Secret Sharing: 2 out of N and Beyond

Luke Kowalczyk

September, 13, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Review

What is secret sharing? 2 out of 2 secret sharing

2 out of *n* secret sharing from 2 out of 2 secret sharing Proof by reduction (started last class)

Some Number Theory

t out of n secret sharing (Shamir)

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in M

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).

 Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in M

while both satisfy the following *correctness* requirement:

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).

 Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in M

while both satisfy the following *correctness* requirement: $\forall m \in \mathcal{M},$

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).

 Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in M

while both satisfy the following *correctness* requirement: $\forall m \in M, \forall S = \{i_1, \dots, i_t\} \subseteq \{1, \dots, n\}$ of size *t*,

A *t-out-of-n secret sharing scheme* over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of shares (s₁,..., s_n).
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in M

while both satisfy the following *correctness* requirement: $\forall m \in M, \forall S = \{i_1, \dots, i_t\} \subseteq \{1, \dots, n\}$ of size *t*,

 $\Pr_{egin{subarray}{c} (m)
ightarrow (s_1, \ldots, s_n) \end{array}} [ext{Reconstruct}(s_{i_1}, \ldots, s_{i_t}) = m] = 1$

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if: $\forall m, m' \in \mathcal{M}$,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition (secret sharing security with adversaries)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

 $\forall m, m' \in \mathcal{M}, \ \forall S \subseteq \{1, \dots, n\} \text{ s.t. } |S| < t,$

Definition (secret sharing security with adversaries)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

 $\forall m, m' \in \mathcal{M}, \ \forall S \subseteq \{1, \dots, n\} \text{ s.t. } |S| < t, \ \forall A,$

Definition (secret sharing security with adversaries)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

 $\forall m, m' \in \mathcal{M}, \ \forall S \subseteq \{1, \dots, n\} \text{ s.t. } |S| < t, \ \forall A,$

$$\Pr_{\substack{\mathsf{Share}(m)\\ \rightarrow(s_1,\ldots,s_n)}} [A((s_i|i\in S)) = 1] = \Pr_{\substack{\mathsf{Share}(m')\\ \rightarrow(s_1',\ldots,s_n')}} [A((s_i'|i\in S)) = 1]$$

- ◆ □ ▶ → 個 ▶ → 差 ▶ → 差 → のへで

Share_{2-2}: On input $m \in \{0,1\}^\ell$,

• select $s_0 \in \{0,1\}^{\ell}$ uniformly at random.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ set $s_1 = s_0 \oplus m$
- ▶ output (*s*₀, *s*₁)

Share₂₋₂: On input $m \in \{0,1\}^{\ell}$,

- select $s_0 \in \{0,1\}^{\ell}$ uniformly at random.
- ▶ set $s_1 = s_0 \oplus m$
- ▶ output (*s*₀, *s*₁)

Reconstruct₂₋₂: On input $(s_0, s_1) \in \{0, 1\}^\ell \times \{0, 1\}^\ell$,

• output
$$s_0 \oplus s_1$$

Share₂₋₂: On input $m \in \{0,1\}^{\ell}$,

- select $s_0 \in \{0,1\}^{\ell}$ uniformly at random.
- set $s_1 = s_0 \oplus m$
- ▶ output (*s*₀, *s*₁)

Reconstruct₂₋₂: On input $(s_0, s_1) \in \{0, 1\}^\ell \times \{0, 1\}^\ell$,

• output $s_0 \oplus s_1$

(proved perfect security using identical distributions security definition)

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

Share_{2-n}: On input $m \in \{0,1\}^\ell$,

For k = 1 to log n

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - ▶ Run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - ▶ Run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$

► For
$$i = 0$$
 to $n - 1$, if binary representation of i is $i_1 \dots i_{\log n}$,
set $S_i = (i, s_{i_1}^1, \dots, s_{i_{\log n}}^{\log n})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - ▶ Run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$
- For i = 0 to n − 1, if binary representation of i is i₁...i_{log n}, set S_i = (i, s¹_{i₁},..., s^{log n}_{i_{log n}})
 Output (S₀,..., S_{n-1}).

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - Run Share $_{2-2}(m)
 ightarrow (s_0^k, s_1^k)$
- For i = 0 to n − 1, if binary representation of i is i₁...i_{log n}, set S_i = (i, s¹_{i₁},..., s^{log n}_{i_{log n}})
 Output (S₀,..., S_{n-1}).

