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Esterel is a synchronous design language for the specification of reactive systems. There exist two
main semantics for Esterel. On the one hand, the logical behavioral semantics provides a simple

and compact formalization of the behavior of programs using SOS rules. But it does not ensure

deterministic deadlock-free executions as it may define zero, one, or many possible behaviors for
a given program and input sequence. Since non-deterministic programs have to be rejected by

compilers, this means it defines behaviors for incorrect programs, which is awkward. On the

other hand, the constructive semantics is deterministic (amongst other properties) but at the
expense of a much more complex formalism. In this work, we build and thoroughly analyze a new

deterministic semantics for Esterel that retains the simplicity of the logical behavioral semantics

from which it derives. It defines at most one behavior per program and input sequence. We
further extend this semantics with the ability to deal with errors so that incorrect programs are

no longer (negatively) characterized by a lack of behavior but (positively) by the existence of an

incorrect behavior. In our view, this new semantics, with or without explicit errors, provides a
better framework for formal and automated reasoning about Esterel programs.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages, Theory

Additional Key Words and Phrases: synchronous languages, structural operational semantics

1. INTRODUCTION

Today more and more embedded computer systems are being used for safety-critical
applications, resulting in an ever-increasing demand for reliable software and hard-
ware design methods and tools.

The paradigm of synchrony [Benveniste and Berry 1991; Benveniste et al. 2003]
has emerged as a simple and mathematically-sound foundation for the design of
systems expressing a high level of concurrency, while maintaining determinism and
predictable, reproducible system behaviors. Time is divided into discrete instants.
Concurrent threads run in lockstep (to one or several clocks). Communications
are instantaneous. Several programming languages have adopted the synchronous
approach, in particular the three French pioneers: Esterel [Boussinot and de Simone
1991], Lustre [Halbwachs et al. 1991], and Signal [Le Guernic et al. 1991].

In contrast with traditional thread-based or event-based concurrency models that
embed no precise or deterministic scheduling policy in the design formalism, syn-
chronous languages semantics take care of all scheduling decisions. As a conse-
quence, programs are guaranteed to behave the same whatever the execution plat-
form, which is more uncommon than thought, but obviously very convenient and
sometimes mandatory for the design of safety-critical applications.

The solid mathematical framework common to all synchronous languages facil-
itates validation and certification, as it enables formal reasoning about programs
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and implementations, including formal verification and exhaustive testing. In par-
ticular, code generation can be provably correct. Therefore, high-level synthesis
tools should provide correct-by-construction design flows, thereby avoiding the all
too often occurring problem of consistency between simulation and synthesis se-
mantics found in neighboring formalisms such as HDLs like VHDL and Verilog.
In practice, due to the many intricacies of an optimizing compiler, certifying such
tools by means of a mathematical proof remains a scientific and technical challenge.

To start with, programming language semantics should not only precisely specify
program behaviors, but they should also be carefully engineered to ease proofs. In
the current paper, we undertake such a task for the Esterel language.

1.1 Pure Esterel

Esterel [Berry and Cosserat 1984; Berry and Gonthier 1992; Berry 1999; 2000a;
2000b] is a high-level synchronous programming language dedicated to the specifi-
cation of reactive systems [Edwards 2000; Halbwachs 1993]. Its syntax is imperative
and fit for the design of safety-critical embedded systems where control-handling
aspects prevail. In addition to traditional control-flow operators, it defines sus-
pension and preemption mechanisms that are compatible with concurrency and
preserve determinism [Berry 1993]. Both hardware synthesis and efficient simula-
tion are supported [INRIA et al. 2000; Potop-Butucaru 2002; Edwards et al. 2004].

Pure Esterel is the subset of the full Esterel language where data variables and
data-handling primitives are omitted. In this work, we concentrate on this subset.
We shall comment on that later.

Pure Esterel deals with pure signals only. Pure signals have a Boolean status,
which obeys the signal coherence law. In each instant—time is divided into discrete
instants—a signal is absent by default and present if emitted in the instant. Both
absence and presence are instantly broadcast and made available to all threads of
execution.

This perfect synchrony hypothesis may result in causality cycles [Berry 1999;
Malik 1993], as for example in the parallel composition:

signal A, B in
present A then emit B end || present B then emit A end

end

which admits two possible executions conforming to the signal coherence law:

– both A and B are present and emitted;
– both A and B are absent and not emitted.

For this reason, this program is said to be non-deterministic.
Similarly, there exist non-reactive programs with no possible execution, for ex-

ample:

signal A, B in
present A then emit B end || present B else emit A end

end

In Esterel, we want programs to have deadlock-free, deterministic executions.
Thus, such non-reactive and non-deterministic programs have to be rejected.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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1.2 Existing Formal Semantics

Two main semantics have been formalized for pure Esterel:

– The logical behavioral semantics [Berry and Gonthier 1992] simply formalizes the
signal coherence law using SOS rules [Plotkin 1981]. For a given input sequence,
it defines no execution for a non-reactive program, and several distinct executions
for a non-deterministic program1.

– The constructive semantics [Berry 1999] is inspired from digital circuits and based
on a three-valued logic. It only reproduces a subset of the executions allowed by
the logical behavioral semantics. It introduces the idea of causal dependencies
and ensures that these executions can be causally computed: the status of a
signal should be certain before being used (cf. Section 8). As a result, it defines
no execution for non-reactive and non-deterministic programs, such as the two
previous examples.

These two semantics handle non-determinism in opposite manners:

– An execution defined by the logical behavioral semantics is not necessarily cor-
rect, as it may be the execution of a non-deterministic, thus incorrect, program.
While reactivity may be shown with a simple proof tree (using the deduction
rules of the semantics), establishing determinism is more complex and requires a
meta proof: a proof about proof trees (proof of uniqueness), which is harder to
formalize within a proof assistant.
Moreover, non-determinism sometimes compensates for non-reactivity: too many
behaviors on the one hand, too few on the other hand, may result in exactly one
behavior in the end, so that a correct program possibly contains “bad” code.

