
Language Compression and Pseudorandom Generators

Harry Buhrman Troy Lee

CWI and University of Amsterdam

Harry.Buhrman@cwi.nl Troy.Lee@cwi.nl

Dieter van Melkebeek∗

University of Wisconsin-Madison

dieter@cs.wisc.edu

Abstract

The language compression problem asks for succinct descriptions of the strings in a language
A such that the strings can be efficiently recovered from their description when given a mem-
bership oracle for A. We study randomized and nondeterministic decompression schemes and
investigate how close we can get to the information theoretic lower bound of log ‖A=n‖ for the
description length of strings of length n.

Using nondeterminism alone, we can achieve the information theoretic lower bound up to an
additive term of O((

√

log ‖A=n‖ + log n) log n); using both nondeterminism and randomness,

we can make do with an excess term of O(log3 n). With randomness alone, we show a lower
bound of n − log ‖A=n‖ − O(log n) on the description length of strings in A of length n, and
a lower bound of 2 · log ‖A=n‖ − O(1) on the length of any program that distinguishes a given
string of length n in A from any other string. The latter lower bound is tight up to an additive
term of O(log n).

The key ingredient for our upper bounds is the relativizable hardness versus randomness
tradeoffs based on the Nisan-Wigderson pseudorandom generator construction.

1 Introduction

Data compression pervades computer science – both theory and practice. For a given language A,
one would like to devise an efficient scheme that allows one to represent strings in A using few
bits. Depending on the context, efficiency can refer to the compression and/or the decompression
procedures. In this paper, we only worry about the efficiency of the decompression. We study
generic schemes in which every string in A can be efficiently printed from its compressed form
given access to a membership oracle for A, and we shoot for compression lengths that are as close
as possible to the information theoretic lower bound. A standard diagonalization argument shows
that we cannot realize that goal using deterministic schemes. We investigate schemes that use
randomness and/or nondeterminism for the decompression.

On the positive side, we exhibit nondeterministic schemes that achieve a compression ratio
which asymptotically reaches the information theoretic lower bound. The key idea is the use
of relativizable hardness versus randomness tradeoffs to obtain short descriptions of strings with
respect to an oracle. In order to get our nearly optimal results, we exploit recent progress on
these tradeoffs in the information theoretic context of extractors, and translate it back to the
computational setting of pseudorandom generators. If we allow the decompression algorithm to
use randomness as well as nondeterminism, we can realize a compression that is only a negligible
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additive term away from the information theoretic lower bound. On the negative side, we extend
the standard diagonalization result to generating schemes that use randomness only. We also
show that randomness alone cannot achieve a compression ratio better than twice the information
theoretic optimum even if the describing program is not required to generate the string but only
to distinguish it from all other strings.

1.1 Language Compression Problem

Kolmogorov Complexity was originally developed as a way to measure the amount of randomness
in a string by considering the length of a shortest program which prints the string. Far beyond
this initial purpose it has become an important tool in complexity theory, witnessing applications
in many areas [11]. Almost all of these applications at some point make use of the following basic
theorem: For any recursively enumerable set A and all x ∈ A of length n,

C(x) ≤ log ‖A=n‖ + O(log n). (1)

This is because x can be described by its index in the enumeration of A=n.
For certain applications, particularly in the area of derandomization, it would be useful to have

an analogue of this theorem when resource bounds are placed on the program which reconstructs a
string from its description. A prime example of such an application is Sipser’s original proof that
BPP is in the polynomial hierarchy [18]. Sipser defined a relaxation of printing complexity called
distinguishing complexity. The distinguishing complexity of a string x given advice s, denoted
CD(x | s), is the length of a shortest polynomial time program which on input y, s accepts if and
only if y = x. Sipser shows there is an advice string s of length polynomial in n, and a polynomial
time bound p(n) such that for all x ∈ A=n,

CDp,A(x|s) ≤ log ‖A=n‖ + O(log n).

In fact, Sipser argues that most advice strings s of the appropriate length work for all x ∈ A=n.
While this theorem is essentially optimal in terms of program length, it has the drawback of

requiring a polynomial sized advice string. Buhrman, Fortnow, and Laplante [2] eliminate this
advice string at the expense of adding a factor of 2 to the program size.

Theorem 1 There is a polynomial p(n) such that for any set A and for all x ∈ A=n,

CDp,A(x) ≤ 2 log ‖A=n‖ + O(log n).

Furthermore, there is a program that achieves this bound and only queries the oracle A on its input,

rejecting immediately if the answer is negative.

Buhrman, Laplante, and Miltersen [3] demonstrate a set A with ‖A‖ = 2Ω(n) such that the
factor of 2 in the description length is necessary. Thus, Theorem 1 is essentially optimal for the
deterministic distinguishing version of the language compression problem. The authors of [3] further
ask if the factor of 2 is also necessary for the nondeterministic variant of distinguishing complexity,
that is the length of a shortest nondeterministic polynomial time program which accepts x ∈ A=n

and only x when given oracle access to A.
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1.2 Our Results

We answer this question and show that the factor of 2 is not necessary. In fact, we show that we
can asymptotically achieve the optimal factor of 1:

Theorem 2 There is a polynomial p(n) such that for any set A and for all x ∈ A=n,

CNp,A(x) ≤ log ‖A=n‖ + O((
√

log ‖A=n‖ + log n) log n).

Furthermore, there is a program that achieves this bound and only queries the oracle at length n,

rejecting immediately if an answer is negative.

The notation CNp,A(x) in Theorem 2 refers to the length of a shortest nondeterministic program
that runs in time p(|x|) and, when given oracle access to A, outputs x on every accepting com-
putation path, of which there is at least one. Note that the distinction between distinguishing
complexity and printing complexity disappears in a nondeterministic context since the printing
program can exploit its nondeterminism to guess the unique input accepted by the distinguishing
program. In particular, CN essentially coincides with nondeterministic distinguishing complexity.

Although the bound in Theorem 2 is asymptotically optimal, the excess term of O((
√

‖A=n‖+
log n) log n) is larger than one might hope. By allowing the printing program to use randomness as
well as nondeterminism, we can reduce the excess term to O(log3 n). The printing procedure can
be cast as an Arthur-Merlin game – Merlin can help Arthur to produce the correct string x with
high probability by answering a question Arthur asks and, no matter what Merlin does, he cannot
trick Arthur into outputting a string different from x except with small probability. We use the
notation CAMp,A(x) for the description length of a shortest such Arthur-Merlin protocol for x that
runs in time p(|x|) and in which Arthur has oracle access to A.

Theorem 3 There is a polynomial p(n) such that for any set A and for all x ∈ A=n,

CAMp,A(x) ≤ log ‖A=n‖ + O(log3 n).

Furthermore, there is a program that achieves this bound and only queries the oracle at length n,

rejecting immediately if an answer is negative.