Reconstruct_{2-n}: On input (S_i, S_j) ,

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - Run Share $_{2-2}(m)
 ightarrow (s_0^k, s_1^k)$
- For i = 0 to n − 1, if binary representation of i is i₁...i_{log n}, set S_i = (i, s¹_{i₁},..., s^{log n}_{i_{log n}})
 Output (S₀,..., S_{n-1}).

Reconstruct_{2-n}: On input (S_i, S_j) ,

► Consider the binary representations of the indices i = i₁...i_{log n} and j = j₁...j_{log n}.

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - Run Share $_{2-2}(m)
 ightarrow (s_0^k, s_1^k)$
- For i = 0 to n − 1, if binary representation of i is i₁...i_{log n}, set S_i = (i, s¹_{i₁},..., s^{log n}_{i_{log n}})
 Output (S₀,..., S_{n-1}).

Reconstruct_{2-n}: On input (S_i, S_j) ,

- Consider the binary representations of the indices $i = i_1 \dots i_{\log n}$ and $j = j_1 \dots j_{\log n}$.
- Find a bit position k where they differ, namely $i_k \neq j_k$ (thus, $s_{i_k}^k = s_0^k, s_{j_k}^k = s_1^k$ or vice versa).

Share_{2-n}: On input $m \in \{0,1\}^{\ell}$,

- For k = 1 to log n
 - Run Share $_{2-2}(m)
 ightarrow (s_0^k, s_1^k)$
- For i = 0 to n − 1, if binary representation of i is i₁...i_{log n}, set S_i = (i, s¹_{i₁},..., s^{log n}_{i_{log n}})
 Output (S₀,..., S_{n-1}).

Reconstruct_{2-n}: On input (S_i, S_j) ,

- Consider the binary representations of the indices $i = i_1 \dots i_{\log n}$ and $j = j_1 \dots j_{\log n}$.
- Find a bit position k where they differ, namely $i_k \neq j_k$ (thus, $s_{i_k}^k = s_0^k, s_{j_k}^k = s_1^k$ or vice versa).
- Run Reconstruct₂₋₂ (s_0^k, s_1^k) and output the same.

Main idea:

Assume 2-out-of-n scheme is *not* perfectly secure. We will show that this implies that the 2-out-of-2 scheme must not be perfectly secure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main idea:

Assume 2-out-of-n scheme is *not* perfectly secure. We will show that this implies that the 2-out-of-2 scheme must not be perfectly secure.

We know that the 2-out-of-two scheme *is* perfectly secure (proved last class). So, this means that our assumption must have been false and it must be the case that the 2-out-of-n scheme *is* perfectly secure.

Assume that the 2-out-of-n scheme above is not secure.

Assume that the 2-out-of-n scheme above is not secure. This means (by negation of the security definition) that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that the 2-out-of-*n* scheme above is not secure. This means (by negation of the security definition) that: $\exists m, m' \in \{0, 1\}^{\ell},$

Assume that the 2-out-of-*n* scheme above is not secure. This means (by negation of the security definition) that: $\exists m, m' \in \{0, 1\}^{\ell}, \exists i \in \{0, \dots, n-1\},$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume that the 2-out-of-*n* scheme above is not secure. This means (by negation of the security definition) that: $\exists m, m' \in \{0, 1\}^{\ell}, \exists i \in \{0, \dots, n-1\}, \exists A,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume that the 2-out-of-*n* scheme above is not secure. This means (by negation of the security definition) that: $\exists m, m' \in \{0, 1\}^{\ell}, \exists i \in \{0, \dots, n-1\}, \exists A, \text{ such that}$

$$\Pr_{\texttt{Share}_{2-n}(m) \rightarrow (S_1, \dots, S_n)}[A(S_i) = 1] \neq \Pr_{\texttt{Share}_{2-n}(m') \rightarrow (S'_1, \dots, S'_n)}[A(S'_i) = 1]$$

Our goal is to use this to construct an adversary B that breaks the 2-out-of-2 scheme.