– The constructive semantics is intrinsically deterministic and thus only defines
correct executions. But the formulation of its rules is rather involved and requires
the definition of subtle auxiliary predicates. As a consequence, it makes formal
reasoning about Esterel programs much more difficult, and should be avoided
when causality is not an issue.

1.3 Toward a Deterministic Semantics

Neither semantics is truly convenient for dealing with non-determinism. Therefore,
we introduce in this work an alternative semantics that we derive from the logical
behavioral semantics. It retains the simple formalism of the logical behavioral
semantics while defining at most one execution per program and input sequence.

As an additional benefit, we shall observe that errors cannot cancel one another
in this new semantics. But this is also a minor drawback as it means we have get
accustomed to a new definition of program correctness, even if better.

It should be understood that the goal of this deterministic semantics is not
to replace the constructive semantics—the reference semantics when it comes to
implementation—but to provide a formal framework for proving properties about
Esterel programs (independently from causality), leading to more compact, better
structured, and more manageable proofs than what can be achieved with both the
logical behavioral and the constructive semantics.

1In general, determinism and reactivity depend on the input sequence (cf. Section 4).
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p, q ::= nothing does nothing and terminates instantly
pause suspends the execution for one instant
p; q runs p, then q if/when p terminates
p || q runs p in parallel with q
loop p end repeats p forever
signal S in p end declares signal S in p
emit S emits signal S
present S then p else q end runs p if S is present in this instant, q otherwise
try p end runs p
exit n exits n ≥ 1 enclosing “try . . . end” blocks

Fig. 1. Primitive Pure Esterel Constructs

It should also be understood that the benefits of this deterministic semantics do
not extend beyond pure Esterel. Full Esterel enables data-dependent choices. The
deterministic semantics is not meant to be extended to handle such choices, that is
to say ensure they have a deterministic outcome. But it may be used to establish
that the program behavior is deterministic assuming data-dependent choices are.

1.4 Overview of the Paper

In Section 2, we describe a kernel pure Esterel language. We formalize its logical
behavioral semantics in Section 3 and define reactivity and determinism in Section 4.
We introduce our deterministic semantics in Section 5. In Section 6, we compare
the two semantics. In Section 7, we consider turning deadlocks into explicit errors,
that is to say replace an absence of behavior by the existence of an error. We
discuss the constructive semantics in Section 8 and conclude in Section 9.

2. SYNTAX AND INTUITIVE SEMANTICS

Without loss of generality, we focus on a kernel language inspired by Berry [1999].
Figure 1 describes the grammar of our kernel language, as well as the intuitive
behavior of its constructs.

The non-terminals p and q denote statements, i.e., programs. Signals are lexically
scoped and declared using the construct “signal S in . . . end”.

The infix “;” operator binds tighter than “||”. Brackets “[” and “]” may be
used to group statements in arbitrary ways. In a present statement, then or else
branches may be omitted. For example, “present S then p end” is a shortcut
for “present S then p else nothing end”.

2.1 Instants and Reactions

An Esterel statement runs in steps called reactions in response to the ticks of a
global clock. Each reaction takes one instant. Except for the pause instruction,
primitive statements execute in zero time2.

2This is an ideal view of the fact that reactions are supposed to converge and terminate before

the next clock tick occurs, so that no overlap is possible. Of course, just as gates in digital circuits

have delays, instructions in Esterel take physical time to execute. But at the formal semantics
level, only logical time matters, that is to say instructions behave as if they are instantaneous. As
a result, the main goal of an Esterel compiler is to ensure by a proper scheduling of instructions

in each instant that the implemented behavior complies with the idealized semantics.
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When the clock ticks, a reaction occurs that computes the output signals and
the new state of the program from the input signals and the current state of the
program. It may either finish the execution instantly or delay part of it until the
next instant, because it reached at least one pause instruction. In the latter case,
the execution is resumed when the clock ticks again from the locations of the pause
instructions reached in the previous instant.

The program “emit A; pause; emit B; emit C; pause; emit D” emits the
signal A in the first instant of its execution, emits B and C in the second instant,
and finally emits D and terminates in the third instant. It takes three instants to
complete, that is to say its execution consists of three reactions. The signals B
and C are emitted simultaneously, as their emissions occur in the same instant of
execution. In particular, “emit B; emit C” and “emit C; emit B” are equivalent.

2.2 Synchronous Concurrency

Concurrency in Esterel is synchronous. One reaction of the parallel composition
“p || q” is made of exactly one reaction of each non-terminated branch, until the
termination of all branches. For example,

[
pause; emit A; pause; emit B

||
emit C; pause; emit D

];
emit E

emits C in the first instant of its execution, emits A and D in the second instant,
and finally emits B and E and terminates in the third instant.

2.3 Weak Preemption

In sequential code, the exit statement behaves as a “goto” to the end of the
matching “try . . . end” block. For example,

try
emit A; pause; emit B; exit 1; emit C

end;
emit D

emits A in the first instant, then B and D and terminates in the second instant. The
statement “emit C” is never executed.

An exit in a parallel context causes all parallel branches to terminate instantly.
In the next example, A and E are emitted in the first instant, then B, F, and D in the
second and final one. Neither C nor G is emitted. The execution of “exit 1” does
not prevent the simultaneous execution of “emit F”. This is weak preemption.

try
emit A; pause; emit B; exit 1; emit C

||
emit E; pause; emit F; pause; emit G

end;
emit D

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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In case of simultaneous exits and nested “try . . . end” blocks, the control is
transfered back to the outermost “try . . . end” block targeted by the exits. For
instance A is not emitted whereas B is emitted in:

try
try
try
exit 2 || exit 1

end;
emit A

end;
emit B

end

2.4 Suspension and Strong Preemption

Esterel also defines constructs for suspension and strong preemption. For simplicity,
we do not consider them in this paper. Extending our results to such constructs is
straightforward.