Finally, we address the question whether randomness alone, without nondeterminism, is able
to achieve the same compression ratio. We show that this is not the case in a strong sense. We
show that there are sets A such that the length of efficient randomized generating programs for
any string x ∈ A=n cannot even reach the same ballpark as the information theoretic lower bound
of log ‖A=n‖.

Theorem 4 For any integers n, k, and t such that 0 ≤ k ≤ n, there exists a set A such that

log ‖A=n‖ = k and for every x ∈ A=n,

CBPt,A(x) ≥ n − log ‖A=n‖ − log t − 5.

Here, CBPt,A(x) denotes the minimum length of a randomized program p that runs in time t and
outputs x with probability at least 2/3 when given oracle access to A.

Even for the randomized version of distinguishing of complexity, CBPD, the length of an optimal
program can be up to a factor of 2 away from the information theoretic lower bound:
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Theorem 5 There exist positive constants c1, c2, and c3 such that for any integers n, k, and t
satisfying k ≤ c1n− c2 log t there exists a set A with log ‖A=n‖ = k and a string x ∈ A=n such that

CBPDt,A(x) ≥ 2 log ‖A=n‖ − c3.

Note that Theorem 1 implies that CBPDp,A(x) ≤ 2k + O(log n) for some polynomial p and every
x ∈ A=n. Theorem 5 shows that the upper bound on CBPD implied by Theorem 1 is tight up to
an additive term of O(log n).

Theorem 5 contrasts Sipser’s result on CD complexity, where he showed that a random piece
of information does allow us to achieve the optimal compression ratio. The distinguishing program
in Sipser’s result depends on the random choice, though, whereas CBPD complexity is based on a
fixed program that can flip coins.

We mention that Theorem 2 has recently been applied in [10] to show a relativized world where
symmetry of information fails for nondeterministic distinguishing complexity in a strong way. They
also show, using Theorem 3, that a weak form of symmetry of information holds for nondeterministic
distinguishing complexity with randomness.

1.3 Our Technique

We use the hardness versus randomness tradeoffs based on the Nisan-Wigderson pseudorandom
generator construction [12]. Given the truth-table x ∈ {0, 1}n of a Boolean function, these tradeoffs
define a pseudorandom generator Gx : {0, 1}d → {0, 1}m with seed length d much less than the
output length m that has the following property: If the pseudorandom distribution Gx(Ud) lands
in a set B ⊆ {0, 1}m with significantly different probability than the uniform distribution Um over
{0, 1}m, then x has a succinct description with respect to B and can be efficiently recovered from
that description given oracle access to B [8].

We apply the hardness versus randomness tradeoffs in the following way. Consider a set A and
let k = log ‖A=n‖. If we set B equal to the union of the range of Gx over all x ∈ A=n and set
m to be slightly larger than k + d, then for every string x in A=n the pseudorandom distribution
Gx(Ud) lands in B with 100% certainty whereas the uniform distribution Um lands in B with
significantly smaller probability. We conclude that every x ∈ A=n can be efficiently constructed
from a succinct description given oracle access to B. Moreover, the set B can be decided efficiently
by a nondeterministic machine that has oracle access to A. This allows us to replace the oracle
queries to B by nondeterminism and oracle queries to A, which is what we need for Theorem 2.

A similar (but simpler) reconstructive argument underlies the analysis of recent extractor con-
structions à la Trevisan (see [16] for an excellent survey). Trevisan [23] viewed the above hardness
versus randomness tradeoffs as a transformation

TR : {0, 1}n × {0, 1}d → {0, 1}m

that takes two inputs, namely a truth-table x ∈ {0, 1}n and a seed y ∈ {0, 1}d, and outputs the
pseudorandom string Gx(y). He observed that TR defines an extractor: For every distribution X
on {0, 1}n with sufficient minentropy k, the distribution TR(X,Ud) behaves very similar to the
uniform distribution Um with respect to every possible set B. The argument goes as follows: For a
given set B, let us call a string x ∈ {0, 1}n “bad” if TR(x,Ud) and Um land in B with probabilities
that are more than ε apart (where ε is some parameter). Since bad strings x with respect to B
can be reconstructed from a short description, say of length `(m, ε), and each individual string
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x has probability at most 2−k in a source of minentropy k, the extracted distribution lands in
B with the same probability as the uniform distribution up to an error term of no more than
ε+2`(m,ε)−k. So, in order to extract as much of the minentropy of the source as possible, one needs
to minimize the description length `(m, ε). This is exactly what we need for our compression result
of Theorem 2. Thus, our goals run parallel to those for constructing “reconstructive” extractors
that extract almost all of the minentropy of the source. We employ similar tools (such as weak
designs [14]) but need to deal with a few additional complications:

• In the extractor setting, it is sufficient to argue that a nonnegligible fraction of the bad
strings x has a short description. In particular, the averaging argument in the standard
analysis only shows that a fraction Θ(ε/m) of the bad strings x has a short description. This
slack in the analysis increases the error bound for the extractor only from ε + 2`(m,ε)−k to
ε + Θ(m/ε)2`(m,ε)−k. In our setting, however, we cannot afford to miss any string because we
need a short description for every string in A=n with respect to a single oracle B.

• As a result, our descriptions need to include more information than in the extractor setting.
There are two main components in the description, namely one depending on the weak designs
underlying the Nisan-Wigderson pseudorandom generator, and one specifying O(m) random
bits used in the averaging argument. The latter component is the one which is needed in
our setting but not in the extractor context. Balancing the two contributions optimally leads
to the descriptions of length m + O(

√
m log n) from Theorem 2. By allowing the describing

program not only the power of nondeterminism but also the power of randomness, we can, in
some sense, mimic the averaging argument from the extractor setting and eliminate the need
for the second component. This results in the shorter descriptions of length about m used in
Theorem 3.

• Our descriptions need to be efficient – an element x ∈ A=n can be computed in polynomial
time from its description and access to an oracle for B. This implies a return from the
information theoretic setting to the computational setting which formed the starting point
for Trevisan’s and later extractors based on the reconstructive argument. Our efficiency
requirements are not as strict as in the pseudorandom generator context, though, where each
bit of x can be reconstructed in randomized time (log n)O(1). We can afford reconstruction
times of the order nO(1) but the process typically needs to be deterministic.

In the above argument, the Nisan-Wigderson construction may be replaced by the recent pseu-
dorandom generators or reconstructive extractors based on multivariate polynomials [22, 17]. How-
ever, although the latter lead to optimal hardness versus randomness tradeoffs in some sense [24],
they yield worse parameters than the Nisan-Wigderson construction in our context.

1.4 Organization

In Section 2, we provide some background on Kolmogorov complexity, and formally define the
Kolmogorov measures we use. We also describe two key ingredients in the recent extractor con-
structions, namely combinatorial designs and error-correcting codes. Section 3 contains our key
Lemma, the Compression Lemma, which translates some of the recent progress on extractors back
to the pseudorandom generator setting. We use the Compression Lemma to derive our upper
bounds for nondeterministic schemes in Section 4, and for schemes that use both nondeterminism
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and randomness in Section 5. Finally, in Section 6, we present our lower bound for schemes that
only use randomness.

