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Abstract. We introduce the study of Kolmogorov complexity with er-
ror. For a metric d, we define Ca(x) to be the length of a shortest program
p which prints a string y such that d(x, y) ≤ a. We also study a condi-
tional version of this measure Ca,b(x|y) where the task is, given a string
y′ such that d(y, y′) ≤ b, print a string x′ such that d(x, x′) ≤ a. This def-
inition admits both a uniform measure, where the same program should
work given any y′ such that d(y, y′) ≤ b, and a nonuniform measure,
where we take the length of a program for the worst case y′. We study
the relation of these measures in the case where d is Hamming distance,
and show an example where the uniform measure is exponentially larger
than the nonuniform one. We also show an example where symmetry of
information does not hold for complexity with error under either notion
of conditional complexity.

1 Introduction

Kolmogorov complexity measures the information content of a string typically
by looking at the size of a smallest program generating that string. Suppose we
received that string over a noisy or corrupted channel. Such a channel could
change random bits of a string, possibly increasing its Kolmogorov complexity
without adding any real information.

Alternatively, suppose that we do not have much memory and are willing to
sacrifice fidelity to the original data in order to save on compressed size. What is
the cheapest approximation to a string within our level of tolerance to distortion?
Such compression where some, less important we hope, information about the
original data is lost is known as lossy compression.

Intuitively, these scenarios are in some sense complementary to one another:
we expect that if we lossy compress a string received over a corrupted channel
? Supported in part by the RFBR grants 03-01-00475, 358.20003.1. Work done while
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with our level of tolerance equal to the number of expected errors, then the
cheapest string within the level of tolerance will be the one with the high com-
plexity noise removed. Ideally we would get back our original string. For certain
compression schemes and models of noise this intuition can be made precise [8].

In this paper we explore a variation of Kolmogorov complexity designed to
help us measure information in these settings. We define the Kolmogorov com-
plexity of a string x with error a as the length of a smallest program generating
a string x′ that differs from x in at most a bits. We give tight bounds (up to
logarithmic factors) on the maximum complexity of such strings and also look
at time-bounded variations.

We also look at conditional Kolmogorov complexity with errors. Traditional
conditional Kolmogorov complexity looks at the smallest program that converts
a string y to a string x. In our context both x and y could be corrupted. We
want the smallest program that converts a string close to y to a string close to x.
We consider two variations of this definition, a uniform version where we have a
single program that that converts any y′ close to y to a string x′ close to x and
a nonuniform version where the program can depend on y′. We show examples
giving a large separation between the uniform and nonuniform definitions.

Finally we consider symmetry of information for Kolmogorov complexity with
error. Traditionally the complexity of the concatenation of strings x, y is roughly
equal to the sum of the complexity of x and the complexity of y given x. We
show that for any values of d and a the complexity of xy with error d is at most
the sum of the complexity of x with error a and the complexity of converting a
string y with d−a error given x with a bits of error. We show the other direction
fails in a strong sense—we do not get equality for any a.

2 Preliminaries

We use |x| to denote the length of a string x, and ‖A‖ to denote the cardinality
of a set A. All logarithms are base 2.

We use dH(x, y) to denote the Hamming distance between two binary strings
x, y, that is the number of bits on which they differ. For x ∈ {0, 1}n we let
Bn(x,R) denote the set of n-bit strings within Hamming distance R from x,
and V (n, R) =

∑R
i=0

(
n
i

)
denote the volume of a Hamming ball of radius R over

n-bit strings. For 0 < λ ≤ 1/2 the binary entropy of λ is H(λ) = −λ log λ −
(1 − λ) log(1 − λ). The binary entropy is useful in the following approximation
of V (n, R) which we will use on several occasions (a proof can be found in [1]).

Lemma 1. Suppose that 0 < λ ≤ 1/2 and λn is an integer. Then

2nH(λ)√
8nλ(1− λ)

≤ V (n, λn) ≤ 2nH(λ).
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3 Defining Kolmogorov Complexity with Error

We consider several possible ways of defining Kolmogorov complexity with error.
In this section we present these alternatives in order to evaluate their relative
merits in the coming sections. First, we review the standard definition of Kol-
mogorov complexity. More details can be found in [6].