2.5 Loops

The statement “loop emit S; pause end” emits S at each instant and never ter-
minates. Finitely iterated loops may be obtained by combining loop, try and exit
statements, as for instance in the kernel expansion of “await S”:

try
loop
pause;
present S then exit 1 end

end
end

Loop bodies must not be instantaneous [Tardieu and de Simone 2003]. For
example, “loop emit S end” is not a correct program. Such a pattern would
prevent the reaction to reach completion. Therefore, loop bodies are required to
raise an exception or retain the control for at least one instant, that is to say execute
a pause or an exit statement in each iteration.

2.6 Signals

The instruction “signal S in p end” declares the local signal S in p. The free
signals of a block are said to be interface signals for this block. Full Esterel defines
modules and distinguishes input, output and inputoutput signals. In this work
however, we have no need for such definitions, interface signals being both the
inputs and outputs of a block.

Intuitively, a block may read from a signal S through present constructs, may
write to a signal S via emit instructions. The read and written values of a signal
S are related iff there exists an enclosing local declaration of S, as illustrated in
Figure 2.

Formally, in an instant, a signal S is emitted iff at least one “emit S” statement
is executed in this instant. In an instant, the status of a signal S is either present or
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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signal S in

. . .

emit S
output S−−−−−−−→

. . .
input S−−−−−−→ present S then . . . end

. . .

end

?

Fig. 2. The Semantics of Signals

absent. If S is present then all “present S then p else q end” statements (executed
in this instant) execute their “then p” branch in this instant; if S is absent they
all execute their “else q” branch. Presence and absence obey the following rules:

– A local signal is present iff it is emitted.
– An interface signal is present iff it is provided by the environment3.

Interface signal may be both absent and emitted, as the feedback loop of Figure 2
is missing for interface signals. Let’s consider a few examples:

– signal S in
emit S;
pause;
present S then emit O end

end

The signal S is present in the first instant of execution only, thus O is not emitted
by this statement, as S is absent at the time of the “present S” test.

– signal S in
present S then emit O end

||
emit S

end

Both S and O are emitted. The local signal S is present.
– emit S;
present S then emit O end

In the absence of a declaration of S, despite “emit S”, the status of S depends
on the environment, hence O is emitted iff S is provided by the environment.

3Alternatively, we may state that an interface signal is present iff provided by the environment
or locally emitted, in a way similar to [Tardieu and de Simone 2003]. This choice, however, would

lead to a more intricate deterministic semantics, as we would have to later disentangle the local
and global communication parts of such interface signals. Therefore, we prefer to stick here to
the more traditional but maybe less intuitive rule of Berry [1999]: an interface signal is present iff
provided by the environment, which makes it possible for an interface signal to be absent even if

locally emitted.
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3. LOGICAL BEHAVIORAL SEMANTICS

The logical behavioral semantics [Berry and Gonthier 1992; Berry 1999; Gonthier
1988] formalizes the informal semantics of the previous section. It describes the
reactions of a statement p via a labeled transition system:

p
O, k−−→

I
p′

where:

– I is the set of present signals,
– O is the set of emitted signals,
– the integer k is the completion code of the reaction,
– the statement p′ is the residual of the reaction.

3.1 Present and Emitted Signals

The set O, written above the arrow, lists the emitted interface signals. In particular,

emit S
{S}, 0−−−−→

I
nothing

The set I, written below the arrow, lists the signals provided by the environment.
It drives the reactions of present statements:

– if S ∈ I and p
O, k−−→

I
p′ then present S then p else q end

O, k−−→
I

p′.

– if S /∈ I and q
O, k−−→

I
q′ then present S then p else q end

O, k−−→
I

q′.

3.2 Completion Code and Residual

The completion code k and the residual p′ encode the status of the execution:

– If k = 1 then this reaction does not complete the execution of p. It has to be
continued by the execution of p′ in the next instant. For example,

pause; pause
∅, 1−−→
I

nothing; pause

– If k 6= 1 then this reaction ends the execution of p and p′ does not matter:
– k = 0 if the execution completes normally. For example,

nothing
∅, 0−−→
I

nothing

– k = n + 1 if n enclosing “try . . . end” blocks have to be exited. In particular,

exit n
∅, n+1−−−−→

I
nothing

If p terminates with completion code k and q with completion code ` then “p || q”
terminates with code “max(k, `)”. For example,

exit 3 || exit 5 end
∅, 6−−→
I

nothing || nothing

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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3.3 Deduction Rules

The logical behavioral semantics is generated by the fourteen deduction rules of
Figure 3. As usual, variables are universally quantified. Each rule is of the form:

Hypothesis(1) Hypothesis(2) . . . Hypothesis(n)

Conclusion

meaning that:

∀ variables :
n∧

i=1

Hypothesis(i) ⇒ Conclusion

In other words, the logical behavioral semantics consists in the reactions that can
be proved using these fourteen deduction rules.

In the sequel, we shall omit the “true” leaves of the proof trees.

3.4 Execution

An execution of the statement p is a potentially infinite chain of reactions, such
that all completion codes are equal to 1, except for the last one in the finite case:

– finite execution: p
O0, 1−−−→

I0
p1

O1, 1−−−→
I1

...
On, k−−−→

In

pn+1, with k 6= 1, for some n ∈ N.

– infinite execution: p
O0, 1−−−→

I0
p1

O1, 1−−−→
I1

...
On, 1−−−→

In

...

We say that ~I = (I0, I1, ..., In) in the finite case and ~I = (In)n∈N in the infinite
case is the sequence of inputs of the execution.