2 Preliminaries

We use standard complexity theoretic notation as in [1] and [13]. For background and notation
in Kolmogorov complexity we refer the reader to [11]. We use λ to denote the empty string, |x|
to denote the length of a string x, and ‖A‖ for the cardinality of a set A. By A=n we mean the
intersection of A with the set of strings of length n. All logarithms are base 2.

2.1 Kolmogorov Complexity

The theory of Kolmogorov Complexity begins with a universal Turing machine U , which is able to
simulate the running of any other Turing machine with only a constant additive factor overhead
in program length. For the theory of resource-bounded Kolmogorov complexity, we need further
that the universal machine U be able to do this efficiently. This can be done by the well known
simulation of Hennie and Stearns [7]. Thus we now fix such a universal machine U .

For a fully time constructible function t satisfying t(n) ≥ n, the conditional time t bounded
printing complexity is defined as

Ct(x | y) = min
p

{|p| : U(p, y) = x in at most t(|x| + |y|) steps}.

We set C t(x) = Ct(x |λ) where λ denotes the empty string. Note that the running time depends
not on the length of the input p, but rather the length of the output x and the given string y.
When no superscript is indicated, as in C(x | y), we mean the above definition with no time bound
restriction.

We consider a randomized version of printing complexity, CBP, defined as follows:

Definition 6 Let U be a universal machine. Then CBPt(x | y) is the length of a shortest program

p such that

1. Prr∈{0,1}t [U(p, y, r) outputs x] > 2/3

2. U(p, y, r) runs in ≤ t(|x| + |y|) steps for all r ∈ {0, 1}t

We set CBPt(x) = CBPt(x | λ).

We define a nondeterministic version of printing complexity, CN, in terms of single valued
nondeterministic functions (see the survey by Selman [15] for a formal definition of the latter).

Definition 7 Let Un be a universal nondeterministic machine. Then CNt(x | y) is defined as the

length of a shortest program p such that

1. Un(p, y) has at least one accepting path

2. Un(p, y) outputs x on every accepting path

3. Un(p, y) runs in ≤ t(|x| + |y|) steps.

6



We set CNt(x) = CNt(x | λ).

Finally, we investigate decompression algorithms that make use of both nondeterminism and
randomness. For this we define a version of printing complexity based on the complexity class AM:

Definition 8 Let Un be a universal nondeterministic machine. The CAMt(x | y) is the length of a

shortest program p such that

1. Prr∈{0,1}t [Un(p, y, r) accepts, and all accepting paths output x] > 2/3

2. Un(p, y, r) runs in ≤ t(|x| + |y|) steps.

We set CAMt(x) = CAMt(x | λ).

Sipser defined a relaxation of printing complexity called distinguishing complexity. The time
t distinguishing complexity of x given y, denoted CDt(x | y), is the length of a shortest program
which runs in time t(|x| + |y|) and accepts only the string x.

Nondeterministic distinguishing complexity, CND, was originally defined in [2]. It can be seen
that the measures CND and CN essentially coincide, up to additive logarithmic terms. One direction
is obvious. To see CNt+O(|x|)(x) ≤ CNDt(x) + O(log |x|): if p is a nondeterministic distinguishing
program for x, a nondeterministic machine given p and |x| can guess a string of length |x| which is
accepted by p and output this string. By the nature of p, the new nondeterministic machine has
at least one accepting computation path and outputs x on every accepting computation path. As
Un(p, x) runs in time t, the whole procedure will take time at most t + O(|x|). Thus in the sequel
we will refer only to CN. A similar argument holds for CAM and its distinguishing complexity
analogue.

If we only allow randomness, however, it is no longer clear if distinguishing complexity and
printing complexity coincide. As our results concerning randomized decompression algorithms are
lower bounds, we give the definition here for randomized distinguishing complexity which allows
for stronger statements.

Definition 9 Let U be a universal machine. Then CBPDt(x | y) is the length of a shortest program

p such that

1. Prr∈{0,1}t [U(p, x, y, r) = 1] > 2/3

2. Prr∈{0,1}t [U(p, z, y, r) = 0] > 2/3 for all z 6= x

3. U(p, z, r) runs in ≤ t(|z| + |y|) steps for all z ∈ {0, 1}∗

We set CBPDt(x) = CBPDt(x | λ).

All of the above Kolmogorov measures can be relativized by giving the universal machine access
to an oracle A. We mention the oracle as a superscript after the measure abbreviation.

2.2 Combinatorial Designs

A key ingredient of the Nisan-Wigderson generator is a collection of sets with small pairwise in-
tersection. Following [12], a set system S = S1, . . . , Sm ⊆ [d] is called a (`, ρ) design if for all i,
‖Si‖ = ` and for all i 6= j the intersection ‖Si ∩ Sj‖ ≤ log ρ .
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Raz, Reingold, and Vadhan [14] observe that a weaker property on the set system S suffices
for the construction of the Nisan-Wigderson generator. Namely, the quantity essentially used in
the analysis of the generator is a bound on

∑

j<i 2
‖Si∩Sj‖. Set systems with this sum bounded by

ρ · (m − 1) for all i are called (`, ρ) weak designs. Unlike the case with designs, there exist weak
designs where the universe size d does not depend on the number of sets m.

For our purposes, we need to draw another distinction in design terminology. We need a bound
on

∑

j<i 2
‖Si∩Sj‖ in terms of i. Such designs were already constructed in [14] but went unnamed. As

the distinction will be important later, we give them their own name, referring to them as uniform

weak designs.

Definition 10 Let S = (S1, S2, . . . , Sm) be a family of sets where for all i, Si ⊆ [d] and ‖Si‖ = `.

1. S is a weak (`, ρ) design if
∑

j<i 2
‖Si∩Sj‖ ≤ ρ · (m − 1) for all i.

2. S is a uniform weak (`, ρ) design if
∑

j<i 2
‖Si∩Sj‖ ≤ ρ · (i − 1) for all i.

Raz, Reingold, and Vadhan show the following lemma [14]:

Lemma 11 For every `,m and ρ = ρ(`,m) > 1 there exists a set system S = (S1, S2, . . . , Sm) ⊆ [d]
constructible in poly(m, d) time, with either of the following properties:

1. S is a weak (`, 1) design with d = O(`2 log m).

2. S is a uniform weak (`, ρ) design with d = O(`2/ log ρ).

It is worth noting that [14] also show a matching lower bound, up to constant multiplicative
factors, to the above construction of uniform weak designs. In particular, this means that (`, 1)
weak designs cannot be made uniform with the parameters given in item 1 [14, Remark 19].

