that is C = {(x, y) ∈
A×B : dH(x, y) = 1}. Then L(f) ≥ sumPI(f)2 ≥ |C|2

|A||B| .

Khrapchenko’s method can easily be seen as a special case of the probability scheme. Letting
A,B, C be as in the statement of the theorem, we set up our probability distributions as follows:

• pA(x)=1/|A| for all x∈A, pA(x)=0 otherwise

• pB(x)=1/|B| for all x∈B, pB(x)=0 otherwise

• q(x, y)=1/|C| for all (x, y)∈C, q(x, y)=0 otherwise

• px,i(y)=1 if (x, y)∈C and xi 6= yi, 0 otherwise. Note that this is a probability distribution as
for every x there is only one y such that (x, y)∈C and xi 6= yi.

By Theorem 9 and Theorem 24,

L(f) ≥ min
x,y,i

f(x) 6=f(y),
xi 6=yi

pA(x)pB(y)p′x,i(y)p′y,i(x)
q(x, y)

=
|C|2

|A||B|
,

where the expression in the middle is a lower bound on sumPI(f)2.

5.2 The Koutsoupias bound

Koutsoupias [Kou93] extends Khrapchenko’s method with a spectral version. The weights are
always 1 for pairs of inputs with different function values that have Hamming distance 1, and 0
everywhere else.

Theorem 28 (Koutsoupias) Let f : {0, 1}n → {0, 1}, and let A ⊆ f−1(0), and B ⊆ f−1(1). Let
C = {(x, y) ∈ A×B : dH(x, y) = 1}. Let Q be a |B|×|A| matrix Q[x, y] = C(x, y) where C is
identified with its characteristic function. Then L(f) ≥ sumPI(f)2 ≥ ‖Q‖2

2.

Proof: The bound follows easily from the the spectral version of sumPI. Let Q be as in the
statement of the theorem. Notice that since we only consider pairs with Hamming distance 1, for
every row and column of Qi there is at most one nonzero entry, which is at most 1. Thus by
Proposition 1 we have ‖Qi‖2

2 ≤ ‖Q‖1‖Q‖∞ ≤ 1. The theorem now follows from Theorem 24. 2

5.3 H̊astad’s method

The shrinkage exponent of Boolean formulae is the least upper bound γ such that subject to a
random restriction where each variable is left free with probability p, Boolean formulae shrink from
size L to expected size pγL. Determining the shrinkage exponent is important as Andreev [And87]
defined a function f whose formula size is L(f) = n1+γ . H̊astad [H̊as98] shows the shrinkage expo-
nent of Boolean formulae is 2 and thereby obtains an n3−o(1) formula size lower bound, the largest
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bound known for an explicit function. On the way to this result, H̊astad proves an intermediate
lemma which gives a lower bound on formula size that depends on the probability that restrictions
of a certain form occur. He proves that this lemma is a generalization of Khrapchenko’s method; we
prove that H̊astad’s lemma is in turn a special case of sumPI. Since H̊astad’s method uses random
restrictions, which at first glance seems completely different from adversary methods, it comes as
a surprise that it is in fact a special case of our techniques.

Definition 29 For any function f : {0, 1}n → {0, 1},

1. A restriction is a string in {0, 1, ?}n where ? means the variable is left free, and 0 or 1 mean
the variable is set to the constant 0 or 1, respectively.

2. The restricted function f |ρ is the function that remains after the non-? variables in ρ are
fixed.

3. Rp is the distribution on random restrictions to the variables of f obtained by setting each
variable, independently, to ? with probability p, and to 0 or 1 each with probability (1−p)

2 .
4. A filter ∆ is a set of restrictions which has the property that if ρ ∈ ∆, then every ρ′ obtained

by fixing one of the ?s to a constant is also in ∆.
5. When p is known from the context, and for any event E, and any filter ∆, we write Pr[E|∆]

to mean Prρ∈Rp [E|ρ ∈ ∆].

