Secret Sharing: 2 out of N and Beyond

Luke Kowalczyk

September, 13, 2016

Review
What is secret sharing?
2 out of 2 secret sharing

2 out of n secret sharing from 2 out of 2 secret sharing Proof by reduction (started last class)

Some Number Theory
t out of n secret sharing (Shamir)

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in \mathcal{M}

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in \mathcal{M}
while both satisfy the following correctness requirement:

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in \mathcal{M}
while both satisfy the following correctness requirement: $\forall m \in \mathcal{M}$,

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in \mathcal{M}
while both satisfy the following correctness requirement: $\forall m \in \mathcal{M}, \forall S=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq\{1, \ldots, n\}$ of size t,

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space \mathcal{M} is a pair of algorithms (Share, Reconstruct) such that:

- Share is a randomized algorithm that on any input $m \in \mathcal{M}$ outputs a n-tuple of shares $\left(s_{1}, \ldots, s_{n}\right)$.
- Reconstruct is a deterministic algorithm that given an t-tuple of shares outputs a message in \mathcal{M}
while both satisfy the following correctness requirement: $\forall m \in \mathcal{M}, \forall S=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq\{1, \ldots, n\}$ of size t,

$$
\operatorname{Pr}_{\operatorname{Share}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}\left[\operatorname{Reconstruct}\left(s_{i_{1}}, \ldots, s_{i_{t}}\right)=m\right]=1
$$

t-out-of- n Secret Sharing Security

Definition (secret sharing security with adversaries)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:

t-out-of- n Secret Sharing Security

Definition (secret sharing security with adversaries)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:
$\forall m, m^{\prime} \in \mathcal{M}$,

t-out-of- n Secret Sharing Security

Definition (secret sharing security with adversaries)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:
$\forall m, m^{\prime} \in \mathcal{M}, \forall S \subseteq\{1, \ldots, n\}$ s.t. $|S|<t$,

t-out-of- n Secret Sharing Security

Definition (secret sharing security with adversaries)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:
$\forall m, m^{\prime} \in \mathcal{M}, \forall S \subseteq\{1, \ldots, n\}$ s.t. $|S|<t, \forall A$,

t-out-of- n Secret Sharing Security

Definition (secret sharing security with adversaries)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:
$\forall m, m^{\prime} \in \mathcal{M}, \forall S \subseteq\{1, \ldots, n\}$ s.t. $|S|<t, \forall A$,

$$
\underset{\substack{\text { Share } \\ \rightarrow\left(s_{1}, \ldots, s_{n}\right)}}{\operatorname{Pr}}\left[A\left(\left(s_{i} \mid i \in S\right)\right)=1\right]=\underset{\substack{\text { Share } \\ \rightarrow\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)}}{\operatorname{Pr}}\left[A\left(\left(s_{i}^{\prime} \mid i \in S\right)\right)=1\right]
$$

A 2-out-of-2 Secret Sharing Scheme

A 2-out-of-2 Secret Sharing Scheme

Share 2_{2-2} : On input $m \in\{0,1\}^{\ell}$,

- select $s_{0} \in\{0,1\}^{\ell}$ uniformly at random.
- set $s_{1}=s_{0} \oplus m$
- output $\left(s_{0}, s_{1}\right)$

A 2-out-of-2 Secret Sharing Scheme

Share 2_{2-2} : On input $m \in\{0,1\}^{\ell}$,

- select $s_{0} \in\{0,1\}^{\ell}$ uniformly at random.
- set $s_{1}=s_{0} \oplus m$
- output $\left(s_{0}, s_{1}\right)$

Reconstruct ${ }_{2-2}$: On input $\left(s_{0}, s_{1}\right) \in\{0,1\}^{\ell} \times\{0,1\}^{\ell}$,

- output $s_{0} \oplus s_{1}$

A 2-out-of-2 Secret Sharing Scheme

Share 2_{2-2} : On input $m \in\{0,1\}^{\ell}$,

- select $s_{0} \in\{0,1\}^{\ell}$ uniformly at random.
- set $s_{1}=s_{0} \oplus m$
- output $\left(s_{0}, s_{1}\right)$

Reconstruct ${ }_{2-2}$: On input $\left(s_{0}, s_{1}\right) \in\{0,1\}^{\ell} \times\{0,1\}^{\ell}$,

- output $s_{0} \oplus s_{1}$
(proved perfect security using identical distributions security definition)

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$

A 2-out-of-n Secret Sharing Scheme

Share $_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run $\operatorname{Share}_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$

A 2-out-of-n Secret Sharing Scheme

Share 2_{2-n} : On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$

A 2-out-of-n Secret Sharing Scheme

Share 2_{2-n} : On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n} n}^{\log n}\right)$
- Output $\left(S_{0}, \ldots, S_{n-1}\right)$.