2.3 Error-Correcting Codes

The benefits of composing the Nisan-Wigderson generator with a good list-decodable code are well
demonstrated [23, 20]. We will use a concatenation of a Reed-Solomon code with an Hadamard
code. The combinatorial list-decoding properties of this code suffice for our main theorems; however,
using additionally the fact that this code has efficient list-decoding [19, 9] allows us to prove a
stronger form of our main lemma, the Compression Lemma (Lemma 14). The properties we need
are summarized in the next two lemmata.

Lemma 12 For every integer n ≥ 0 and positive δ = δ(n), there is a code LDCn,δ : {0, 1}n →
{0, 1}n̄ where n̄ = poly(n/δ) with the following properties:

1. LDCn,δ can be evaluated in time poly(n/δ).

2. Given any string ŷ ∈ {0, 1}n̄, the list of all strings x ∈ {0, 1}n such that x̂ = LDCn,δ(x) and

ŷ agree in at least a 1/2 + δ fraction of the positions can be generated in time poly(n/δ).

Lemma 13 Let LDCn,δ be as above and x̂ = LDCn,δ(x). For every rational δ = δ(n) there is a

time bound t = poly(n/δ) such that for any ŷ ∈ {0, 1}n̄ which agrees with x̂ on a 1/2 + δ fraction

of positions,

Ct(x | ŷ) ≤ C t/2(δ) + O(log(n/δ)).
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Proof: With C t/2(δ) + O(log n) bits we can describe δ, n, and the code LDCn,δ being used. Given
ŷ, n, δ, we can print the poly(n/δ) codewords which agree with ŷ on more than a 1/2 + δ fraction
of positions. By further specifying the index i of x̂ in this list we can identify x̂ and decode it to
print x. This index i can be given with O(log(n/δ)) bits. As LDCn,δ is efficiently list decodable
there is a function t = poly(n/δ) bounding the running time of the above procedure. 2

3 Compression Lemma

In this section, we translate some of the recent progress on extractors back into the pseudorandom
generator setting, resulting in the main tool for our upper bound results, the Compression Lemma.
We first describe the function underlying Trevisan’s and later extractors, hereafter referred to as
Trevisan’s function.

Let P : {0, 1}` → {0, 1} be any Boolean function, and let S = (S1, . . . , Sm) be a collection of
subsets of [d] where ‖Si‖ = `. For a string y ∈ {0, 1}d let y|Si

be the string in {0, 1}` obtained by
projecting y onto the coordinates specified by Si. Then the Nisan-Wigderson generator NWS,P is
defined as

NWS,P (y) = P (y|S1
) · · ·P (y|Sm).

Given an input length n, an output length m, a quality parameter δ = δ(m), and a design
parameter ρ = ρ(m) > 1, we define the following function after Trevisan. Let LDCn,δ be as in
Lemma 12 and let ` = log n̄. For u ∈ {0, 1}n, we view LDC(u) as a Boolean function û : {0, 1}` →
{0, 1}. Let S be a (`, ρ) uniform weak design. The function TRδ,ρ : {0, 1}n × {0, 1}d → {0, 1}m is
defined as

TRδ,ρ(u, y) = NWS,û(y) = û(y|S1
) · · · û(y|Sm).

Note that while n,m are arbitrary, we need to take the auxiliary input length d so as to satisfy the
conditions of the uniform weak design.

The property of Trevisan’s function that is crucial for the recent extractor constructions and
for our results is the following lemma. It is a refinement of similar statements shown in [12, 23, 14],
where the result was stated for circuit size in [12] and (nonuniform) description size in [23, 14].
The new feature of our version of the lemma is the combination of completeness, succinctness, and
efficiency of the descriptions: every “bad” string with respect to B has a very succinct description
from which it can be efficiently recovered given oracle access to B.

Lemma 14 (Compression Lemma) Let B : {0, 1}m → {0, 1}. Given ε = ε(m) > 0, let δ =
ε/m. If

|Pr[B(TRδ,ρ(u,Ud) = 1)] − Pr[B(Um) = 1]| ≥ ε

then for a time bound t = poly(n/ε), we have

Ct,B(u) ≤ ρ · m + d + C t/2(ε) + O(log(m/ε)).

Furthermore, there is a program that achieves this bound and only makes nonadaptive queries to

B.

Proof: We follow the by now standard proof as in [12, 23, 14]. The idea is to use the distinction
from the uniform distribution that can be seen with B to find a bit of the output of TR which can
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be predicted with advantage – with this advantage we can then approximate û and give u a short
printing program using Lemma 13.

Finding a bit of the output which can be predicted with advantage can be done using the hybrid
argument of Goldwasser and Micali [6]. We define m +1 distributions, D0, . . . , Dm, where the first
i bits of Di are distributed according to the first i bits of TR(u,Ud), and the last m − i bits of Di

are distributed according to the last m − i bits of Um. Thus note that D0 is distributed as Um

and Dm is distributed as TR(u,Ud). As |Pr[B(Dm)] − Pr[B(D0)]| ≥ ε, for some i it must be the
case that |Pr[B(Di)]−Pr[B(Di−1)]| ≥ ε/m. For convenience we remove the absolute value sign by
choosing b0 ∈ {0, 1} such that Pr[B ′(Di)] − Pr[B′(Di−1)] ≥ ε/m, where B ′(x) = b0 ⊕ B(x).

Writing the distributions Di−1, Di out explicitly, we now have:

Pr
y

ri,...,rm

[B′(û(y|S1
) · · · û(y|Si−1

)û(y|Si
)ri+1 . . . rm)]− Pr

y
ri,...,rm

[B′(û(y|S1
) · · · û(y|Si−1

)riri+1 . . . rm)] > ε/m

By an averaging argument, we can fix the bits of y outside of Si, and fix ri+1, . . . , rm to some
values ci+1, . . . , cm, while preserving the above difference. Renaming y|Si

as x, we note that x
varies uniformly over {0, 1}`, while û(y|Sj

) for j 6= i, is now a function ûj which depends only on
‖Si ∩ Sj‖ bits of x. That is,

Pr
x,b

[B′(û1(x) · · · ûi−1(x)û(x)ci+1 · · · cm)] − Pr
x,b

[B′(û1(x) · · · ûi−1(x)bci+1 · · · cm)] > ε/m (2)

Let F (x, b) = û1(x) · · · ûi−1(x)bci+1 · · · cm. Our program to approximate û does the following.
On input x, b it evaluates B ′(F (x, b)) and outputs b if this evaluates to 1 and 1 − b otherwise. Let
gb(x) denote the outcome of this process. We can estimate the probability that gb(x) agrees with
û(x) over the choice of x, b as follows:

Pr
x,b

[gb(x) = û(x)] = Pr
x,b

[gb(x) = û(x)|b = û(x)] Pr
x,b

[b = û(x)] + Pr
x,b

[gb(x) = û(x)|b 6= û(x)] Pr
x,b

[b 6= û(x)]

=
1

2
Pr
x,b

[B′(F (x, b)) = 1|b = û(x)] +
1

2
Pr
x,b

[B′(F (x, b)) = 0|b 6= û(x)]

=
1

2
+

1

2

(

Pr
x,b

[B′(F (x, b)) = 1|b = û(x)] − Pr
x,b

[B′(F (x, b)) = 1|b 6= û(x)]

)

=
1

2
+

1

2

(

Pr
x

[B′(F (x, û(x))) = 1] − Pr
x

[B′(F (x, 1 − û(x))) = 1]

)

=
1

2
+ Pr

x,b
[B′(F (x, û(x)) = 1] − Pr

x,b
[B′(F (x, b)) = 1]

≥ 1

2
+

ε

m

By an averaging argument there is a bit b1 ∈ {0, 1} such that gb1(x) agrees with û(x) on at least a
1/2 + ε/m fraction of x. Note that the queries to B ′ are nonadaptive and that the running time of
the approximation is 2O(`) = n̄O(1) = poly(n/ε).