For a Turing machine T , the Kolmogorov complexity CT (x|y) of x given
y is the length of a shortest program p such that T (p, y) = x. The theory of
Kolmogorov complexity begins from the following invariance theorem: there is
a universal machine U such that for any other Turing machine T , there exists
a constant cT such that CU (x|y) ≤ CT (x|y) + cT , for all x, y. We now fix such
a U and drop the subscript. Now we define also the unconditional Kolmogorov
complexity C(x) = C(x|empty string).

Definition 1. Let d : ({0, 1}n)2 → R be a metric, and a ∈ R. The complexity
of x with error a, denoted Ca(x) is Ca(x) = minx′{C(x′) : d(x′, x) ≤ a}.

We will also consider a time bounded version of this definition, Ct
a(x) =

minx′{Ct(x′|empty string) : d(x, x′) ≤ a}, where Ct(x|y) is the length of a
shortest program p such that U(p, y) prints x in less than t(|x|+ |y|) time steps.
Here we assume that the machine U is universal in the following sense: for any
other Turing machine T , there exists a constant cT and a polynomial q such that
C

q(|x|,|y|,t)
U (x|y) ≤ Ct

T (x|y) + cT , for all x, y, t.
A relative version of Kolmogorov complexity with error is defined by Im-

pagliazzo, Shaltiel and Wigderson [4]. That is, they use the definition Cδ(x) =
min{C(y) : dH(x, y) ≤ δ|x|}. We prefer using absolute distance here as it be-
haves better with respect to concatenations of strings—using relative distance
has the disadvantage of severe nonmonotonicity over prefixes. Take, for example,
x ∈ {0, 1}n satisfying C(x) ≥ n. Let y = 02n. Then C1/3(x) ≥ n− log V (n, n/3)
while C1/3(xy) ≤ log n + O(1). Using absolute error we have that Ca(xy) ≥
Ca(x)− O(log n), that is it only suffers from logarithmic dips as with standard
definition.

Defining conditional complexity with error is somewhat more subtle. We
introduce both uniform and nonuniform versions of conditional complexity with
error.

Definition 2. For a Turing machine T , the uniform conditional complexity,
denoted (Cu

a,b)T (x|y), is the length of a shortest program p such that, for any y′

satisfying d(y, y′) ≤ b it holds that T (p, y′) outputs a string whose distance from
x is less than a.

The invariance theorem remains true: there is a universal machine U such
that for any other Turing machine T , there exists a constant cT such that
(Cu

a,b)U (x|y) ≤ (Cu
a,b)T (x|y) + cT , for all x, y, a, b. We fix such a U and drop

the subscript.

Definition 3. Nonuniform conditional complexity, which we denote Ca,b(x|y)
is defined as Ca,b(x|y) = maxy′ minx′{C(x′|y′) : d(x′, x) ≤ a and d(y′, y) ≤ b}.

In section 6 we study the difference between these two measures.



4

4 Strings of Maximal Complexity

One of the most famous applications of Kolmogorov complexity is the incom-
pressibility method (see [6], Chapter 6). To prove there exists an object with a
certain property, we consider an object with maximal Kolmogorov complexity
and show that it could be compressed if it did not possess this property.

This method relies on a simple fact about strings of maximal complexity:
for every length n, there is a string x of complexity at least n. This follows
from simple counting. It is also easy to see that, up to an additive constant,
every string has complexity at most its length. What is the behavior of maximal
complexity strings in the error case? In this paper we restrict ourselves to the
Hamming distance case.

Again by a counting argument, we see that for every n there is an x of length
n with Ca(x) ≥ log 2n/V (n, a) = n−log V (n, a). Upper bounding the complexity
of strings in the error case requires a bit more work, and has a close connection
with the construction of covering codes. A covering code C of radius a is a set
of strings such that for every x ∈ {0, 1}n there is an element y ∈ C such that
dH(x, y) ≤ a. Thus an upper bound on the maximum complexity strings will be
given by the existence of covering codes of small size. The following Lemma is
well known in the covering code literature, (see [1] or [5]).