For example, the statement “emit A; pause; emit B” emits A and does not ter-
minate instantly, with the residual “nothing; emit B” remaining to be executed.
In the second and final instant of execution, B is emitted.

emit A; pause; emit B
{A}, 1−−−→

I0
nothing; emit B

{B}, 0−−−→
I1

nothing

We note p → p′ iff there exist I and O such that p
O, 1−−→

I
p′. We say that q is

reachable from p iff p
∗→ q where ∗→ is the reflexive transitive closure of →.

3.5 Signal Coherence Law

The signal coherence law—a local signal is present iff emitted—is enforced by the
(signal+) and (signal−) rules. If rule (signal+) applies to “signal S in p end”
then S both is emitted by p and present in p. In contrast, if rule (signal−) applies
to “signal S in p end” then S is neither emitted by p nor present in p.

For instance, for the statement “signal S in pause end” with inputs I = {A,S},
we obtain the behavior:

pause
∅, 1−−→
{A}

nothing S /∈ ∅

signal S in pause end
∅, 1−−−→
{A,S}

signal S in nothing end
using (signal−)

The input set for pause is {A,S} \ {S} = {A}. Indeed, pause does not emit S and
the local declaration of S hides the interface signal S, thus S is absent.
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true

nothing
∅, 0−−→
I

nothing
(nothing)

true

pause
∅, 1−−→
I

nothing
(pause)

true

exit n
∅, n+1−−−−→

I
nothing

(exit)

true

emit S
{S}, 0−−−−→

I
nothing

(emit)

p
O, k−−−→

I
p′ k 6= 0

loop p end
O, k−−−→

I
p′; loop p end

(loop)

p
O, k−−−→

I
p′ q

O′, `−−−→
I

q′

p || q
O∪O′, max(k, `)−−−−−−−−−−−→

I
p′ || q′

(parallel)

S ∈ I p
O, k−−−→

I
p′

present S then p else q end
O, k−−−→

I
p′

(present+)

S /∈ I q
O, k−−−→

I
q′

present S then p else q end
O, k−−−→

I
q′

(present−)

p
O, 2−−−→

I
p′

try p end
O, 0−−−→

I
nothing

(try-catch)

↓k =

8<
:

0 if k = 0
1 if k = 1

k − 1 if k > 2

p
O, k−−−→

I
p′ k 6= 2

try p end
O, ↓k−−−−→

I
try p′ end

(try-through)

p
O, k−−−→

I
p′ k 6= 0

p; q
O, k−−−→

I
p′; q

(sequence-p)

p
O, 0−−−→

I
p′ q

O′, k−−−→
I

q′

p; q
O∪O′, k−−−−−−→

I
q′

(sequence-q)

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−−→

I
signal S in p′ end

(signal+)

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−−→

I
signal S in p′ end

(signal−)

Fig. 3. Berry and Gonthier’s Logical Behavioral Semantics
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In contrast, in “signal S in emit S end” with inputs I = {A}, the local signal S
is emitted:

emit S
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end
∅, 0−−→
{A}

signal S in nothing end
using (signal+)

The local signal S is present: the input set for the inner statement is {A} ∪ {S}.
Moreover, S does not escape its scope of definition: the output set for the whole
statement remains empty even if S is locally emitted.

4. LOGICAL CORRECTNESS

Depending on the program p and inputs I, the logical behavioral semantics may
define zero, one or several reactions. For example, for inputs I = {A} and program
“signal S in present S then emit S else pause end end”,

– using rule (signal−) we can prove the reaction:

S /∈ {A} pause
∅, 1−−→
{A}

nothing

present S then emit S else pause end
∅, 1−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S else pause end end
∅, 1−−→
{A}

signal S in nothing end

– using rule (signal+) we can prove the reaction:

S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S else pause end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S else pause end end
∅, 0−−→
{A}

signal S in nothing end

The behavior of this program is not deterministic.
Moreover, one reaction may admit more than one proof tree. For example, for

program “signal S in present S then emit S end end” and inputs I = {A},
the semantics defines exactly one reaction, but there are two different proofs:

S /∈ {A} nothing
∅, 0−−→
{A}

nothing

present S then emit S end
∅, 0−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end
(signal−)

S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end
(signal+)

The internal behavior of this program is not deterministic since the local signal S
can be either present or absent. Its observed behavior is nevertheless deterministic.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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reactions proofs

nothing 1 1
loop nothing end 0 0

signal S in present S else emit S end end 0 0
signal S in present S then emit S end end 1 2

signal S in present S then emit S else pause end end 2 2

Fig. 4. Numbers of Reactions and Proofs

More examples are gathered in Figure 4. Due to the lack of interface signals in
these examples, the numbers do not depend on the input set I.

We expect programs to have deterministic deadlock-free executions. So, we have
to discard programs with no or too many possible behaviors. We now formalize
such a correctness criterion. We define:

– p is reactive iff for all I there exists at least one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

– p is deterministic iff for all I there is at most one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

– p is strongly deterministic iff p is deterministic and for all (I,O, k, p′) the proof

of p
O, k−−→

I
p′ is unique if it exists.

– p is logically correct iff for all q reachable from p, q is reactive and deterministic.

– p is strongly correct iff for all q reachable from p, q is reactive and strongly
deterministic.

Determinism ensures that the observed behavior of a statement is determinis-
tic. Strong determinism guarantees that its internal behavior is deterministic, too.
Reactivity combined with (strong) determinism ensures that there exists a unique
reaction (with a unique proof) for this statement, whatever the inputs are.

Logical correctness characterizes statements that have deterministic deadlock-
free executions for any sequence of inputs. In addition, strong correctness ensures
strong determinism. Strong correctness becomes a concern as soon as side effects or
debugging have to be taken into account, as both may expose the internal behavior
of a program.