Assume that the 2-out-of-*n* scheme above is not secure. This means (by negation of the security definition) that: $\exists m, m' \in \{0, 1\}^{\ell}, \exists i \in \{0, \dots, n-1\}, \exists A, \text{ such that}$

$$\Pr_{\texttt{Share}_{2-n}(m) \rightarrow (S_1, \dots, S_n)}[A(S_i) = 1] \neq \Pr_{\texttt{Share}_{2-n}(m') \rightarrow (S'_1, \dots, S'_n)}[A(S'_i) = 1]$$

Our goal is to use this to construct an adversary B that breaks the 2-out-of-2 scheme.

Notice we have two distributions (a subset of the outputs of Share called on m vs m') such that when A is called on one it outputs 1 with a different probability than when it's called on the other.
In the lefthandside distribution we have $S_i = (s_{i_1}^1, \ldots, s_{i_{\log n}}^{\log n})$, where each (s_0^k, s_1^k) is the output of $\text{Share}_{2-2}(m)$.

In the lefthandside distribution we have $S_i = (s_{i_1}^1, \ldots, s_{i_{\log n}}^{\log n})$, where each (s_0^k, s_1^k) is the output of $\text{Share}_{2-2}(m)$. Let's call this distribution H^0 .

- ロ ト - 4 回 ト - 4 □ - 4

In the lefthandside distribution we have $S_i = (s_{i_1}^1, \ldots, s_{i_{\log n}}^{\log n})$, where each (s_0^k, s_1^k) is the output of $\text{Share}_{2-2}(m)$. Let's call this distribution H^0 .

In the righthandside distribution, we have $S'_i = (s'_{i_1}, \dots, s'_{i_{\log n}})$, where each (s'_0, s'_1) is the output of Share₂₋₂(m').

In the lefthandside distribution we have $S_i = (s_{i_1}^1, \ldots, s_{i_{\log n}}^{\log n})$, where each (s_0^k, s_1^k) is the output of $\text{Share}_{2-2}(m)$. Let's call this distribution H^0 .

In the righthandside distribution, we have $S'_i = (s'_{i_1}, \ldots, s'_{i_{\log n}})$, where each (s'_0, s'_1) is the output of $\text{Share}_{2-2}(m')$. Let's call this distribution $H^{\log n}$

In the lefthandside distribution we have $S_i = (s_{i_1}^1, \ldots, s_{i_{\log n}}^{\log n})$, where each (s_0^k, s_1^k) is the output of $\text{Share}_{2-2}(m)$. Let's call this distribution H^0 .

In the righthandside distribution, we have $S'_i = (s'_{i_1}, \ldots, s'_{i_{\log n}})$, where each (s'_0, s'_1) is the output of $\text{Share}_{2-2}(m')$. Let's call this distribution $H^{\log n}$

Using this notation, the previous statement that our scheme is not perfectly secure can be written as: $\Pr[A(H^0) = 1] \neq \Pr[A(H^{\log n}) = 1].$

Let's define some more distributions H^j that A could be called on (we call these hybrid distributions).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let's define some more distributions H^j that A could be called on (we call these hybrid distributions).

 H^{j} : for each share, the first *j* components are taken from *m'*, while the rest are taken from *m*.

Let's define some more distributions H^j that A could be called on (we call these hybrid distributions).

 H^{j} : for each share, the first *j* components are taken from *m'*, while the rest are taken from *m*.

That is, for every $j \in \{0, \ldots, \log n\}$, we define

$$H^{j} = \{(s_{i_{1}}^{'1}, \dots, s_{j_{j}}^{'j}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n}) : \underset{(s_{0}^{'k}, s_{1}^{'k}) \leftarrow \texttt{Share}_{2-2}^{k}(m)}{(s_{0}^{'k}, s_{1}^{'k}) \leftarrow \texttt{Share}_{2-2}^{k}(m')} \forall k\}$$

Let's define some more distributions H^j that A could be called on (we call these hybrid distributions).

 H^{j} : for each share, the first *j* components are taken from *m'*, while the rest are taken from *m*.

That is, for every $j \in \{0, \ldots, \log n\}$, we define

$$H^{j} = \{(s_{i_{1}}^{'1}, \dots, s_{j_{j}}^{'j}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n}) : \underset{(s_{0}^{'k}, s_{1}^{'k}) \leftarrow \text{Share}_{2-2}^{k}(m)}{(s_{0}^{'k}, s_{1}^{'k}) \leftarrow \text{Share}_{2-2}^{k}(m')} \forall k\}$$

Note that our names for H^0 and $H^{\log n}$ match this definition.