Lemma 2. For any n and integer R ≤ n, there exists a set C ⊆ {0, 1}n with the
following properties:

1. ‖C‖ ≤ n2n/V (n, R)
2. for every x ∈ {0, 1}n, there exists c ∈ C with dH(x, c) ≤ R
3. The set C can be computed in time poly(2n)

Proof: For the first two items we argue by the probabilistic method. Fix a point
x ∈ {0, 1}n. We uniformly at random choose k elements x1, . . . , xk of {0, 1}n.
The probability Px that x is not contained in ∪k

i=1B(xi, R) is precisely

Px = (1− V (n, R)/2n)k ≤ e−kV (n,R)/2n

.

For the inequality we have used the fact that ez ≥ 1+z for any z. Taking k to be
n2n/V (n, R) makes this probability strictly less than 2−n. Thus the probability
of the union of the events Px over x ∈ {0, 1}n is, by the union bound, less than
1 and there exists a set of n2n/V (n, R) centers which cover {0, 1}n. This gives
items 1 and 2.

For item 3 we now derandomize this argument using the method of condi-
tional probabilities. The argument is standard as found in [7], and omitted here.
�

To achieve part 3 of Lemma 2 one could alternatively apply a general theorem
that the greedy algorithm always finds a covering of a set X of size at most a
ln ‖X‖ multiplicative factor larger than the optimal covering (see Corollary 37.5
in [2]). This would give the slightly worse bound of O(n22n/V (n, R)).
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Theorem 1. For every n, a and x ∈ {0, 1}n, Ca(x) ≤ n− log V (n, a)+O(log n).

Proof: Use the lexicographically first covering code of radius a whose existence
is given by Lemma 2. �

One nice property of covering codes is that they behave very well under
concatenation. Let C1 be a covering code of {0, 1}n1 of radius R1 and C2 be a
covering code of {0, 1}n2 of radius R2. Now let C = {cc′ : c ∈ C1, c

′ ∈ C2} be the
set of all ordered concatenations of codewords from C1 with codewords from C2.
Then C is a covering code over {0, 1}n1+n2 of radius R1 + R2.

We can use this idea in combination with item 3 of Lemma 2 to efficiently
construct near-optimal covering codes. This construction has already been used
for a complexity-theoretic application in [3].

Theorem 2. There is a polynomial time bound p(n) such that C
p(n)
a (x) ≤ n −

log V (n, a) + O(n log log n/ log n) for every x ∈ {0, 1}n and every a.

Proof: We construct a covering code over {0, 1}n with radius a such that the ith
element of the covering can be generated in time polynomial in n. Let ` = log n
and divide n into n/` blocks of length `. Let r = (a/n)`. Now by item 3 of
Lemma 2 we can in time polynomial in n construct a covering code over {0, 1}`

of radius r and of cardinality `2`/V (`, r). Call this covering C`. Our covering
code C over {0, 1}n will be the set of codewords {c1c2 · · · cn/` : ci ∈ C`}. The size
of this code will be:

‖C‖ ≤ (2`−log V (`,r)+log `)n/` = (2`−`H(a/n)+O(log `))n/`

= 2n−nH(a/n)+O(n log `/`) = 2n−log V (n,a)+O(n log `/`).
(1)

The second and last inequalities hold by Lemma 1.
In this proof we assumed that log n, n/ log n, and a log n/n are all integer.

The general case follows with simple modifications. �

5 Dependence of Complexity on the Number of Allowed
Errors

Both the uniform and the non-uniform conditional complexities Cu
a,b and Ca,b

are decreasing functions in a and increasing in b. Indeed, if b decreases and a
increases then the number of y′’s decreases and the number of x′’s increases,
thus the problem to transform every y′ to some x′ becomes easier. What is the
maximal possible rate of this decrease/increase? For the uniform complexity,
we have no non-trivial bounds. For the non-uniform complexity, we have the
following

Theorem 3. For all x, y of length n and all a ≤ a′, b′ ≤ b it holds

Ca,b(x|y) ≤ Ca′,b′(x|y)+log(V (n, a)/V (n, a′))+log(V (n, b′)/V (n, b))+O(log n).
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Proof: Let y′ be a string at distance b from y. We need to find a short program
mapping it to a string at distance a from x. To this end we need the following
lemma from [9].

Lemma 3. For all d ≤ d′ ≤ n having the form i/n, every Hamming ball of
radius d′ in the set of binary strings of length n can be covered by at most
O(n4V (n, d′)/V (n, d)) Hamming balls of radius d.