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Output $\left(S_{0}, \ldots, S_{n-1}\right)$.

Reconstruct $_{2-n}$: On input $\left(S_{i}, S_{j}\right)$,

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Output $\left(S_{0}, \ldots, S_{n-1}\right)$.

Reconstruct ${ }_{2-n}$: On input $\left(S_{i}, S_{j}\right)$,

- Consider the binary representations of the indices $i=i_{1} \ldots i_{\log n}$ and $j=j_{1} \ldots j_{\log n}$.

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Output $\left(S_{0}, \ldots, S_{n-1}\right)$.

Reconstruct $_{2-n}$: On input $\left(S_{i}, S_{j}\right)$,

- Consider the binary representations of the indices $i=i_{1} \ldots i_{\log n}$ and $j=j_{1} \ldots j_{\log n}$.
- Find a bit position k where they differ, namely $i_{k} \neq j_{k}$ (thus, $s_{i_{k}}^{k}=s_{0}^{k}, s_{j_{k}}^{k}=s_{1}^{k}$ or vice versa).

A 2-out-of-n Secret Sharing Scheme

Share ${ }_{2-n}$: On input $m \in\{0,1\}^{\ell}$,

- For $k=1$ to $\log n$
- Run Share $_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- For $i=0$ to $n-1$, if binary representation of i is $i_{1} \ldots i_{\log n}$, set $S_{i}=\left(i, s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Output $\left(S_{0}, \ldots, S_{n-1}\right)$.

Reconstruct $_{2-n}$: On input $\left(S_{i}, S_{j}\right)$,

- Consider the binary representations of the indices $i=i_{1} \ldots i_{\log n}$ and $j=j_{1} \ldots j_{\log n}$.
- Find a bit position k where they differ, namely $i_{k} \neq j_{k}$ (thus, $s_{i_{k}}^{k}=s_{0}^{k}, s_{j_{k}}^{k}=s_{1}^{k}$ or vice versa).
- Run Reconstruct ${ }_{2-2}\left(s_{0}^{k}, s_{1}^{k}\right)$ and output the same.

2-out-of-n Scheme: Hybrid Proof

Main idea:
Assume 2-out-of- n scheme is not perfectly secure. We will show that this implies that the 2-out-of-2 scheme must not be perfectly secure.

2-out-of-n Scheme: Hybrid Proof

Main idea:
Assume 2-out-of- n scheme is not perfectly secure. We will show that this implies that the 2-out-of-2 scheme must not be perfectly secure.

We know that the 2-out-of-two scheme is perfectly secure (proved last class). So, this means that our assumption must have been false and it must be the case that the 2-out-of- n scheme is perfectly secure.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:
$\exists m, m^{\prime} \in\{0,1\}^{\ell}$,

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:
$\exists m, m^{\prime} \in\{0,1\}^{\ell}, \exists i \in\{0, \ldots, n-1\}$,

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:
$\exists m, m^{\prime} \in\{0,1\}^{\ell}, \exists i \in\{0, \ldots, n-1\}, \exists A$,

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:
$\exists m, m^{\prime} \in\{0,1\}^{\ell}, \exists i \in\{0, \ldots, n-1\}, \exists A$, such that
$\underset{\operatorname{Share}_{2-n}(m) \rightarrow\left(S_{1}, \ldots, S_{n}\right)}{\operatorname{Pr}}\left[A\left(S_{i}\right)=1\right] \neq \underset{\operatorname{Share}_{2-n}\left(m^{\prime}\right) \rightarrow\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)}{\operatorname{Pr}}\left[A\left(S_{i}^{\prime}\right)=1\right]$
Our goal is to use this to construct an adversary B that breaks the 2-out-of-2 scheme.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of- n scheme above is not secure. This means (by negation of the security definition) that:
$\exists m, m^{\prime} \in\{0,1\}^{\ell}, \exists i \in\{0, \ldots, n-1\}, \exists A$, such that
$\underset{\operatorname{Share}_{2-n}(m) \rightarrow\left(S_{1}, \ldots, S_{n}\right)}{\operatorname{Pr}}\left[A\left(S_{i}\right)=1\right] \neq \underset{\operatorname{Share}_{2-n}\left(m^{\prime}\right) \rightarrow\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)}{\operatorname{Pr}}\left[A\left(S_{i}^{\prime}\right)=1\right]$
Our goal is to use this to construct an adversary B that breaks the 2-out-of-2 scheme.