Theorem 30 (H̊astad, Lemma 4.1) Let f : {0, 1}n → {0, 1}. Let A be the event that a random
restriction in Rp reduces f to the constant 0, B be the event that a random restriction in Rp reduces
f to the constant 1, and let C be the event that a random restriction ρ ∈ Rp is such that f |ρ is a
single literal. Then

L(f) ≥ Pr[C|∆]2

Pr[A|∆]Pr[B|∆]

(
1− p

2p

)2

Proof: We show that the theorem follows from the probability scheme (Definition 7). In this proof
we only consider restrictions obtained from Rp that are in the filter ∆. We also abuse notation and
use A and B to mean the sets of restrictions in ∆ which contribute with non-zero probability to
the events A and B respectively.

Implicit in H̊astad’s proof is the following relation between restrictions in A and B. For every
ρ ∈ C, f |ρ reduces to a single literal, that is, for every ρ ∈ C, there is an i such that f |ρ = xi (or
¬xi if the variable is negated). Define ρb to be ρ where xi is set to b, for b ∈ {0, 1} (set xi to 1−b

if the variable is negated). To fit into the framework of the probability scheme, let ρb be ρb where
all remaining ?s are set to 1. This doesn’t change the value of the function, because it is already
constant on ρb. Then we say that ρ0, ρ1 are in the relation.

We set pA(σ) = Pr[σ]
Pr[A|∆] for any σ ∈ A, and pB(τ) = Pr[τ ]

Pr[B|∆] for any τ ∈ B, and for every pair

ρ0, ρ1 in the relation, where ρ ∈ C, f |ρ = xi or ¬xi, let

p′
ρ0,i

(ρ1) = 1

p′
ρ1,i

(ρ0) = 1

q(ρ0, ρ1) =
Pr[ρ]

Pr[C|∆]
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The probabilities are 0 on all other inputs. We can easily verify that the probabilities sum to 1.
For p′, notice that the Hamming distance between ρ0 and ρ1 is 1, so when ρb and i are fixed, there
is only a single ρ1−b with probability 1.

By Theorem 9 and Theorem 24,

L(f) ≥
pA(x)pB(y)p′y,i(x)p′x,i(y)

q(x, y)2

=
Pr[ρ0]

Pr[A|∆]
Pr[ρ1]

Pr[B|∆]

(
Pr[C|∆]

Pr[ρ]

)2

Finally, notice that Pr[ρ] = 2p
1−pPr[ρb]. 2

Remark H̊astad actually defines f |ρ to be the result of reducing the formula for f (not the function)
by applying a sequence of reduction rules, for each restricted variable. So there is a subtlety here
about whether f |ρ denotes the reduced formula, or the reduced function, and the probabilities
might be different if we are in one setting or the other. However both in his proof and ours, the
only thing that is used about the reduction is that if the formula or function reduces to a single
literal, then fixing this literal to 0 or to 1 reduces the function to a constant. Therefore, both proofs
go through for both settings.

5.4 Razborov’s method

Razborov [Raz90] proposes a formula size lower bound technique using matrix rank:

Theorem 31 (Razborov) Let R ⊆ X × Y × Z be a relation and let R be a partition of X × Y
into monochromatic rectangles satisfying |R| = CD(R). Let S be a covering of X × Y such that
R ≺ S. Then

max
A6=0

rk(A)
maxS∈S rk(AS)

≤ CD(R).

It can be easily verified that the function S → rk(AS) is a rectangle measure, thus this theorem
follows from Proposition 23. Razborov uses Theorem 31 to show superpolynomial monotone formula
size lower bounds, but also shows that the method becomes trivial (limited to O(n) bounds) for
regular formula size [Raz92]. An interesting difference between matrix rank and and spectral norm
is that rk(A+B) ≤ rk(A)+ rk(B) holds for any two matrices A,B, while a necessary condition for
subadditivity of the spectral norm squared is that A,B be disjoint rectangles.

5.5 Karchmer, Kushilevitz, and Nisan

In this section we discuss two methods proposed by Karchmer, Kushilevitz, and Nisan [KKN95] for
proving lower bounds on the communication complexity of relations. Our presentation here differs
from the original in order to highlight similarities with the present discussion.