Apply the lemma to d′ = b, d = b′ and to the ball of radius b centered at y′.
Let B1, . . . , BN , where N = O(n4V (n, b)/V (n, b′)), be the covering balls. Let Bi

be a ball containing the string y and let y′′ be its center. There is a program,
call it p, of length at most Ca′,b′(x|y) mapping y′′ to a string at distance a′

from x. Again apply the lemma to d = a, d′ = a′ and to the ball of radius
d′ centered at x′. Let C1, . . . , CM , where M = O(n4V (n, a′)/V (n, a)), be the
covering balls. Let Cj be a ball containing the string x and let x′′ be its center.
Thus x′′ is at distance a from x and can be found from y′, p, i, j. This implies
that K(x′′|y′) ≤ |p|+ log N + log M + O(log n) (extra O(log n) bits are needed
to separate p, i and j). �

In the above proof, it is essential that we allow the program mapping y′ to a
string close to x depend on y′. Indeed, the program is basically the triple (p, i, j)
where both i and j depend on y′. Thus the proof is not valid for the uniform
conditional complexity. And we do not know whether the statement itself is true
for the uniform complexity.

By using Theorem 2 one can prove a similar inequality for time bounded
complexity with the O(log n) error term replaced by O(n log log n/ log n).

6 Uniform vs. Nonuniform Conditional Complexity

In this section we show an example where the uniform version of conditional
complexity can be exponentially larger than the nonuniform one. Our example
will be for C0,b(x|x). This example is the standard setting of error correction:
given some x′ such that dH(x, x′) ≤ b, we want to recover x exactly. An obvious
upper bound on the nonuniform complexity C0,b(x|x) is log V (n, b) + O(1)—as
we can tailor our program for each x′ we can simply say the index of x in the
ball of radius b around x′.

In the uniform case the same program must work for every x′ in the ball of
radius b around x and the problem is not so easy. The following upper bound
was pointed out to us by a referee.

Proposition 1. Cu
0,b(x|x) ≤ log V (n, 2b) + O(1).

Proof: Let C ⊆ {0, 1}n be a set with the properties:

1. For every x, y ∈ C : Bn(x, b) ∩Bn(y, b) = ∅.
2. For every y ∈ {0, 1}n ∃x ∈ C : dH(x, y) ≤ 2b.
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We can greedily construct such a set as if there is some string y with no string
x ∈ C of distance less than 2b, then Bn(y, b) is disjoint from all balls of radius b
around elements of C and so we can add y to C.

Now for a given x, let x∗ be the closest element of C to x, with ties broken
by lexicographical order. Let z = x ⊕ x∗. By the properties of C this string
has Hamming weight at most 2b and so can be described with log V (n, 2b) bits.
Given input x′ with dH(x, x′) ≤ b, our program does the following: computes
the closest element of C to x′⊕z, call it w, and then outputs w⊕z = w⊕x∗⊕x.
Thus for correctness we need to show that w = x∗ or in other words that
dH(x′ ⊕ z, x∗) ≤ b. Notice that dH(α⊕ β, β) = dH(α, 0), thus

dH(x′ ⊕ z, x∗) = dH(x′ ⊕ x⊕ x∗, x∗) = dH(x′ ⊕ x, 0) = dH(x, x′) ≤ b.

�

We now turn to the separation between the uniform and nonuniform mea-
sures. The intuition behind the proof is the following: say we have some com-
putable family S of Hamming balls of radius b, and let x be the center of one of
these balls. Given any x′ such that dH(x, x′) ≤ b, there may be other centers of
the family S which are also less than distance b from x′. Say there are k of them.
Then x has a nonuniform description of size about log k by giving the index of
x in the k balls which are of distance less than b from x′.

In the uniform case, on the other hand, our program can no longer be tailored
for a particular x′, it must work for any x′ such that dH(x, x′) ≤ b. That is,
intuitively, the program must be able to distinguish the ball of x from any other
ball intersecting the ball of x. To create a large difference between the nonuniform
and uniform conditional complexity measures, therefore, we wish to construct a
large family of Hamming balls, every two of which intersect, yet that no single
point is contained in the intersection of too many balls. Moreover, we can show
the stronger statement that C0,b(x|x) is even much smaller than Cu

a,b(x|x), for a
non-negligible a. For this, we further want that the contractions of any two balls
to radius a are disjoint. The next lemma shows the existence of such a family.