Assuming our scheme is not perfectly secure, we know: $\Pr[A(H^0) = 1] \neq \Pr[A(H^{\log n}) = 1].$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Assuming our scheme is not perfectly secure, we know: $\Pr[A(H^0) = 1] \neq \Pr[A(H^{\log n}) = 1].$

It follows that there must exist a $j \in \{1, \dots, \log n\}$ such that

$$\Pr[A(H^{j-1})=1] \neq \Pr[A(H^j)=1]$$

(otherwise, if all adjacent hybrids produce equal probabilities, the end hybrids would also have equal probabilities)

So, A outputs 1 with different probabilities when applied to

$$\mathcal{H}^{j-1} \to (s_{i_1}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_j}^j, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

vs. when applied to

$$H^{j} \rightarrow (s_{i_{1}}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_{j}}^{'j}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

So, A outputs 1 with different probabilities when applied to

$$\mathcal{H}^{j-1} \to (s_{i_1}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_j}^j, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

vs. when applied to

$$\mathcal{H}^{j} \to (s_{i_{1}}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_{j}}^{'j}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

These hybrids are "adjacent" in a sense, differing in only one location (j), with A still behaving differently on their distributions.

So, A outputs 1 with different probabilities when applied to

$$\mathcal{H}^{j-1} \to (s_{i_1}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_j}^j, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

vs. when applied to

$$\mathcal{H}^{j} \to (s_{i_{1}}^{'1}, \dots, s_{i_{j-1}}^{'j-1}, s_{i_{j}}^{'j}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

These hybrids are "adjacent" in a sense, differing in only one location (j), with A still behaving differently on their distributions. We are now ready to define B, the algorithm that uses A to break the 2-out-of-2 scheme by "plugging it in" that location.

We define *B* as follows (where i, j, m, m' are all hard-coded into *B*): B: chooses to attack messages m, m' with share i_j . On input $\mathbf{s} = s_{i_j}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We define *B* as follows (where i, j, m, m' are all hard-coded into *B*):

B: chooses to attack messages m, m' with share i_j . On input $\mathbf{s} = s_{i_j}$,

• For k = 1, ..., j - 1, run Share₂₋₂ $(m') \rightarrow (s_0'^k, s_1'^k)$.

• For $k = j + 1, \dots, \log n$, run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$

► Set
$$S_i = (s_{i_1}^{\prime 1}, \dots, s_{i_{j-1}}^{\prime j-1}, \mathbf{s}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

We define B as follows (where i, j, m, m' are all hard-coded into B):

B: chooses to attack messages m, m' with share i_j . On input $\mathbf{s} = s_{i_j}$,

- For k = 1, ..., j 1, run Share₂₋₂ $(m') \rightarrow (s_0'^k, s_1'^k)$.
- For $k = j + 1, \dots, \log n$, run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$
- ▶ Set $S_i = (s_{i_1}^{\prime 1}, \dots, s_{i_{j-1}}^{\prime j-1}, \mathbf{s}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$
- Run A(S_i) and output the same.

If **s** came from running Share_{2-2} on *m*, then S_i is drawn from the H^{j-1} distribution.

We define *B* as follows (where i, j, m, m' are all hard-coded into *B*):

B: chooses to attack messages m, m' with share i_j . On input $\mathbf{s} = s_{i_j}$,

• For k = 1, ..., j - 1, run Share₂₋₂ $(m') \rightarrow (s_0'^k, s_1'^k)$.

• For $k = j + 1, \dots, \log n$, run Share₂₋₂ $(m) \rightarrow (s_0^k, s_1^k)$

► Set
$$S_i = (s_{i_1}^{\prime 1}, \dots, s_{i_{j-1}}^{\prime j-1}, \mathbf{s}, s_{i_{j+1}}^{j+1}, \dots, s_{i_{\log n}}^{\log n})$$

Run A(S_i) and output the same.

If **s** came from running Share_{2-2} on *m*, then S_i is drawn from the H^{j-1} distribution.

If s came from running Share_{2-2} on m', then S_i is drawn from the H^j distribution.