Both of the techniques of [KKN95] arise from linear program relaxations of integer program
formulations of communication complexity bounds. First they look at nondeterministic complexity,
which corresponds to the cover number of a relation CN (R), that is, the minimum number of
monochramatic relations needed to cover the relation R. Writing the linear program relaxation of
the cover number, they obtain the following bound:
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Theorem 32 Let R ⊆ X×Y ×Z be a relation and let R be a partition of X×Y into monochromatic
rectangles satisfying |R| = CD(R). Let S be a covering of X × Y such that R ≺ S. Then

CD(Rf ) ≥ max
A6=0

‖A‖2
F

maxR ‖AR‖2
F

Notice that this bound looks the same as ours with the spectral norm replaced by the Frobenius
norm. It is easy to see that the Frobenius norm squared is both subbadditive and monotone and thus
a rectangle measure in the sense of Definition 22. They show some other interesting properties of this
measure, such as its logarithm characterizes (up to a log n factor) nondeterministic communication
complexity, and this measure satisfies a direct sum property.

Karchmer, Kushilevitz, and Nisan then turn to formulate the rectangle partition bound as a
integer programming problem, and investigate its relaxation as a linear program. They show that,
when dualized, this bound has the following form:

Theorem 33 (Karchmer-Kushilevitz-Nisan) Let R ⊆ X ×Y ×Z be a relation and let R be a
partition of X × Y into monochromatic rectangles satisfying |R| = CD(R).

CD(Rf ) ≥ max
A6=0

Entrysum(A)
maxS∈R Entrysum(AS)

Notice that S → Entrysum(AS) for a matrix A is again a subadditive measure. The essential
difference between these two methods is that in the latter one one can use negative weights in the
matrix A. This allows one to prove larger formula size lower bounds using the second theorem,
but also means that this measure does not satisfy the monotonicity property, and so one must be
careful in checking the weights of all monochromatic rectangles. They show that this bound is
larger than Khrapchenko’s method, but cannot prove lower bounds larger than n2.

6 Limitations

6.1 Hamming distance 1 techniques

We show that the bounds for a function f given by Khrapchenko’s and Koutsoupias’ method, and
by H̊astad’s lemma are upper bounded by the product of the zero sensitivity and the one sensitivity
of f . We will later use this bound to show a function on n bits for which the best lower bound
given by these methods is n and for which an ≈ n1.32 bound is provable by sumPI2.

Lemma 34 The bound given by the Khrapchenko method (Theorem 27), Koutsoupias’ method
(Theorem 28), and H̊astad’s Lemma (Theorem 30) for a function f are at most s0(f)s1(f) ≤ s2(f).

Proof: Let A be a nonnegative matrix, with nonzero entries only in positions (x, y) where f(x) =
0, f(y) = 1 and the Hamming distance between x, y is one. We first show that

max
A

‖A‖2
2

maxi ‖Ai‖2
2

≤ s0(f)s1(f). (8)
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Let amax be the largest entry in A. A can have at most s0(f) many nonzero entries in any row,
and at most s1(f) many nonzero entries in any column, thus by item 2 of Propostion 1,

‖A‖2
2 ≤ ‖A‖1‖A‖∞ ≤ a2

maxs0(f)s1(f).

On the other hand, for some i, the entry amax appears in Ai, and so by item 1 of Proposition 1,
‖Ai‖2

2 ≥ a2
max. Equation 8 follows.

Now we see that the left hand side of Equation 8 is larger than the three methods in the
statement of the theorem. That it is more general than Koutsoupias method is clear. To see
that it is more general than the probability schemes method where q(x, y) is only positive if the
Hamming distance between x, y is one: given the probability distributions q, pA, pB, define the
matrix A[x, y] = q(x, y)/

√
pA(x)pB(y). By item 1 of Proposition 1, ‖A‖2 ≥ 1, witnessed by the

unit vectors u[x] =
√

pA(x) and v[y] =
√

pB(y). As each reduced matrix Ai has at most one
nonzero entry in each row and column, by item 2 of Proposition 1 we have

max
i
‖Ai‖2

2 ≤ max
x,y

q2(x, y)
pA(x)pB(y)

.

Thus we have shown

max
A

‖A‖2
2

maxi ‖Ai‖2
2

≥ max
pA,pB ,q

min
x,y

pA(x)pB(y)
q2(x, y)

.

2

The only reference to the limitations of these methods we are aware of is Schürfeld [Sch83], who
shows that Khrapchenko’s method cannot prove bounds greater than C0(f)C1(f).