Lemma 4. For every length m of strings and a, b, and N satisfying the inequal-
ities

N2V (m, 2a) ≤ 2m−1, N2V (m,m− 2b) ≤ 2m−1, NV (m, b) ≥ m2m+1 (2)

there are strings x1, . . . , xN such that the balls of radius a centered at x1, . . . , xN

are pairwise disjoint, and the balls of radius b centered at x1, . . . , xN are pairwise
intersecting but no string belongs to more than NV (m, b)21−m of them.

Proof: The proof is by probabilistic arguments. Take N independent random
strings x1, . . . , xN . We will prove that with high probability they satisfy the
statement.

First we estimate the probability that there are two intersecting balls of
radius a. The probability that two fixed balls intersect is equal to V (m, 2a)/2m.
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The number of pairs of balls is less than N2/2, and by union bound, there are two
intersecting balls of radius a with probability at most N2V (m, 2a)/2m+1 ≤ 1/4
(use the first inequality in (2)).

Let us estimate now the probability that there are two disjoint balls of radius
b. If the balls of radius b centered at xj and xi are disjoint then xj is at distance
at most m− 2b from the string x̄i, that is obtained from xi by flipping all bits.
Therefore the probability that for a fixed pair (i, j) the balls are disjoint is at
most V (m,m − 2b)/2m. By the second inequality in (2), there are two disjoint
balls with probability at most 1/4.

It remains to estimate the probability that there is a string that belongs to
more than NV (m, b)21−m balls of radius b. Fix x. For every i the probability
that x lands in Bi, the ball of radius b centered at xi, is equal to p = |Bi|/2m =
V (m, b)/2m. So the average number of i with x ∈ Bi is pN = NV (m, b)/2m. By
Chernoff inequality the probability that the number of i such that x lands in Bi

exceeds twice the average is at most

exp(−pN/2) = exp(−NV (m, b)/2m+1) ≤ exp(−m) � 2−m

(use the third inequality in (2)). Thus even after multiplying it by 2m the number
of different x’s we get a number close to 0. �

Using this lemma we find x with exponential gap between C0,b(x|x) and
Cu

0,b(x|x) and even between C0,b(x|x) and Cu
a,b(x|x) for a, b linear in the length

n of x.

Theorem 4. Fix rational constants α, β, γ satisfying γ ≥ 1 and

0 < α < 1/4 < β < 1/2, 2H(β) > 1 + H(2α), 2H(β) > 1 + H(1− 2β) (3)

Notice that if β is close to 1/2 and α is close to 0 then these inequalities are
satisfied. Then for all sufficiently large m there is a string x of length n = γm
with C0,βm(x|x) = O(log m) while Cu

αm,βm(x|x) ≥ m(1−H(β))−O(log m).

Proof: Given m let a = αm, b = βm and N = m2m+1/V (m, b). Let us verify
that for large enough m the inequalities (2) in the condition of Lemma 4 are
fulfilled. Taking the logarithm of the first inequality (2) and ignoring all terms
of order O(log m) we obtain

2(m−mH(β)) + mH(2α) < m

This is true by the second inequality in (3). Here we used that, ignoring loga-
rithmic terms, log V (m, b) = mH(β) and log V (m, 2a) = mH(2α) as both β, 2α
are less than 1/2. Taking the logarithm of the second inequality (2) we obtain

2(m−mH(β)) + mH(1− 2β) < m.

This is implied by the third inequality in (3). Finally, the last inequality (2)
holds by the choice of N .
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Find the first sequence x1, . . . , xN satisfying the lemma. This sequence has
complexity at most C(m) = O(log m). Append 0n−m to all strings x1, . . . , xN .
Obviously the resulting sequence also satisfies the lemma. For each string xi we
have C0,b(xi|xi) = O(log m), as given any x′ at distance at most b from xi we
can specify xi by specifying its index among centers of the balls in the family
containing x′ in log(NV (m, b)21−m) = log 4m bits and specifying the family
itself in O(log m) bits.