Notice we have two distributions (a subset of the outputs of Share called on m vs m^{\prime}) such that when A is called on one it outputs 1 with a different probability than when it's called on the other.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have $S_{i}=\left(s_{i_{1}}^{1}, \ldots, s_{\log _{\log n} n}^{\log n}\right.$, where each $\left(s_{0}^{k}, s_{1}^{k}\right)$ is the output of $\operatorname{Share}_{2-2}(m)$.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have $S_{i}=\left(s_{i_{1}}^{1}, \ldots, s_{\log _{\log n} n}^{\log n}\right.$, where each $\left(s_{0}^{k}, s_{1}^{k}\right)$ is the output of $\operatorname{Share}_{2-2}(m)$.
Let's call this distribution H^{0}.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have $S_{i}=\left(s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$, where each $\left(s_{0}^{k}, s_{1}^{k}\right)$ is the output of $\operatorname{Share}_{2-2}(m)$. Let's call this distribution H^{0}.

In the righthandside distribution, we have $S_{i}^{\prime}=\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{\log n}}^{\prime \log n}\right)$, where each $\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$ is the output of $\operatorname{Share}_{2-2}\left(m^{\prime}\right)$.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have $S_{i}=\left(s_{i_{1}}^{1}, \ldots, s_{i_{\log n}}^{\log n}\right)$, where each $\left(s_{0}^{k}, s_{1}^{k}\right)$ is the output of $\operatorname{Share}_{2-2}(m)$. Let's call this distribution H^{0}.

In the righthandside distribution, we have $S_{i}^{\prime}=\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{\log n}}^{\prime \log n}\right)$, where each $\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$ is the output of $\operatorname{Share}_{2-2}\left(\mathrm{~m}^{\prime}\right)$. Let's call this distribution $H^{\log n}$

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have $S_{i}=\left(s_{i_{1}}^{1}, \ldots, s_{\log _{\log n} n}^{\log n}\right)$, where each $\left(s_{0}^{k}, s_{1}^{k}\right)$ is the output of $\operatorname{Share}_{2-2}(m)$.
Let's call this distribution H^{0}.
In the righthandside distribution, we have $S_{i}^{\prime}=\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{\log n} n}^{\prime \log n}\right)$, where each $\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$ is the output of $\operatorname{Share}_{2-2}\left(\mathrm{~m}^{\prime}\right)$. Let's call this distribution $H^{\log n}$

Using this notation, the previous statement that our scheme is not perfectly secure can be written as:
$\operatorname{Pr}\left[A\left(H^{0}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{\log n}\right)=1\right]$.

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H^{j} that A could be called on (we call these hybrid distributions).

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H^{j} that A could be called on (we call these hybrid distributions).
H^{j} : for each share, the first j components are taken from m^{\prime}, while the rest are taken from m.

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H^{j} that A could be called on (we call these hybrid distributions).
H^{j} : for each share, the first j components are taken from m^{\prime}, while the rest are taken from m.

That is, for every $j \in\{0, \ldots, \log n\}$, we define

$$
H^{j}=\left\{\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j}}^{j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right): \begin{array}{c}
\left(s_{0}^{k}, s_{1}^{k}\right) \leftarrow \operatorname{Share}_{2-2}^{k}(m) \\
\left(s_{0}^{k}, s_{1}^{k}\right) \leftarrow \operatorname{Share}_{2-2}^{k}\left(m^{\prime}\right)
\end{array} \forall k\right\}
$$

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H^{j} that A could be called on (we call these hybrid distributions).
H^{j} : for each share, the first j components are taken from m^{\prime}, while the rest are taken from m.