To optimize the description size of the above program, it will be useful to separate its contri-
butions into three parts:

1. the index i, the bits b0, b1 and O(log m) bits to make the entire description prefix free.
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2. the contribution from the seed length, that is the d − ` bits fixed outside of x.

3. the setting of the bits ci+1, . . . , cm and description of the functions û1, . . . , ûi−1.

Clearly the first item costs O(log m) bits and the second at most d. We now focus on item three.
Each function ûj is a function on ‖Sj ∩ Si‖ bits, thus we can completely specify it by its truth

table with 2‖Si∩Sj‖ bits. Hence we can describe all the functions û1, . . . , ûi−1 with
∑i−1

j=1 2‖Sj∩Si‖

bits, by concatenating their truth functions. We can compute the set system S in polynomial time
and given the value of i, we can compute the sizes of ‖Sj ∩ Si‖ and uniquely decode each function
ûj . Thus as S is a (`, ρ) uniform weak design, we can describe all the functions û1, . . . , ûi−1 in
ρ · (i − 1) bits. Now adding m − i bits to describe ci+1, . . . , cm we see that item (3) will cost less
than ρ · (m − 1) bits.

Putting these three items together, we conclude there is a string ŷ which agrees with û on a
1/2+ ε/m fraction of positions and with Cp,B(ŷ) ≤ ρ ·m+d+O(log m). Now applying Lemma 13,
we obtain the statement of the lemma. 2

Substituting the uniform weak design parameters from Lemma 11 into the Compression Lemma,
and optimizing with respect to ρ, we find the minimum is achieved when ρ = 1+ `/

√
m. For future

reference, we record this in the following corollary.

Corollary 15 Let B, ε, δ be as in Lemma 14, and let ρ = 1 + `/
√

m. If

|Pr[B(TRδ,ρ(u,Ud) = 1)] − Pr[B(Um) = 1]| ≥ ε

then for a time bound t = poly(n/ε), we have

Ct,B(u) ≤ m + C t/2(ε) + O(
√

m log(n/ε)).

Furthermore, there is a program that achieves this bound and only makes nonadaptive queries to

B.

4 Language Compression By Nondeterminism

In this section, we exhibit the power of nondeterminism in the context of the language compression
problem. We show that Trevisan’s function leads to compression close to the information-theoretic
lower bound such that the compressed string can be recovered from its description by an efficient
nondeterministic program that has oracle access to the containing language A.

The proof is an application of the Compression Lemma. In order to give short CN programs
relative to A, it suffices to find a set B such that:

• Queries to B can be efficiently answered with an oracle for A and nondeterminism.

• For any x ∈ A, the distribution TR(x,Ud) lands in B with significantly different probability
than the uniform distribution Um.

Letting B be the set containing all strings of the form TR(x, e) where x ranges over A and e over
all seeds of the appropriate length d, the first item will be satisfied. By taking the output length
to be slightly larger than log ‖A‖ + d, that is taking it to be “too long”, we can also ensure that
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the second item is satisfied. We say “too long” as for this setting of m, Trevisan’s function will not
be an extractor for sources of min-entropy log ‖A‖, see also [21]. We now go through the details.

Proof: (of Theorem 2) Fix n and let k = log ‖A=n‖. Let TRδ,ρ : {0, 1}n × {0, 1}d → {0, 1}m be
Trevisan’s function with m = k + d + 1. The parameters δ, ρ will be fixed later.

Define B ⊆ {0, 1}m to be the image of A × {0, 1}d under the function TR. That is, B = {y :
∃x ∈ A,∃e : TR(x, e) = y}.

By the choice of m it is clear that Pr[B(Um)] ≤ 1/2. For any element x ∈ A, however,
Pr[B(TR(x,Ud))] = 1. Thus applying Lemma 14 with ε = 1/2 and ρ = 1 + `/

√
k we obtain

Cp,B(x) ≤ (1 + `/
√

k)(k + d + 1) + d + O(log n). As ` = O(log n) and d = O(
√

k log n) with this
choice of ρ, simplifying gives Cp,B(x) ≤ k + O((

√
k + log n) log n).

We now show how an oracle for B can be replaced by a nondeterministic program with an
oracle for A. By Lemma 14 we may assume that the queries to B are nonadaptive. It is clear the
“yes” answers of the oracle B can be answered nondeterministically with an oracle for A. As the
queries to B are nonadaptive, by additionally telling the program the number q of yes answers, the
program can guess the q element subset of the queries which are “yes” answers and verify them.
On any path where the incorrect q element subset has been guessed, at least one “yes” answer will
not be verified and thus this path will reject. The description of q will only increase the program
size by O(log n) bits. 2

The positive use of the oracle in Theorem 2 also allows us to state the following corollary about
the CN complexity of strings from an NP language.

Corollary 16 For any set A ∈ NP there is a polynomial p(n) such that for all x ∈ A=n,

CNp(x) ≤ log ‖A=n‖ + O((
√

log ‖A=n‖ + log n) log n).

Proof: Consider the nondeterministic program with oracle access to A given by Theorem 2. Re-
place the oracle queries by guessing a membership witness and verifying it, rejecting whenever the
verification fails. This gives us the nondeterministic generating program we need. 2

5 Language Compression By Nondeterminism and Randomness

In this section, we show that if we allow the decompression algorithm both the power of non-
determinism and randomness, then we can reduce the excess in the description length over the
information theoretic lower bound from O((

√
k + log n) log n) to O(log3 n).