So,
$$\Pr_{\substack{\mathsf{Share}_{2-2}(m)\to(s_0,s_1)}}[B(s_{i_j})=1]=\Pr[A(H^{j-1})=1]$$
 while

$$\Pr_{ ext{Share}_{2-2}(m')
ightarrow (s'_0,s'_1)}[B(s'_{i_j})=1]=\Pr[A(H^j)=1]$$

We know that $\Pr[A(H^{j-1}) = 1] \neq \Pr[A(H^j) = 1]$

So, $\Pr_{\substack{\mathsf{Share}_{2-2}(m)\to(s_0,s_1)}}[B(s_{i_j})=1]=\Pr[A(H^{j-1})=1]$ while

$$\mathsf{Pr}_{2-2(m')
ightarrow (s'_0,s'_1)}[B(s'_{i_j})=1]=\mathsf{Pr}[\mathcal{A}(\mathcal{H}^j)=1]$$

We know that $\Pr[A(H^{j-1})=1]
eq \Pr[A(H^j)=1]$, so

 $\Pr_{\text{Share}_{2-2}(m) \to (s_0, s_1)}[B(s_{i_j}) = 1] \neq \Pr_{\text{Share}_{2-2}(m') \to (s_0', s_1')}[B(s_{i_j}') = 1]$

So,
$$\Pr_{\substack{\mathsf{Share}_{2-2}(m)\to(s_0,s_1)}}[B(s_{i_j})=1]=\Pr[A(H^{j-1})=1]$$
 while

$$\Pr_{ ext{Share}_{2-2}(m')
ightarrow (s_0',s_1')}[B(s_{i_j}')=1]=\Pr[A(H^j)=1]$$

We know that $\Pr[A(H^{j-1})=1]
eq \Pr[A(H^j)=1]$, so

$$\Pr_{\text{Share}_{2-2}(m) \to (s_0, s_1)}[B(s_{i_j}) = 1] \neq \Pr_{\text{Share}_{2-2}(m') \to (s_0', s_1')}[B(s_{i_j}') = 1]$$

(so *B* breaks the perfect security of the 2-out-of-2 scheme – there exists m, m', an index i_j and an algorithm *B* such that the above probability holds.)

This is a contradiction. We know from last class that the 2-out-of-2 scheme is perfectly secure.

So our original assumption (that there exists an *A* that breaks the perfect security of the 2-out-of-n scheme) must be false, and therefore the 2-out-of-n scheme is perfectly secure.

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Namely: d + 1 points determine a unique degree-d polynomial, and this is true even working modulo a prime.

$$\mathbb{Z}_{p} = \{0, ..., p-1\}$$

Combined with modular addition and multiplication, \mathbb{Z}_p is a *field* when p is prime. (every nonzero element has an additive and multiplicative inverse)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{Z}_{p} = \{0, ..., p-1\}$$

Combined with modular addition and multiplication, \mathbb{Z}_p is a *field* when p is prime. (every nonzero element has an additive and multiplicative inverse)

 \mathbb{Z}_p has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

$$\mathbb{Z}_{p} = \{0, ..., p-1\}$$

Combined with modular addition and multiplication, \mathbb{Z}_p is a *field* when p is prime. (every nonzero element has an additive and multiplicative inverse)

 \mathbb{Z}_p has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

A degree-*d* polynomial $f(x) = \sum_{i=0}^{d} f_i x^i$ can be evaluated on inputs in both \mathbb{R} and \mathbb{Z}_p

$$\mathbb{Z}_{p} = \{0, ..., p-1\}$$

Combined with modular addition and multiplication, \mathbb{Z}_p is a *field* when p is prime. (every nonzero element has an additive and multiplicative inverse)

 \mathbb{Z}_p has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

A degree-*d* polynomial $f(x) = \sum_{i=0}^{d} f_i x^i$ can be evaluated on inputs in both \mathbb{R} and \mathbb{Z}_p

Theorem (Polynomial Uniqueness and Interpolation)

Let p be a prime, and let $\{(x_1, y_1), ..., (x_{d+1}, y_{d+1})\} \subseteq \mathbb{Z}_p \times \mathbb{Z}_p$ be a set of points whose x_i values are all distinct.