Of course, strong correctness implies logical correctness. The various inclusions
between the program classes we define are summarized in Figure 5 using a Venn
Diagram notation.

5. DETERMINISTIC SEMANTICS

The logical behavioral semantics provides a very compact, structural formalization
of the behavior of Esterel programs, which makes formal reasoning about the lan-
guage possible. Moreover, it allows the definition of reactivity and determinism,
which are the agreed minimal correctness criteria for Esterel programs.

However, working with these criteria can be tedious as they are not part of the
semantics, but defined on top of it. In particular, while reactivity may be attested
with a simple proof tree, establishing (strong-)determinism requires a meta proof,
that is to say a proof about a set of proof trees.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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reactive

logically correct

strongly correct

strongly deterministic

deterministic

Fig. 5. Program Classes

5.1 Revised Rules

We propose to rewrite the rules for local signal declarations:

– (signal+): if S is supposed present in p then it is emitted by p.
– (signal−): if S is supposed absent in p then it is not emitted by p.

into the following two rules:

– (signal++):
– if S is supposed present in p then it is emitted by p.
– if S is supposed absent in p then it is still emitted by p.

– (signal−−):
– if S is supposed absent in p then it is not emitted by p.
– if S is supposed present in p then it is not emitted by p either.

Our goal with these definitions is to enforce in each signal rule that the other one
does not apply, without introducing negative premises [Groote 1993] such as:

S, p, I, O0, k0, and p′0 are not such that p
O0, k0−−−−→
I∪{S}

p′0 and S ∈ O0

Instead, we consider the test:

S, p, I, O0, k0, and p′0 are such that p
O0, k0−−−−→
I∪{S}

p′0 and not S ∈ O0

that is to say we swap the binary decision S ∈ O0 for S /∈ O0.
Rules (signal++) and (signal−−) are formally defined in Figure 6. The additions

to the initial (signal+) and (signal−) rules have been boxed for readability. We call
the resulting semantics the deterministic semantics and denote the corresponding
reactions by the transition symbol “ 7→”.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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p pO0, k0−−−−→
I\{S}

p′0 S ∈ O0 p p O, k−−−−→
I∪{S}

p′ S ∈ O

signal S in p end pO\{S}, k−−−−−−→
I

signal S in p′ end

(signal++)

p p O, k−−−−→
I\{S}

p′ S /∈ O p pO0, k0−−−−→
I∪{S}

p′0 S /∈ O0

signal S in p end pO, k−−→
I

signal S in p′ end

(signal−−)

Fig. 6. Deterministic Semantics: the signal Construct

5.2 Examples

The deterministic semantics produces the same reactions as the logical behavioral
semantics in the following two cases (cf. Section 3):

pause p∅, 1−−→
{A}

nothing S /∈ ∅ pause p ∅, 1−−−→
{A,S}

nothing S /∈ ∅

signal S in pause end p ∅, 1−−−→
{A,S}

signal S in nothing end
using (signal−−)

emit S p{S}, 0−−−→
{A}

nothing S ∈ {S} emit S p{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end p∅, 0−−→
{A}

signal S in nothing end
using (signal++)

Going back to the examples of Figure 4, the deterministic semantics defines no
reaction for:

– the non-reactive statements:
loop nothing end and signal S in present S else emit S end end

– the non-strongly-deterministic statement:
signal S in present S then emit S end end

– the non-deterministic statement:
signal S in present S then emit S else pause end end

5.3 Determinism

The purpose of the deterministic semantics is to move the meta-reasoning required
for establishing determinism in the logical behavioral semantics to the rules of the
semantics themselves. Indeed, the new semantics is globally deterministic:

Theorem 1. For all p and I, there exists at most one (O, k, p′) s.t. p pO, k−−→
I

p′.

Theorem 2. For all p, I,O, k, p′, the proof of p pO, k−−→
I

p′ is unique if it exists.

Proof Sketch. By induction on the proof of p pO, k−−→
I

p′.

Let’s for instance suppose that the last rule used in the proof is (signal−−):

q p O, k−−−−→
I\{S}

q′ S /∈ O q p O0, k0−−−−→
I∪{S}

q′0 S /∈ O0

signal S in q end pO, k−−→
I

signal S in q′ end
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By induction hypothesis, p (thus q) and I being fixed, there exist:

– a unique (O, k, q′) such that q p O, k−−−−→
I\{S}

q′, with a unique proof;

– a unique (O0, k0, q
′
0) such that q p O0, k0−−−−→

I∪{S}
q′0, with a unique proof.

Since S /∈ O, rule (signal++) does not apply to p with inputs I, so that:

– if p pO1, k1−−−−→
I

p′1 then O = O1, k = k1 and p′ = p′1;

– the proof of p pO, k−−→
I

p′ is unique.

There is no need to count proofs and reactions in the deterministic semantics. In
particular, there are exactly as many proofs as there are reactions.

It should be understood that proving a reaction in the determinism semantics and
establishing strong determinism in the logical behavioral semantics have equivalent
computational complexity. Nevertheless, in our view, merging the reasoning and
meta-reasoning levels is a major improvement.

5.4 Properness

Since, the uniqueness of proofs and reactions is ensured, we shall say that the
statement p is correct with respect to the deterministic semantics, i.e., proper,
iff the deterministic semantics defines at least one reaction at any stage of the
execution of p for any sequence of inputs. Formally, we define:

– p is initially proper iff for all I, there exists (O, k, p′) such that p pO, k−−→
I

p′.

– p 7→ p′ iff there exist I and O such that p pO, 1−−→
I

p′.

– ∗7→ is the reflexive transitive closure of 7→.
– p is proper iff for all q such that p

∗7→ q, q is initially proper.

6. COMPARISON WITH THE LOGICAL BEHAVIORAL SEMANTICS

We now precisely relate the logical behavioral and the deterministic semantics.