In the proof of the Compression Lemma, we included as part of the description of u ∈ A a
setting of the random bits ci+1, . . . , cm fixed after position i. Including a setting of these bits in our
description seems wasteful – the averaging argument of Lemma 14 shows that a θ(ε/m) fraction
of all m − i bit strings would work equally well to describe u. In spite of this, we do not see how
to avoid specifying them with nondeterminism only. However, if we allow randomization in our
nondeterministic programs, or more precisely, if we consider Arthur-Merlin generating programs,
then we can replace giving a fixed setting of random bits after position i, by sampling over a
polynomial number of possible settings of these bits. The main benefit of not including these bits
is that now, as in the extractor setting, we can use weak designs instead of uniform weak designs,
and by the first part of Lemma 11, use designs with the optimal parameter ρ = 1.
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One difficulty we need to address is that the number of positive oracle calls to the oracle B from
Section 4 depends on the sequence of m − i random bits ci+1, ci+2, . . . , cm chosen. In the proof of
Theorem 2, we included that number in the description of elements from A because this allowed
us to replace oracle calls to B by oracle calls to A. When Arthur randomly picks s(n) = poly(n)
such sequences r1, r2, . . . , rs, we cannot include the number of positive oracle calls to B for every
possible choice of r in the description. Instead, we include the average number of acceptances
ā over all possible values of r. With high probability, the total number of acceptances for the
strings r1, . . . , rs will be within a bounded range of s · ā. If the total number of acceptances for the
strings r1, . . . , rs is indeed within this range, then Merlin will have limited leeway in his choice of
demonstrating particular acceptances. Hence we can show that a nonnegligible fraction of r1, . . . , rs

will give approximations to û, or else we will catch Merlin cheating. The leeway Merlin has can lead
to approximations of encodings v̂ different from û. However, only a small number of strings v̂ can
occur with probability comparable to that of û or better. We can thus specify û by distinguishing
it from the other high likelihood encodings v̂ with a small additional number of bits by the method
of Theorem 1.

The technique of providing approximations to the average number of positive NP queries to limit
Merlin’s ability to cheat has been exploited before, e.g., in the context of random selfreducibility
[5] and more recently in hardness-versus-randomness tradeoffs for nondeterministic circuits [17].

Proof: (of Theorem 3) We follow the proof of Theorem 2. Fix n and let k = log ‖A=n‖. Because
of the averaging argument, we will need to correct from more errors in the list decodable code and
now take δ = 1/8m. We will use Trevisan’s function where the underlying set system S is a (`, 1)
weak design. Thus let TRδ,ρ : {0, 1}n×{0, 1}d → {0, 1}m be Trevisan’s function with m = k+d+1.
As the universe size d for weak designs depends on m, the equation m = k + d + 1 needs to be
solved in terms of m. By Lemma 11, there are (`, 1) weak designs with d = O(`2 log m) = O(log3 n)
and thus there is a solution to m = k + d + 1 with m ≤ k + O(log3 n).

As in the previous proof, we let the set B ⊆ {0, 1}m be the image of A × {0, 1}d under the
function TR. By the choice of m, for any u ∈ A=n,

Pr[B(TR(u,Ud))] − Pr[B(Um)] ≥ 1/2.

By the hybrid argument, there is an i ∈ [m], and a setting of the bits of y outside of Si such that

Pr
x∈{0,1}`,b

r∈{0,1}m−i

[B(û1(x) · · · ûi−1(x)û(x)r)] − Pr
x∈{0,1}`,b

r∈{0,1}m−i

[B(û1(x) · · · ûi−1(x)br)] ≥ 1/2m. (3)

For convenience in what follows, let F (x, b, r) = û1(x) · · · ûi−1(x)br.
Consider the following approach of approximating û: On input x, pick a random b ∈ {0, 1}

and r ∈ {0, 1}m−i and compute B(F (x, b, r)); if this evaluates to 1, then output b, otherwise
output 1 − b. Let gb(x, r) be the function computing this operation. As in the argument after
Equation (2), from Equation (3) it follows that Prx,b,r[û(x) = gb(x, r)] ≥ 1/2 + 1/2m. We set b
to a value b1 ∈ {0, 1} which preserves this prediction advantage. This value b1 will be included as
part of our description. Arthur cannot compute the function gb1(x, r) himself as he needs Merlin
to demonstrate witnesses for acceptance in B. We now show how to approximate the computation
of gb1(x, r) with an Arthur-Merlin protocol.

We say that r gives a α-approximation to û if Prx[gb1(x, r) = û(x)] ≥ α. For fixed r, we
identify gb1(x, r) with the string zb1,r where zb1,r has bit b1 in position x if and only if gb1(x, r) = 1.
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For convenience we assume without loss of generality that b1 = 1 and drop the subscript. Note
that with this choice the number of ones in zr is the number of strings x for which B accepts
û1(x) · · · ûi−1(x)b1r. With w(z) we denote the number of ones in a string z.

Arthur randomly selects strings r1, . . . , rs, each of length m − i, for a polynomial s = s(n).
Whereas in the proof of Theorem 2 we included in the description the number of acceptances by
B for a particular setting of bits ci+1, . . . , cm, we now include the average ā = 2i−m ∑

x,r gb1(x, r)
number of acceptances over all r ∈ {0, 1}m−i. To limit Merlin’s freedom in providing these ac-
ceptances, we want the number of acceptances by B over the strings r1, . . . , rs to be close to the
expected s · ā.

The next claim shows that with high probability the strings r1, . . . , rs will satisfy our require-
ments.

Claim 17 For any γ = γ(m, n̄) > 0, there exists s = O(n̄2/γ2) such that with probability at least

3/4 over Arthur’s choice of r1, . . . , rs the following two things will simultaneously happen:

1. A 1/8m fraction of r1, . . . , rs will give 1
2 + 1

4m approximations to û.

2. The total number of acceptances by B over the strings r1, . . . , rs will be within γs of the

expected. That is,

|
s

∑

j=1

w(zj) − sā| ≤ γs.

Proof: To lower bound the probability that both of these events happen, we upper bound the
probability that each event individually does not happen and use a union bound.
Item (1): Notice that for a given r, if

Pr
x,b

[B(û1(x) · · · ûi−1(x)û(x)r)] − Pr
x,b

[B(û1(x) · · · ûi−1(x)br)] ≥ 1/4m

then r gives a 1
2 + 1

4m -approximation of û. We will say that r is bad if it does not yield a 1
2 + 1

4m
approximation to û. By Equation (3) and Markov’s inequality,

Pr
r

[r ∈ bad] ≤ 1 − 1/2m

1 − 1/4m
< 1 − 1/4m.

By a Chernoff bound, for some constant c1 > 0,

Pr
r1,...,rs

[‖bad‖ ≥ (1 − 1/8m)s] ≤ exp(−c1s/m
2).

Item (2): By a Chernoff bound, for some constant c2 > 0,

Pr[|1/s
s

∑

j=1

w(zj) − ā| ≥ γ] ≤ 2 exp(−c2γ
2s/n̄2).

By taking s = c3n̄
2/γ2 for a sufficiently large constant c3, the probability of each item will be

less than 1/8, and the claim follows. 2

After choosing the strings r1, . . . , rs, Arthur requests Merlin to provide sā− sγ many witnesses
for acceptances in B. Arthur verifies these witnesses and rejects if any of them fail. From the
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acceptances provided by Merlin, Arthur constructs the strings z ′
r1

, . . . , z′rs
, where position x of the

string zj has a one if and only if Merlin provided a witness for B(F (x, b1, rj)) = 1. We now show
that, with high probability, no matter which acceptances Merlin chooses to demonstrate, at least
a 1/16m fraction of z′r1

, . . . , z′rs
will give 1

2 + 1
8m approximations of û.