It remains to show that there is xi with Cu
a,b(xi|xi) ≥ log N . Assume the

contrary and choose for every xi a program pi of length less than log N such
that U(p, x′) is at distance a from xi for every x′ at distance at most b from xi.
As N is strictly greater than the number of strings of length less than log N , by
the Pigeon Hole Principle there are different xi, xj with pi = pj . However the
balls of radius b with centers xi, xj intersect and there is x′ at distance at most
b both from xi, xj . Hence U(p, x′) is at distance at most a both from xi, xj , a
contradiction. �

Again, at the expense of replacing O(log m) by O(m log log m/ log m) we can
prove an analog of Theorem 4 for time bounded complexity. We defer the proof
to the final version.

Theorem 5. There is a polynomial p such that for all sufficiently large m there
is a string x of length n = γm with C

p(n)
0,βm(x|x) = O(m log log m/ log m) while

Cu
αm,βm(x|x) ≥ m(1−H(β))−O(m log log m/ log m). (Note that Cu has no time

bound; this makes the statement stronger.)

7 Symmetry of Information

The principle of symmetry of information, independently proven by Kolmogorov
and Levin [10], is one of the most beautiful and useful theorems in Kolmogorov
complexity. It states C(xy) = C(x) + C(y|x) + O(log n) for any x, y ∈ {0, 1}n.
The direction C(xy) ≤ C(x)+C(y|x)+O(log n) is easy to see—given a program
for x, and a program for y given x, and a way to tell these programs apart, we
can print xy. The other direction of the inequality requires a clever proof.

Looking at symmetry of information in the error case, the easy direction is
again easy: The inequality Cd(xy) ≤ Ca(x) + Cd−a,a(y|x) + O(log n) holds for
any a — let p be a program of length Ca(x) which prints a string x∗ within
Hamming distance a of x. Let q be a shortest program which, given x∗, prints
a string y∗ within Hamming distance d − a of y. By definition, Cd−a,a(y|x) =
maxx′ miny′ C(y′|x′) ≥ miny′ C(y′|x∗) = |q|. Now given p and q and a way to
tell them apart, we can print the string xy within d errors.

For the converse direction we would like to have the statement

For every d, x, y there exists a ≤ d such that
Cd(xy) ≥ Ca(x) + Cd−a,a(y|x)−O(log n). (∗)

We do not expect this statement to hold for every a, as the shortest program
for xy will have a particular pattern of errors which might have to be respected
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in the programs for x and y given x. We now show, however, that even the
formulation (∗) is too much to ask.

Theorem 6. For every n and all d ≤ n/4 there exist x, y ∈ {0, 1}n such that
for all a ≤ d the difference

∆(a) = (Ca(y) + Cd−a,a(x|y))− Cd(xy)

is more than both

log V (n, d)− log V (n, a), log V (n, d + a)− log V (n, d− a)− log V (n, a),

up to an additive error term of the order O(log n).

Since Cu
d−a,a(x|y) ≥ Cd−a,a(x|y), Theorem 6 holds for uniform conditional com-

plexity as well.
Before proving the theorem let us show that in the case, say, d = n/4 it

implies that for some positive ε we have ∆(a) ≥ εn for all a. Let α < 1/4 be the
solution to the equation

H(1/4) = H(1/4 + α)−H(1/4− α).

Note that the function in the right hand side increases from 0 to 1 as α increases
from 0 to 1/4. Thus this equation has a unique solution.

Corollary 1. Let d = n/4 and let x, y be the strings existing by Theorem 6.
Then we have ∆(a) ≥ n(H(1/4)−H(α))−O(log n) for all a.

The proof is simply a calculation and is omitted. Now the proof of Theorem 6.
Proof: Coverings will again play an important role in the proof. Let C be the
lexicographically first minimal size covering of radius d. Choose y of length n
with C(y) ≥ n, and let x be the lexicographically least element of the covering
within distance d of y. Notice that Cd(xy) ≤ n− log V (n, d), as the string xx is
within distance d of xy, and can be described by giving a shortest program for x
and a constant many more bits saying “repeat”. (In the whole proof we neglect
additive terms of order O(log n)). Let us prove first that C(x) = n− log V (n, d)
and C(y|x) = log V (n, d1) = log V (n, d), where d1 stands for the Hamming
distance between x and y. Indeed,

n ≤ C(y) ≤ C(x) + C(y|x) ≤ n− log V (n, d) + C(y|x)
≤ n− log V (n, d) + log V (n, d1) ≤ n.