6.1 Properness implies strong correctness

Theorem 3. If p pO, k−−→
I

p′ then p
O, k−−→

I
p′.

Theorem 4. If p pO, k−−→
I

p′ and p
O1, k1−−−−→

I
p′1 then O = O1, k = k1, p′ = p′1.

Theorem 5. If p pO, k−−→
I

p′ then the proof of p
O, k−−→

I
p is unique.

Proof Sketch. By induction on the proof of p pO, k−−→
I

p′.

Let’s again suppose that the last rule used in the proof is (signal−−):

q p O, k−−−−→
I\{S}

q′ S /∈ O q p O0, k0−−−−→
I∪{S}

q′0 S /∈ O+

signal S in q end pO, k−−→
I

signal S in q′ end
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By induction hypothesis,

– q
O, k−−−−→

I\{S}
q′ with a unique proof. If q

O1, k1−−−−→
I\{S}

q′1 then O = O1, k = k1, and q′ = q′1.

– q
O0, k0−−−−→
I∪{S}

q′0 with a unique proof. If q
O1, k1−−−−→
I∪{S}

q′1 then O0 = O1, k0 = k1, and

q′0 = q′1.

Since S /∈ O0, rule (signal+) does not apply to p with inputs I. Since S /∈ O, using
rule (signal−), we obtain:

– p
O, k−−→

I
p′ with a unique proof;

– if p
O1, k1−−−−→

I
p′1 then q

O1, k1−−−−→
I\{S}

q′1, thus O = O1, k = k1, p′ = p′1.

In summary, by writing p pO, k−−→
I

p′ we not only express that p may react to

inputs I, with outputs O, completion code k, and residual p′ in the deterministic
semantics, thus in the logical behavioral semantics as well (Th. 3), but also that it
must react this way in both semantics (Th. 1 and 4), and that its internal behavior
is deterministic (Th. 2 and 5).

Corollary 6. If p is proper then p is strongly correct.

Proof Sketch. If p is proper and p′ is such that p
∗→ p′ then, by induction on

the length of the derivation, p
∗7→ p′. Since p′ is initially proper, p′ is reactive and

strongly deterministic. Therefore p is strongly correct.

6.2 Strong correctness does not imply properness

Reciprocally, a strongly correct statement is not necessarily proper, as reactivity
combined with strong determinism does not imply initial properness. Let’s consider
two examples:

– signal S in
present S then
loop nothing end

end
end

Intuitively, this program is logically correct because the logical behavioral se-
mantics does not care about the instantaneous loop “loop nothing end” as S is
always absent. The deterministic semantics on the other hand expects branches
to have coherent behaviors even if not executed, so this program is not proper.
Formally, whatever the input set I, the logical behavioral semantics defines the
following unique proof tree for this program:

S /∈ I\{S} nothing
∅, 0−−−→

I\{S}
nothing

present S then loop nothing end end
∅, 0−−−→

I\{S}
nothing S /∈ ∅

signal S in present S then ... end end
∅, 0−−→
I

signal S in nothing end
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The deterministic semantics however defines no reaction for this statement. Nei-
ther the (signal++) nor the (signal−−) rule applies, as “loop nothing end”
and “present S then loop nothing end end” are not initially proper.

– loop
signal S in
present S then emit S else pause end

end
end

The loop body “signal S in present S then emit S else pause end end”
is not deterministic. It may react in two possible ways in the logical behavioral
semantics with resulting completion codes 0 and 1 (cf. Section 4). Since the
(loop) rule of the logical behavioral semantics requires “k 6= 0”, exactly one of
the two proof trees can be extended into a proof tree for the whole program,
which is therefore both reactive and deterministic. In other words, the enclosing
loop enforces S to be absent (because it requires the “else pause” branch to be
executed).
On the other hand, the deterministic semantics defines no reaction for the body
of the loop, hence no reaction for the loop, which is not initially proper.

6.3 Strongly correct non-proper statements

We have shown that: Proper statements ( Strongly-correct statements.
Let’s now consider those statements that are strongly correct but not proper.

In the logical behavioral semantics, non-determinism may compensate for non-
reactivity, or the other way around, so that a piece of incorrect code may be em-
bedded into a strongly correct program.

Theorem 7. If p is reactive and strongly deterministic but not initially proper
then there exists a subterm q of p such that q is not reactive or not strongly deter-
ministic.

Proof Sketch. By structural induction on p, we prove that if p and all its
subterms are reactive and strongly deterministic then p is initially proper.

Let’s consider the case p = “signal S in q end” and choose a set I. By hypoth-
esis, q and all its subterms are reactive and strongly deterministic. By induction
hypothesis, q is initially proper. There exists (k−, O−, q−, k+, O+, q+) such that:

q pO
−, k−−−−−−→

I\{S}
q− and q pO

+, k+

−−−−→
I∪{S}

q+

There are four cases:

(1) S ∈ O−, S ∈ O+, then by rule (signal++), p pO
+\{S}, k+

−−−−−−−−→
I

signal S in q+ end.

In this case p is initially proper.

(2) S /∈ O−, S /∈ O+, then by rule (signal−−), p pO
−, k−−−−−−→

I
signal S in q− end.

In this case p is initially proper.
(3) S ∈ O+, S /∈ O−:

– by rule (signal+), p
O+\{S}, k+

−−−−−−−−→
I

signal S in q+ end
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– by rule (signal−), p
O−, k−−−−−−→

I
signal S in q− end

Therefore, p is not strongly deterministic. Contradiction.
(4) S /∈ O+, S ∈ O−, then neither (signal+) nor (signal−) is applicable. Therefore,

p is not reactive. Contradiction.

Cases (3) and (4) are not possible, so p is initially proper.