Claim 18 If r1, . . . , rs satisfy the two conditions of the previous claim with γ = n̄/256m2, then for

any demonstration of acceptances by Merlin at least a 1/16m fraction of z ′
r1

, . . . , z′rs
will be 1

2 + 1
8m

approximations to û.

Proof: By assumption, the number of acceptances for the strings r1, . . . , rs is between sā − sγ and
sā + sγ. Since Merlin has to provide witnesses for sā − sγ acceptances and can never fool Arthur
in providing an invalid witness, Merlin has at most 2sγ acceptances to play with. Consider them
as Merlin’s potential to fool Arthur.

How can zrj
and z′rj

differ? As Arthur verifies the witnesses provided by Merlin, wherever z ′
rj

has a one, zrj
must also have a one. Thus, if zrj

and z′rj
differ in t positions, then Merlin has to

spend at least t units of his potential on rj . Since Merlin’s total potential is bounded by 2sγ, we
have that the number of rj ’s such that zrj

and z′rj
differ in t or more positions is bounded by 2sγ/t.

Under the conditions of the claim, a 1/8m fraction of the zrj
are 1

2 + 1
4m approximations of û.

Setting t = n̄/8m and γ = n̄/256m2, we have that a fraction a least 1
8m − 2γ

t = 1
16m of the z′rj

’s are

approximations that agree with û in a fraction at least 1
2 + 1

4m − 1
8m = 1

2 + 1
8m of the positions. 2

Now putting these claims together, and taking s to be a sufficiently large polynomial, say
s = ω(m4), we have that with probability 3/4 over Arthur’s choice of r1, . . . , rs, at least a 1/16m
fraction of these settings will give 1

2 + 1
8m approximations to û. A particular rj can give a 1

2 + 1
8m

approximation to at most the number of codewords that agree with it on a fraction at least 1
2 + 1

8m
of the positions. By Lemma 12, this number is bounded by a polynomial q(m).

Let us say that v̂ ∈ LIKELY if at least a 1/32m fraction of r give a 1
2 + 1

8m approximation of
v̂. Note that the size of the set LIKELY is at most 32mq. By Theorem 1, there is a distinguishing
program p1 of length 2 log(32mq) such that p1(û) accepts and p1(v̂) rejects for any û 6= v̂ ∈ LIKELY.

We make a list of all codewords v̂ which agree with any of z ′
r1

, . . . , z′rs
on at least a 1

2 + 1
8m

fraction of positions. We then remove all elements of this list which occur fewer than s/16m times.
With probability more than 2/3, û is on this list and all elements v̂ on the list are in LIKELY. In
that case, from the elements on the list, the distinguishing program p1 will accept û and û only.
As the list is explicit, the distinguishing program p1 does not need to make any oracle calls.

To carry out the above procedure, we need the following information:

1. the index i, the bit b1, the average number of acceptances ā to high enough precision, and
the distinguishing program p1, and

2. a description of the functions û1, . . . , ûi−1.

Note that O(log n) bits of precision is enough to encode ā. Thus, the first item costs O(log n) bits.
As we took S to be a (`, 1) weak design, the second item costs less than m = log ‖A=n‖+O(log3 n)
bits.

With probability more than 2/3, Merlin can make Arthur accept, and whenever Arthur accepts
he produces u as output. Moreover, Arthur only queries the oracle A on strings of length n = |u|,
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and rejects whenever an oracle query is answered negatively. 2

The positive use of the oracle in Theorem 3 implies the following corollary on the CAM com-
plexity of strings from a language in AM.

Corollary 19 For any set A ∈ AM there is a polynomial p(n) such that for all x ∈ A=n,

CAMp(x) ≤ log ‖A=n‖ + O(log3 n).

Proof: Consider the Arthur-Merlin process from Theorem 3 in which Arthur makes queries to
the oracle A. Since Arthur rejects whenever the oracle responds negatively, we can make all oracle
queries in parallel and simulate them without oracle access by running the Arthur-Merlin game that
defines A; we boost the confidence of the latter game by standard parallel repetition and majority
voting, and reject whenever a majority vote rejects. The resulting process can be viewed as an
AMAM game, which can be transformed into an equivalent AM game using standard techniques.
This gives us the Arthur-Merlin process we need; its description length is only O(log n) longer than
the one given in Theorem 3. 2

6 Language Compression By Randomness Only

We have shown the power of nondeterminism in decompression algorithms, and also the benefit
of randomness in conjunction with nondeterminism in further reducing description size. We now
address the case of decompression algorithms that use randomness alone. For this case, we establish
some negative results.

First, we argue that randomness barely helps to efficiently generate a string from a short de-
scription. In fact, the following result proves that there are sets A of size 2k such that no string in
A can be generated with probability at least 2/3 by an efficient randomized program of size a bit
less than n − k. Recall that achieving the information-theoretic bound would require programs of
size k.

Proof: (of Theorem 4) We will argue that there are many strings x of length n that (i) are not
generated with high probability by a randomized program p of small size with access to the empty
oracle and (ii) have a small probability of being queried by any program p of small size that runs in
time t and has access to the empty oracle. Putting 2k such strings in the oracle A does not affect
the output distribution of any of these programs p by much, so they still cannot generate any of
the strings x we put in A.

Let’s call a randomized program p small if its length is less than some integer ` which we’ll
determine later. Let Bi denote the set of inputs x of length n for which there exists a small program
p that outputs x with probability at least 1/2 on the empty oracle. Since every program can induce
at most two elements in Bi and there are less than 2` small programs, we have that ‖Bi‖ ≤ 2`+1.

Consider the set of strings y such that p queries y with probability at least 2−s on the empty
oracle, where s is another integer we’ll set later. If p runs in time t, the size of this set is bounded
by 2st. Let Bq denote the set of all queries y of length n that are asked with probability at least
2−s by at least one small program p on the empty oracle. We have that ‖Bq‖ ≤ 2`+st.
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Let A be a set of 2k strings of length n that are neither in Bi nor in Bq. Such a set exists
provided

2k ≤ 2n − 2`+s+1t. (4)

Now, consider any small program p with access to oracle A. Since A does not contain any string in
Bq, the probability that p outputs something different on the empty oracle and on oracle A is no
more than 2k−s. Thus, for any string x outside of Bi, the probability that p outputs x on oracle
A is less than 1

2 + 2k−s. Setting s = k + log 6 and using the fact that every string in A is outside
of Bi, we have that no string in A can be generated by p with probability at least 1

2 + 1
6 = 2

3 on
oracle A. Setting ` = n − k − log t − 5 satisfies (4), and thereby finishes the proof. 2

In the absence of nondeterminism, the distinction between generating programs and distin-
guishing programs becomes relevant. Indeed, Theorem 1 implies that randomized distinguishing
programs can do much better than the randomized generating programs from Theorem 4: We can
realize an upper bound of roughly 2 log ‖A=n‖ in the case of distinguishing programs, even for
deterministic ones. [3] proved that the factor of 2 is tight in the deterministic setting. We now
extend that result to the randomized setting, i.e., we exhibit a set A that contains an exponential
number 2k of strings of length n such that at least one of these strings cannot be distinguished
from the other strings in A by a randomized program of length a little bit less than 2k with oracle
access to A.