Then there is a unique degree-d polynomial f with coefficients in \mathbb{Z}_p that satisfies $y_i = f(x_i)$ for all i.

(This f can be obtained from the d + 1 points via polynomial interpolation).

We would like to have a t out of n secret sharing scheme. We just saw that d + 1 points are enough to uniquely define a degree dpolynomial (the polynomial can be reconstructed via polynomial interpolation).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We would like to have a t out of n secret sharing scheme. We just saw that d + 1 points are enough to uniquely define a degree dpolynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

We would like to have a t out of n secret sharing scheme. We just saw that d + 1 points are enough to uniquely define a degree dpolynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

To share a secret $m \in \mathbb{Z}_p$ with threshold t out of n to reconstruct, we choose a degree t - 1 polynomial that satisfies f(0) = m, with all other coefficients chosen uniformly at random from \mathbb{Z}_p . The share of the *i*th user is (i, f(i)).

We would like to have a t out of n secret sharing scheme. We just saw that d + 1 points are enough to uniquely define a degree dpolynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

To share a secret $m \in \mathbb{Z}_p$ with threshold t out of n to reconstruct, we choose a degree t - 1 polynomial that satisfies f(0) = m, with all other coefficients chosen uniformly at random from \mathbb{Z}_p . The share of the *i*th user is (i, f(i)).

The interpolation theorem says any t shares can uniquely determine f, and hence recover the secret f(0) = m.

Share_{shamir}: On input $m \in \mathbb{Z}_p$,

▶ select $f_1, ..., f_{t-1}$ uniformly at random from \mathbb{Z}_p .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Share_{shamir}: On input $m \in \mathbb{Z}_p$,

• select $f_1, ..., f_{t-1}$ uniformly at random from \mathbb{Z}_p .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• define
$$f(x) = m + \sum_{i=1}^{t-1} f_i x^i$$
Shamir's Secret Sharing Scheme

Share_{shamir}: On input $m \in \mathbb{Z}_p$,

• select $f_1, ..., f_{t-1}$ uniformly at random from \mathbb{Z}_p .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- define $f(x) = m + \sum_{i=1}^{t-1} f_i x^i$
- for i = 1 to n:
 - create share $s_i = (i, f(i))$.
- ▶ output: (*s*₁, ..., *s*_n)

Shamir's Secret Sharing Scheme

Share_{shamir}: On input $m \in \mathbb{Z}_p$,

- select $f_1, ..., f_{t-1}$ uniformly at random from \mathbb{Z}_p .
- define $f(x) = m + \sum_{i=1}^{t-1} f_i x^i$
- ▶ for *i* = 1 to *n*:
 - create share $s_i = (i, f(i))$.
- ▶ output: (*s*₁, ..., *s*_n)

Reconstruct_{shamir}: On input $(s_i : i \in S)$

▶ interpolate t points of s_i to obtain f, the unique degree t − 1 polynomial passing through these points.

output f(0)

Shamir's Secret Sharing Scheme

Share_{shamir}: On input $m \in \mathbb{Z}_p$,

- select $f_1, ..., f_{t-1}$ uniformly at random from \mathbb{Z}_p .
- define $f(x) = m + \sum_{i=1}^{t-1} f_i x^i$
- ▶ for *i* = 1 to *n*:
 - create share $s_i = (i, f(i))$.
- ▶ output: (*s*₁, ..., *s*_n)

Reconstruct_{shamir}: On input $(s_i : i \in S)$

• interpolate t points of s_i to obtain f, the unique degree t - 1 polynomial passing through these points.

output f(0)

(correctness follows from interpolation theorem)

Recall the perfect security definition:

Definition (secret sharing security via identical distributions)

A *t*-out-of-*n* secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

 $\forall m, m' \in \mathcal{M}, \forall S \subseteq \{1, \dots, n\}$ s.t. |S| < t, the following distributions are identical:

$$\{(s_i|i \in S) : (s_1, \dots, s_n) \leftarrow \text{Share}(m)\}$$

 $\{(s'_i|i \in S) : (s'_1, \dots, s'_n) \leftarrow \text{Share}(m')\}$

Equivalently: $\forall m, m' \in \mathcal{M}, \forall S \subseteq \{1, \dots, n\}$ s.t. |S| < t, and for any set $\alpha = (\alpha_1, \dots, \alpha_{|S|})$, we have that