Going back to Theorem 7, if q is a non-reactive or non-strongly-deterministic
subterm of the reactive and deterministic statement p, then q behaves “well” in p
only because of its context of occurrence, which constrains the execution of q from
the outside, making sure the non-reactive or non-strongly-deterministic behaviors
of q are never triggered. In fact, q could be simplified while preserving the behavior
of p. Let’s consider again our two examples in this new light:

– signal S in
present S then
loop nothing end

end
end

The subterm “present S then loop nothing end end” is not reactive because
of its then branch, but never used with S present. Therefore, it can be replaced
by its implicit else branch, that is to say nothing, leading to the equivalent4

program “signal S in nothing end”, which is proper.
– loop

signal S in
present S then emit S else pause end

end
end

The loop body “signal S in present S then emit S else pause end end”
is not deterministic, but the enclosing loop enforces S to be absent. Again, the
“present S then emit S else pause end” statement can simplified. The re-
sulting program “loop signal S in pause end end” is proper and equivalent.

Therefore, there is something “wrong” with these programs, even if neither logical
correctness nor strong correctness are sensitive to it. In any case, they are intricate
constructions with no practical purpose, which we happily discard.

6.4 The order of signal declarations matters

The following program is proper:

signal S in
signal T in
present S then
present T then emit S end

end
end

end

4Technically, they are strongly bisimilar [Milner 1989] w.r.t. the logical behavioral semantics.
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However, as observed by one reviewer, the program obtained by permuting the
declarations of S and T is no longer proper even if it remains strongly correct:

signal T in
signal S in
present S then
present T then emit S end

end
end

end

While this may seem unfortunate, this again illustrates Theorem 7. Indeed, for
the initial program, the boxed statement when extracted from its context remains
strongly correct whereas the boxed statement in the revised program is not.

7. REACTIVE DETERMINISTIC SEMANTICS

The existence of a single proof tree of the deterministic semantics establishes that
a statement is reactive with respect to a given set of inputs. Establishing non-
reactivity however still requires a meta proof. In this section, we further transform
the semantics, so that non-reactivity (more exactly non-initial-properness) may be
shown with a simple proof tree as well. We shall use the symbol “•−→” for the
transitions of the resulting semantics.

In order to reason about non-reactivity within the rules of the semantics them-
selves, we have to encode it somehow: we reuse the existing exception propagation
mechanism of the semantics to this aim. We introduce the completion code “∞”
to represent non-reactivity. It obeys the obvious arithmetic relations:

∀k ∈ (N ∪ {∞}) : max(k,∞) = ∞ ↓∞ = ∞− 1 = ∞

The loop and signal constructs are “responsible” for non-reactivity as well as
non-initial-properness. Indeed, if we try to prove by structural induction that all
statements are initially proper it fails because:

– even if p pO, k−−→
I

p′, if k = 0 then “loop p end” is not initially proper;

– even if p pO
+, k+

−−−−→
I∪{S}

p+ and p pO
−, k−−−−−−→

I\{S}
p−:

– if S ∈ O+ and S /∈ O− then “signal S in p end” is not initially proper;
– if S /∈ O+ and S ∈ O− then “signal S in p end” is not initially proper.

7.1 Revised Rules

We propose to update the semantics of these two constructs and replace the rules
(loop), (signal++), and (signal−−) of the deterministic semantics by the rules of
Figure 7, where:

– (loop) specifies the behavior of correct loops (in fact unchanged);
– (loop-error) reports instantaneous loop bodies;
– (signal++) defines present signals;
– (signal−−) defines absent signals;
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p •O, k−−→
I

p′ k 6= 0

loop p end •O, k−−→
I

p′; loop p end
(loop)

p •O, k−−→
I

p′ k = 0

loop p end •∅,∞−−−→
I

nothing
(loop-error)

p •O−, k−−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •O+\{S}, k+

−−−−−−−−→
I

signal S in p+ end

(signal++)

p •O−, k−−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−−→
I∪{S}

p+ S /∈ O+ max(k−, k+) < ∞

signal S in p end •O−, k−−−−−−→
I

signal S in p− end

(signal−−)

p •O−, k−−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−−→
I∪{S}

p+ S /∈ O+ k+ 6= ∞

signal S in p end •∅,∞−−−→
I

nothing

(signal+−)

p •O−, k−−−−−−→
I\{S}

p− S /∈ O− k− 6= ∞ p •O+, k+

−−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •∅,∞−−−→
I

nothing

(signal−+)

p •O−, k−−−−−−→
I\{S}

p− p •O+, k+

−−−−−→
I∪{S}

p+ max(k−, k+) = ∞

signal S in p end •∅,∞−−−→
I

nothing

(signal∞)

Fig. 7. Reactive Deterministic Semantics: the loop and signal Constructs

– (signal+−) reports non-reactive signals;
– (signal−+) reports non-strongly-deterministic signals;
– (signal∞) propagates errors through local signal declarations.

By construction, if the completion code k of a reaction is infinite then its output
set O is empty. As a result, there is no need to check explicitly that k+ in rule
(signal−+) is finite for instance.

Thanks to the existing exception propagation mechanism, there is no need for
further error propagation rules. Rules (nothing), (pause), (exit), (emit), (parallel),
(present+), (present−), (try-catch), (try-through), (sequence-p), and (sequence-q)
remains the ones of the logical behavioral semantics (cf. Figure 3).

7.2 Determinism and Reactivity

The new semantics is globally deterministic in the sense of Section 5.3:

Lemma 8. For all p and I, there exists at most one (O, k, p′) s.t. p •O, k−−→
I

p′.

Theorem 9. For all p, I,O, k, p′, the proof of p •O, k−−→
I

p′ is unique if it exists.
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Proof Sketch. Similar to that of Th. 1 and 2.

The new semantics is globally reactive:

Lemma 10. For all p and I, there exists at least one (O, k, p′) s.t. p •O, k−−→
I

p′.