As in [3], the core of the argument is a combinatorial result on cover free set systems. A
family F of sets is called K-cover free if for any different sets F0, . . . , Fk ∈ F , F0 6⊆ ∪K

j=1Fj . The
combinatorial result we use states that K-cover free families of more than K 3 sets need a universe
of at least K2 elements.

Lemma 20 ([4]) If F is a K-cover free family containing M sets over a universe of L element

universe, and M > K3 then L ≥ K2 log M
2 log K+c for some constant c.

The connection between distinguishing programs and cover free families is the following. Recall
that for a given string x and oracle A, a randomized distinguishing program accepts x with proba-
bility at least 2/3 on oracle A, and rejects every other string with probability at least 2/3 on oracle
A. Let F A

x denote the set of randomized programs of length less than ` that accept x with proba-
bility more than 1/2 on oracle A. If every string in A has a randomized distinguishing program of
size less than ` on oracle A, then the family {F A

x |x ∈ A=n} is K-cover free for K = ‖A=n‖ − 1.
The size of this family is only M = K + 1. In order to obtain a larger family, we argue that

if all strings in A are of length n and Kolmogorov random with respect to the other strings in A,
then no short efficient program p on input x ∈ A has a noticeable probability of querying a string
in A other than x. Thus, pA(x) and p{x}(x) behave essentially the same. Notice that p{x}(x) does
not depend on A. This allows us to consider a larger set B containing M > K 3 strings x of length
n that are Kolmogorov random with respect to the other strings in B. Assuming every subset A
of B of size 2k = K − 1 has an efficient randomized distinguishing program of size less than ` when
given oracle access to A, we have that the family

F = {F {x}
x |x ∈ B} (5)

is a K-cover free family of size M > K3. Lemma 20 then implies that ` ≥ 2k − O(1).
We now fill in the details of the proof.
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Proof: (of Theorem 5) Let z be a string of length Mn such that C(z) ≥ |z|, where M = 2m will
be determined later. Let B consist of the strings of length n obtained by chopping up z into M
pieces of equal size. All M strings are guaranteed to be different as long as m ≤ n/2 − O(log n);
otherwise, we could obtain a short description of z by describing one of its length n segments as a
copy of another one.

A key observation is the following:

Claim 21 For every subset A of B, every x ∈ A, and every randomized program p of length less

than ` running in time t,

|Pr[pA(x) accepts] − Pr[p{x}(x) accepts]| < 1/6,

provided n > ` + c(m + log(t + n)), where c is some universal constant.

Proof: We will argue that every random bit sequence that leads to a different outcome for pA(x)
and p{x}(x), has a short description with respect to z. Since there can only be few random bit
sequences with a short description, this implies the claim.

Let us denote the outcome of p on input x, oracle O, and random bit sequence r ∈ {0, 1}t by
pO(x, r). If pA(x, r) 6= p{x}(x, r), then p{x}(x, r) must query some string y ∈ A. We can describe
this y with p, x, r, and an index of size log t indicating the time when the query takes place. By
adding the remaining parts of z, the indices of x and y in z, and making everything prefix free, we
obtain a description of 〈z, r〉. This shows

C(〈z, r〉) ≤ |z| + |r| − n + ` + 2m + O(log(t + n)).

Symmetry of information tells us that

C(〈z, r〉) ≥ C(z) + C(r|z) − O(m + log(t + n)).

Since C(z) = |z|, we conclude that

C(r|z) ≤ |r| − n + ` + O(m + log(t + n)).

We can make the fraction of random bit strings r that have such a short description less than 1/6
by choosing n > ` + c(m + log(t + n)) for some sufficiently large constant c. The claim follows. 2

Now, suppose that for every subset A of B of size 2k, every string x ∈ A satisfies CBPDt,A(x) <
`, where k, t, and ` are some integers. Then the family F defined by (5) is K-cover free for
K = 2k − 1. Indeed, consider any subset A of B containing the 2k different strings x0, x1, . . . , xK

from B. Let p be a randomized program of length less than ` that runs in time t, such that pA(x0)
accepts with probability at least 2/3, and pA(xi) rejects with probability at least 2/3 for 1 ≤ i ≤ K.

Claim 21 implies that p ∈ F
{x0}
x0

and p 6∈ F
{xi}
xi for any 1 ≤ i ≤ K. Thus, F

{x0}
x0

is not covered by

the union of the K sets F
{xi}
xi , 1 ≤ i ≤ K.

Since the family F is of size M = 2m, Lemma 20 implies that ` ≥ 2k − c3 for some constant
c3, provided M > K3. All size conditions can be met for values of k up to c1n − c2 log t for some
positive constants c1 and c2. 2
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Recall that [3] established the same lower bound as in Theorem 5 for CD complexity instead of
CBPD complexity. They also extended their result to CD complexity with access to an oracle in
NP ∩ coNP. Similar to the formulation of Theorem 5, their extension can be phrased as follows:
For every robust (NP ∩ coNP) machine M , there exist constants c1, c2, and c3 such that for any
integers n, k, and t satisfying k ≤ c1n − c2 log t, there exists a set A with log ‖A=n‖ = k and a
string x ∈ A such that

CDt,MA

(x) ≥ 2 log ‖A=n‖ − c3.

The robustness condition is implicit in the proof in [3]. By a robust (NP ∩ coNP) machine M , we
mean an oracle machine M such that for every oracle B, M B behaves like an (NP∩coNP) machine.
Note, though, that Theorem 2 implies the existence of a promise-(NP ∩ coNP) machine M and a
polynomial p such that for any set A and every x ∈ A,

CDp,MA

(x) ≤ log ‖A=n‖ + O(δ(n)),

where δ(n) = (
√

log ‖A=n‖ + log n) log n.
In a similar way, we can extend Theorem 5 as follows: For every robust (AM∩coAM) machine M ,

there exist constants c1, c2, and c3 such that for any integers n, k, and t satisfying k ≤ c1n−c2 log t,
there exists a set A with log ‖A=n‖ = k and a string x ∈ A such that

CDt,MA

(x) ≥ 2 log ‖A=n‖ − c3.

However, without the robustness requirement, Theorem 3 implies the existence of a promise-(AM∩
coAM) machine M and a polynomial p such that for any set A and every x ∈ A,

CDp,MA

(x) ≤ log ‖A=n‖ + O(log3 n).
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