6.2 Limitations of sumPI and maxPI

The limitations of the adversary method are well known [Amb02, LM04, Sze03, Zha05, ŠS05].
Špalek and Szegedy, in unifying the adversary methods, also give the most elegant proof of their
collective limitation. The same proof also shows the same limitations hold for the maxPI measure.

Lemma 35 Let f : {0, 1}n → {0, 1} be any partial or total Boolean function. If f is total (respec-
tively, partial) then maxPI(f) ≤

√
C0(f)C1(f) (respectively, min{

√
nC0(f),

√
nC1(f)}).

Proof: Assume that f is total. Take x, y such that f(x) = 0 and f(y) = 1. We choose any
0-certificate B0 for x and any 1-certificate B1 for y and let px(i) = 1/C0(f) for all i ∈ B0 and
py(i) = 1/C1(f) for all i ∈ B1. As f is total, we have B0 ∩B1 6= ∅, thus let j ∈ B0 ∩B1. For this j
we have px(j)py(j) ≥ 1/ (C0(f)C1(f)), thus mini 1/px(i)py(i) ≥ C0(f)C1(f).

The case where f is partial follows similarly. As we no longer know that B0 ∩ B1 6= ∅, we put
a uniform distribution over a 0-certificate of x and the uniform distribution over [n] on y or vice
versa. 2

This lemma implies that sumPI and maxPI are polynomially related for total f .

Corollary 36 Let f be a total Boolean function. Then maxPI(f) ≤ sumPI4(f).
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Figure 1: Summary of the methods and their limitations. The containments denoted by solid lines
hold for total as well as partial functions. All containments are strict.

Proof: By [Amb02, Thm. 5.2] we know that
√

bs(f) ≤ sumPI(f). As f is total, by the above lemma
we know that maxPI(f) ≤

√
C0(f)C1(f). This in turn is smaller than bs(f)2 as C(f) ≤ s(f)bs(f)

[Nis91]. The statement follows. 2

Besides the certificate complexity barrier, another serious limitation of the sumPI method occurs
for partial functions where every positive input is far in Hamming distance from every negative
input. Thus for example, if for any pair x, y where f(x) = 1 and f(y) = 0 we have dH(x, y) ≥ εn,
then by putting the uniform distribution over all input bits it follows that sumPI(f) ≤ 1/ε. The
measure maxPI does not face this limitation as there we still only have one term in the denominator.

Following this line of thinking, we can give an example of a partial function f where maxPI(f) �
sumPI(f). Such an example is the Collision problem (see Section 7.3), as here any positive and
negative input must differ on at least n/2 positions. Another family of examples comes from
property testing, where the promise is that the input either has some property, or that it is ε-far
from having the property.

7 Concrete lower bounds

The quantum adversary argument has been used to prove lower bounds for a variety of problems.
Naturally, all of these lower bounds carry over to formula size lower bounds. In this section we
present some new lower bounds, in order to highlight the strengths and weaknesses of maxPI and
sumPI.
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7.1 Recursive majorities

As an example of applying sumPI, we look at the recursive majority of three function. We let
R−MAJh

3 : {0, 1}3h → {0, 1} be the function computed by a complete ternary tree of depth h where
every internal node is labeled by a majority gate and the input is given at the leaves.

Recursive majority of three has been studied before in various contexts. It is a monotone
function which is very sensitive to noise [MO03], making it useful for hardness amplification in
NP [O’D02]. Jayram, Kumar, and Sivakumar [JKS03] give nontrivial lower and upper bounds on
the randomized decision tree complexity of recursive majority of three. They show a lower bound
of (7/3)h on the randomized decision tree complexity. As far as we know, the quantum query
complexity of recursive majority of three has not yet been investigated. We show a lower bound of
2h on the quantum query complexity.

Lemma 37 sumPI(R−MAJh
3) = maxPI(R−MAJh

3) = 2h

Proof: To see that maxPI(R−MAJh
3) ≤ 2h, observe that C0(R−MAJh

3) = C1(R−MAJh
3) = 2h. The

result then follows from Lemma 35.
We now turn to the lower bound. We will first show a lower bound for R−MAJ1

3, the majority of
three function, and then apply Lemma 16. Consider the following table, where the rows are indexed
by negative instances x, the columns by positive instances y, and 1’s indicate when dH(x, y) = 1.