$$\Pr_{\text{Share}(m) \to (s_1, \dots, s_n)}[(s_i | i \in S) = \alpha] = \Pr_{\text{Share}(m') \to (s'_1, \dots, s'_n)}[(s'_i | i \in S) = \alpha]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the distribution of $\text{Share}_{shamir}(m) \rightarrow (s_1, \ldots, s_n)$. Then, for any $\alpha = (\alpha_1, \ldots, \alpha_{|S|})$, consider:

$$\Pr_{\text{Share}_{shamir}(m) \rightarrow (s_1, ..., s_n)}[(s_i | i \in S) = lpha]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

for an unauthorized set S of size t - 1.

Consider the distribution of $\text{Share}_{shamir}(m) \rightarrow (s_1, \ldots, s_n)$. Then, for any $\alpha = (\alpha_1, \ldots, \alpha_{|S|})$, consider:

$$\Pr_{\text{Share}_{shamir}(m) o (s_1, ..., s_n)}[(s_i | i \in S) = lpha]$$

for an unauthorized set S of size t - 1.

 $(s_i|i \in S) = \alpha$ happens if and only if the polynomial chosen by Share_{shamir} happens to have $f(i) = \alpha_i$ for each $i \in S$ and f(0) = m.

Consider the distribution of $\text{Share}_{shamir}(m) \rightarrow (s_1, \ldots, s_n)$. Then, for any $\alpha = (\alpha_1, \ldots, \alpha_{|S|})$, consider:

$$\Pr_{\text{Share}_{shamir}(m) o (s_1, ..., s_n)}[(s_i | i \in S) = lpha]$$

for an unauthorized set S of size t - 1.

 $(s_i|i \in S) = \alpha$ happens if and only if the polynomial chosen by Share_{shamir} happens to have $f(i) = \alpha_i$ for each $i \in S$ and f(0) = m.

By the polynomial interpolation theorem, there is one unique degree t - 1 polynomial that satisfies these t constraints. The Share_{shamir} chooses a degree t - 1 polynomial uniformly from the set of p^{t-1} polynomials that satisfy f(0) = m (this is done by choosing f_i at random from \mathbb{Z}_p for i = 1, ..., t - 1). So, this probability is $\frac{1}{p^{t-1}}$.

So we have that:

$$\Pr_{ ext{Share}_{shamir}(m) o (s_1,...,s_n)} [(s_i | i \in S) = lpha] = rac{1}{p^{t-1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for an unauthorized set S of size t - 1.

So we have that:

$$\Pr_{ ext{Share}_{shamir}(m)
ightarrow (s_1,...,s_n)}[(s_i | i \in S) = lpha] = rac{1}{p^{t-1}}$$

for an unauthorized set S of size t - 1.

Notice that we can repeat this argument for the distribution of $\text{Share}_{shamir}(m') \rightarrow (s'_1, \ldots, s'_n)!$ (Nothing in the argument depended on the particular value for m).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So we have that:

$$\Pr_{ ext{Share}_{shamir}(m)
ightarrow (s_1,...,s_n)}[(s_i | i \in S) = lpha] = rac{1}{p^{t-1}}$$

for an unauthorized set S of size t - 1.

Notice that we can repeat this argument for the distribution of $\text{Share}_{shamir}(m') \rightarrow (s'_1, \ldots, s'_n)!$ (Nothing in the argument depended on the particular value for m).

So we also have that:

$$\Pr_{ ext{Share}_{shamir}(m')
ightarrow (s'_1, ..., s'_n)} [(s'_i | i \in S) = lpha] = rac{1}{p^{t-1}}$$

for an unauthorized set S of size t - 1.

Therefore, for any m, m', for any α , and for any unauthorized set S of size t - 1, we have that:

$$\Pr_{\substack{\mathsf{Share}_{shamir}(m)\\ \rightarrow(s_1,\ldots,s_n)}}[(s_i|i\in S)=\alpha] = \frac{1}{p^{t-1}} = \Pr_{\substack{\mathsf{Share}_{shamir}(m')\\ \rightarrow(s_1',\ldots,s_n')}}[(s_i'|i\in S)=\alpha]$$

and therefore Shamir *t*-out-of-*n* secret sharing satisfies perfect security.