Thus all inequalities here are equalities, hence C(x) = n − log V (n, d) and
C(y|x) = log V (n, d1) = log V (n, d).

Let us prove now the first lower bound for ∆(a). As y has maximal complex-
ity, for any 0 ≤ a ≤ d we have Ca(y) ≥ n− log V (n, a). Summing the inequalities

−Cd(xy) ≥ −n + log V (n, d),
Ca(y) ≥ n− log V (n, a),

Cd−a,a(x|y) ≥ 0,
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we obtain the lower bound ∆(a) ≥ log V (n, d)− log V (n, a). To prove the second
lower bound of the theorem, we need to show that

Cd−a,a(x|y) ≥ log V (n, d + a)− log V (n, d− a)− log V (n, d). (4)

To prove that Cd−a,a(x|y) exceeds a certain value v we need to find a y′ at
distance at most a from y such that C(x′|y′) ≥ v for all x′ at distance at most
d− a from x. Let y′ be obtained from y by changing a random set of a bits on
which x and y agree. This means that C(y′|y, x) ≥ log V (n − d1, a). It suffices
to show that

C(x|y′) ≥ log V (n, d + a)− log V (n, d).

Indeed, then for all x′ at distance at most d− a from x we will have

C(x′|y′) + log V (n, d− a) ≥ C(x|y′)

(knowing x′ we can specify x by its index in the ball of radius d− a centered at
x′). Summing these inequalities will yield (4).

We use symmetry of information in the nonerror case to turn the task of
lower bounding C(x|y′) into the task of lower bounding C(y′|x) and C(x). This
works as follows: by symmetry of information,

C(xy′) = C(x) + C(y′|x) = C(y′) + C(x|y′).

As C(y′) is at most n, using the second part of the equality we have C(x|y′) ≥
C(x) + C(y′|x) − n. Recall that C(x) = n − log V (n, d). Thus to complete the
proof we need to show the inequality C(y′|x) ≥ log V (n, d + a) , that is, y′ is
a random point in the Hamming ball of radius d + a with the center at x. To
this end we first note that log V (n, d + a) = log V (n, d1 + a) (up to a O(log n)
error term). Indeed, as a + d ≤ n/2 we have log V (n, d + a) = log

(
n

d+a

)
and

log V (n, d) = log
(
n
d

)
. The same holds with d1 in place of d. Now we will show that

log V (n, d)− log V (n, d1) = O(log n) implies that log V (n, d + a)− log V (n, d1 +
a) = O(log n). It is easy to see that

(
n

d+1

)
/
(

n
d1+1

)
≤

(
n
d

)
/
(

n
d1

)
provided d1 ≤ d.

Using the induction we obtain
(

n
d+a

)
/
(

n
d1+a

)
≤

(
n
d

)
/
(

n
d1

)
.

Thus we have

log V (n, d + a)− log V (n, d1 + a) = log
((

n

d + a

)
/

(
n

d1 + a

))
≤ log

((
n

d

)
/

(
n

d1

))
= log V (n, d)− log V (n, d1) = O(log n).

Again we use (the conditional form of) symmetry of information:

C(y′y|x) = C(y|x) + C(y′|y, x) = C(y′|x) + C(y|y′, x).

The string y differs from y′ on a bits out of the d1 + a bits on which y′ and x
differ. Thus C(y|y′, x) ≤ log

(
d1+a

a

)
. Now using the second part of the equality
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we have

C(y′|x) = C(y|x) + C(y′|y, x)− C(y|y′, x)

≥ log V (n, d1) + log V (n− d1, a)−
(

d1 + a

a

)
.

We have used that log V (n− d1, a) = log
(
n−d1

a

)
, as a ≤ (n− d1)/2. Hence,

C(y′|x) ≥ log
(

n

d1

)
+ log

(
n− d1

a

)
− log

(
d1 + a

a

)
= log V (n, d + a).

�

Again, at the expense of replacing O(log n) by O(n log log n/ log n) we can
prove an analog of Theorem 6 for time bounded complexity.
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