110 101 011
001 0 1 1
010 1 0 1
100 1 1 0

Interpreting this table as the adjacency matrix of a graph, it is clear that every vertex has degree
2. Thus Khrapchenko’s method gives a bound of 4 for the base function. By Theorem 27 we have
sumPI(R−MAJ1

3) ≥ 2. Now applying Lemma 16 gives the lemma. 2

From Lemma 37 we immediately obtain quantum query complexity and formula size lower
bounds:

Theorem 38 Let R−MAJh
3 be the recursive majority of three function of height h. Then Qε(R−MAJh

3) ≥
(1− 2

√
ε(1− ε))2h and Lε(R−MAJh

3) ≥ (1− 2ε)4h.

The best upper bound on the formula size of R−MAJh
3 is 5h. For this bound, we will use the

following simple proposition about the formula size of iterated functions.

Proposition 39 Let S ⊆ {0, 1}n and f : S → {0, 1}. If L(f) ≤ s then L(fd) ≤ sd, where fd is the
dth iteration of f .

Proposition 40 L(R−MAJh
3) ≤ 5h.

Proof: The formula (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) computes R−MAJ1
3 and has 5 leaves. Using

Proposition 39 gives L(R−MAJh
3) ≤ 5h. 2
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7.2 Ambainis’ function

We define a function fA : {0, 1}4 → {0, 1} after Ambainis [Amb03]. This function evaluates to 1
on the following values: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000. That is, f(x) = 1 when
x1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4. To obtain this formulation from Ambainis’ original
definition, exchange x1 and x3, and take the negation of the resulting function. There are a few
things to notice about this function. The sensitivity of fA is 2 on every input. Also on an input
x = x1x2x3x4 the value of fA(x) changes if both bits sensitive to x are flipped simultaneously, and
if both bits insensitive for x are flipped simultaneously.

We will be looking at iterations of the base function fA as in Definition 15. Notice that the
sensitivity of fAd is 2d on every input x ∈ {0, 1}4d

.

Lemma 41 sumPI(fAd) = 2.5d.

Proof: Ambainis has already shown that sumPI(fAd) ≥ 2.5d [Amb03].
We now show the upper bound. We will show an upper bound for the base function fA and

then use the composition Lemma 14. Every input x1x2x3x4 has two sensitive variables and two
insensitive variables. For any x ∈ {0, 1}4 we set px(i) = 2/5 if i is sensitive for x and px(i) = 1/10
if i is insensitive for x. The claim follows from the following observation: for any x, y ∈ {0, 1}4 such
that f(x) 6= f(y) at least one of the following holds

• x and y differ on a position i which is sensitive for both x and y. Thus
∑

i

√
px(i)py(i) ≥ 2/5

• x and y differ on at least 2 positions, each of these positions being sensitive for at least one
of x, y. Thus

∑
i

√
px(i)py(i) ≥ 2

√
1/25 = 2/5

2

This lemma gives us a bound of 6.25d ≈ N1.32 on the formula size of fAd. Since the sensitivity of
fAd is 2d, by Lemma 34, the best bound provable by Khrapchenko’s method, Koutsoupias’ method,
and H̊astad’s lemma is 4d = N .

It is natural to ask how tight this formula size bound is. The best upper bound we can show
on the formula size of fAd is 10d.

Proposition 42 L(fAd) ≤ 10d

Proof: It can be easily verified that the following formula of size 10 computes the base function
fA:

(¬x1 ∨ x3 ∨ ¬x4)∧
((¬x1 ∧ x3 ∧ x4) ∨ ((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3))) .

This formula was found by computer search. The claim now follows from Proposition 39. 2
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7.3 Collision problem

In this section we look at the collision problem. This is a promise problem, where for an alphabet
Σ the inputs x = x1x2 . . . xn ∈ Σn satisfy one of the following conditions:

• All xi are different

• For each i there exists exactly one j 6= i such that xi = xj .

Those inputs satisfying the first condition are positive inputs and those satisfying the second condi-
tion are negative. An optimal lower bound for the quantum query complexity of Ω(n1/3) has been
given by Aaronson and Shi [AS04]. We now show that the quantum adversary method cannot give
better than a constant bound for this problem.

Lemma 43 sumPI(fC) ≤ 2

Proof: We demonstrate a set of probability distributions px such that for any positive instance x
and negative instance y we have ∑

i
xi 6=yi

√
px(i)py(i) ≥ 1/2.