Proof Sketch. By structural induction on p. If p is “signal S in q end” then,
by induction hypothesis, there exist (O−, k−, q−) and (O+, k+, q+) such that:

q •O−, k−−−−−−→
I\{S}

q− and q •O+, k+

−−−−→
I∪{S}

q+

which implies that there exists (O, k, p′) such that p •O, k−−→
I

p′ by rule:

S ∈ O− S ∈ O+ k− < ∞ k+ < ∞
? ? no ? (signal∞)
? ? ? no (signal∞)

yes yes yes yes (signal++)
yes no yes yes (signal+−)
no yes yes yes (signal−+)
no no yes yes (signal−−)

And similarly for loop constructs.

Corollary 11. For all p and I, there exists exactly one (O, k, p′) s.t. p •O, k−−→
I

p′.

Therefore, the reactive deterministic semantics defines exactly one execution per
program and input sequence. Correct and incorrect executions can be equally easily
described using the rules of the reactive deterministic semantics.

7.3 Errors

As a sanity check, we verify that:

Lemma 12. If p •O, k−−→
I

p′ then k = ∞ iff the proof of this reaction involves one

of the rules (signal−+), (signal+−), or (loop-error).

Proof Sketch. These three rules are the only rules that can deduce the com-
pletion code ∞ without assuming the code completion ∞ as a premise. Recipro-
cally, by induction on proofs, if p •O, k−−→

I
p′ with k < ∞ then all completion codes

occurring in the proof are finite completion codes.

More importantly, a statement is initially proper iff it cannot react with comple-
tion code ∞ in the reactive deterministic semantics:

Theorem 13. For all (p, I,O, k, p′), p pO, k−−→
I

p′ iff p •O, k−−→
I

p′ and k < ∞.

Proof Sketch. A proof tree of p pO, k−−→
I

p′ can be extended into a proof tree

of p •O, k−−→
I

p′ by adding finiteness checks for completion codes whenever required.

Reciprocally, a proof tree of p •O, k−−→
I

p′ with k < ∞ can be changed into a proof
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tree of p pO, k−−→
I

p′ by removing such checks, since by Lemma 12 this proof tree

cannot contain deduction of the form (signal−+), (signal+−), (loop-error), or, as
an immediate consequence, (signal∞).

As a consequence, correctness w.r.t. to the deterministic semantics, i.e., proper-
ness, is equivalent to correctness w.r.t. to the reactive deterministic semantics:

Corollary 14. The program p is proper iff there exists no execution of p in the
reactive deterministic semantics that terminates with completion code ∞.

Proof Sketch. By Th. 13, p pO, 1−−→
I

p′ iff p •O, 1−−→
I

p′. Therefore, by induction on

the length of the derivation, p
∗7→ p′ iff p

∗•−→ p′, where
∗•−→ is the reflexive transitive

closure of •−→: p •−→ p′ iff ∃I,∃O : p •O, 1−−→
I

p′. Thus the result, again by Th. 13.

In summary, the reactive deterministic semantics provides an alternate charac-
terization of non-proper programs. While it relies on additional deduction rules,
since it precisely makes explicit the kind of deductions that are required to prove
non-properness, it may be more convenient than the deterministic semantics for
dealing with incorrect programs. For instance, it can be easily extended to discrim-
inate “instantaneous loop errors” from “causality errors”, as further discussed in
[Tardieu 2004], an old, up to now fuzzy distinction in the Esterel literature.

8. COMPARISON WITH THE CONSTRUCTIVE SEMANTICS

The constructive semantics of Esterel [Berry 1999] ensures that behaviors can be
effectively computed, that is to say causally computed. For instance, although
the following program is logically correct, even strongly correct as S can only be
present, it is rejected by the constructive semantics:

signal S in
present S then
emit S

else
emit S

end
end

Intuitively, this program is not constructive (i.e., correct w.r.t. the constructive
semantics) because the status of S has to be “guessed” prior to its emission. Such
an argument however is not relevant to the deterministic semantics, which considers
this program to be proper.

On the other hand, the deterministic semantics sometimes rejects constructive
programs, such as:

signal S in
present S then
signal T in
present T else emit T end

end
end

end
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Since S cannot be emitted—there is no “emit S” statement—the then branch of
the present statement is never “visited” by the constructive semantics. As a result,
this program is constructive. On the other hand, the deterministic semantics does
explore this branch, so that the program is not proper.

Since reactions in the constructive semantics are defined as least fixed points5,
there is at most one execution defined for each program and input sequence. In
other words, the constructive semantics is globally deterministic in the sense of
Section 5.3.

In summary, even if both semantics are globally deterministic, the reasons for
this property are different and the corresponding correctness criteria do not match.
They could be combined. We leave this for future work.

9. CONCLUSION

We introduce two new semantics for pure Esterel, respectively called the determin-
istic semantics and the reactive deterministic semantics.

In contrast with the logical behavioral semantics of Berry and Gonthier, our de-
terministic semantics defines at most one execution for all programs and all inputs.
In particular, if the deterministic semantics defines the execution of a program,
then this execution is unique, thus correct. In contrast with the constructive se-
mantics of Berry (three-valued logic), our deterministic semantics retains the simple
formalism of the logical behavioral semantics (binary logic).

Importantly, the deterministic semantics does not change the semantics of “rea-
sonable” programs. If the deterministic semantics of a program is defined then it
matches its logical behavioral semantics. Reciprocally, if the deterministic seman-
tics of a program is not defined then the program or some subterm of the program
is incorrect w.r.t. the logical behavioral semantics.

Thanks to these properties, we believe that our deterministic semantics provides
a better starting point for formal reasoning about pure Esterel programs than
both the logical behavioral semantics and the constructive semantics. In addition,
the reactive deterministic semantics encodes errors explicitly, thus making formal
reasoning about incorrect programs easier as well.
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