The upper bound then follows.
Our probability distribution is very simple: for every x, let px(i) be the uniform distribution

over [n]. Any positive and negative instance must disagree in at least n/2 positions, thus

∑
i

xi 6=yi

√
px(i)py(i) ≥

n

2

√
1
n

1
n

=
1
2
.

2

On the other hand, maxPI(fC) ≥
√

n/2. As there is an upper bound for the collision problem
of O(n1/3) by Brassard, Høyer, Tapp [BHT97], this also shows that in general maxPI(f) is not a
lower bound on the quantum query complexity of f .

Lemma 44 maxPI(fC) = Θ(
√

n)

Proof: For the upper bound: On every positive instance x, where all xi are different, we put the
uniform distribution over i ∈ [n]; for a negative instance y we put probability 1/2 on the first
position, and probability 1/2 on the position j such that y1 = yj . As y1 = yj , any positive instance
x must differ from y on position 1 or position j (or both). Thus maxi,xi 6=yi

px(i)py(i) ≥ 1/2n and
maxPI(fC) ≤

√
2n.

Now for the lower bound. Fix a set of probability distributions px. Let x be any positive
instance. There must be at least n/2 positions i satisfying px(i) ≤ 2/n. Call this set of positions I.
Now consider a negative instance y of where yj = xj for all j 6∈ I, and y is assigned values in I in an
arbitrary way so as to make it a negative instance. For this pair x, y we have maxi

√
px(i)py(i) ≤√

2/n, thus maxPI(fC) ≥
√

n/2. 2

The following table summarizes the bounds from this section.

23



Function Input sum Qε max L s0s1

size PI PI

R−MAJh
3 N 2h ≈ Ω(N0.63) N0.63 Ω(N1.26), N1.26

= 3h N0.63 O(N1.46)

fAh N 2.5h≈ Ω(N0.66) ≤3h≈ Ω(N1.32), N
= 4h N0.66 [Amb03] N0.69 O(N1.66)

fC N 2 Θ(N1/3) Θ(
√

N) ⊥ ⊥

8 Conclusions and open problems

An outstanding open problem is whether the square of the quantum query complexity lower bounds
the formula size. We have given some support to this conjecture by showing it is true for one of the
two main techniques of proving lower bounds on quantum query complexity. A simpler problem
than the above might be to show the same is true of approximate polynomial degree, the other
main lower bound technique for quantum query complexity.

We have seen that many formula size techniques in the literature can be viewed as clever ways of
defining a subadditive measure on rectangles. In the search for better formula size lower bounds, it
would be interesting to find other such measures; perhaps of particular interest are measures which
rely on the disjointness condition for subadditivity, as the spectral norm squared does. Another
example of a matrix norm which is subsquare additive on disjoint rectangles is the Frobenius norm,
which has also been applied towards communication complexity theoretic ends as in Theorem 32.
Let σ1(A) ≥ · · · ≥ σn(A) denote the singular values of A. Noticing that ‖A‖2

2 = σ1(A)2 and
‖A‖2

F = σ1(A)2 + . . . + σn(A)2, entices us to make the following conjecture:

Conjecture 45 Let A be a matrix over X × Y with n = min{|X|, |Y |} and let R be a rectangle
partition of X × Y . Then for any 1 ≤ k ≤ n

k∑
i=1

σ2
i (A) ≤

∑
R∈R

k∑
i=1

σ2
i (AR) (9)

Recently, Troy Lee [Lee05] has shown that the conjecture is true for “tree-like” rectangle decom-
positions R, that is for rectangle decompositions arising from communication protocols. Thus, in
particular, in the spectral formulation of sumPI2, one can replace the spectral norm squared with∑k

i=1 σ2
i (A) for any k, and the resulting quantity also lower bounds formula size.

We have seen that the quantum adversary method breaks through the “Hamming distance 1”
barrier and subsumes several previous formula size methods, in some cases giving provably stronger
lower bounds on formula size. One question remaining is the relationship between sumPI2 and the
technique of Karchmer, Kushilevitz, and Nisan described in Theorem 33. In all the examples we
know of Theorem 33 gives lower bounds at least as large as sumPI2.
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