That is, for every $j \in\{0, \ldots, \log n\}$, we define

$$
H^{j}=\left\{\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j}}^{j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right): \begin{array}{c}
\left(s_{0}^{k}, s_{1}^{k}\right) \leftarrow \operatorname{Share}_{2-2}^{k}(m) \\
\left(s_{0}^{k}, s_{1}^{k}\right) \leftarrow \operatorname{Share}_{2-2}^{k}\left(m^{\prime}\right)
\end{array} \forall k\right\}
$$

Note that our names for H^{0} and $H^{\log n}$ match this definition.

2-out-of-n Scheme: Hybrid Proof

Assuming our scheme is not perfectly secure, we know:

$$
\operatorname{Pr}\left[A\left(H^{0}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{\log n}\right)=1\right] .
$$

2-out-of-n Scheme: Hybrid Proof

Assuming our scheme is not perfectly secure, we know:
$\operatorname{Pr}\left[A\left(H^{0}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{\log n}\right)=1\right]$.
It follows that there must exist a $j \in\{1, \ldots, \log n\}$ such that

$$
\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{j}\right)=1\right]
$$

(otherwise, if all adjacent hybrids produce equal probabilities, the end hybrids would also have equal probabilities)

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

$$
H^{j-1} \rightarrow\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n} n}^{\log n}\right)
$$

vs. when applied to

$$
H^{j} \rightarrow\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{\prime j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)
$$

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

$$
H^{j-1} \rightarrow\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n} \log n}^{\log }\right)
$$

vs. when applied to

$$
H^{j} \rightarrow\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{\prime j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)
$$

These hybrids are "adjacent" in a sense, differing in only one location (j), with A still behaving differently on their distributions.

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

$$
H^{j-1} \rightarrow\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n} \log n}^{\log }\right)
$$

vs. when applied to

$$
H^{j} \rightarrow\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j-1}}^{\prime j-1}, s_{i_{j}}^{\prime j}, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)
$$

These hybrids are "adjacent" in a sense, differing in only one location (j), with A still behaving differently on their distributions. We are now ready to define B, the algorithm that uses A to break the 2 -out-of-2 scheme by "plugging it in" that location.

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m^{\prime} are all hard-coded into B):
B: chooses to attack messages m, m^{\prime} with share i_{j}.
On input $\mathbf{s}=s_{i_{j}}$,

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m^{\prime} are all hard-coded into B):
B: chooses to attack messages m, m^{\prime} with share i_{j}.
On input $\mathbf{s}=s_{i_{j}}$,

- For $k=1, \ldots, j-1$, run $\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$.
- For $k=j+1, \ldots, \log n$, run $\operatorname{Share}_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- Set $S_{i}=\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j-1}}^{\prime j-1}, s, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)$

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m^{\prime} are all hard-coded into B):
B: chooses to attack messages m, m^{\prime} with share i_{j}.
On input $\mathbf{s}=s_{i_{j}}$,

- For $k=1, \ldots, j-1$, run $\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$.
- For $k=j+1, \ldots, \log n$, run $\operatorname{Share}_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- Set $S_{i}=\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j-1}}^{\prime j-1}, s, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Run $A\left(S_{i}\right)$ and output the same.

If \mathbf{s} came from running Share ${ }_{2-2}$ on m, then S_{i} is drawn from the H^{j-1} distribution.

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m^{\prime} are all hard-coded into B):
B: chooses to attack messages m, m^{\prime} with share i_{j}.
On input $\mathbf{s}=s_{i_{j}}$,

- For $k=1, \ldots, j-1$, run $\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime k}, s_{1}^{\prime k}\right)$.
- For $k=j+1, \ldots, \log n$, run $\operatorname{Share}_{2-2}(m) \rightarrow\left(s_{0}^{k}, s_{1}^{k}\right)$
- Set $S_{i}=\left(s_{i_{1}}^{\prime 1}, \ldots, s_{i_{j-1}}^{\prime j-1}, s, s_{i_{j+1}}^{j+1}, \ldots, s_{i_{\log n}}^{\log n}\right)$
- Run $A\left(S_{i}\right)$ and output the same.

If \mathbf{s} came from running Share ${ }_{2-2}$ on m, then S_{i} is drawn from the H^{j-1} distribution.

If \mathbf{s} came from running Share $_{2-2}$ on m^{\prime}, then S_{i} is drawn from the H^{j} distribution.

2-out-of-n Scheme: Hybrid Proof

So,

$$
\operatorname{Share}_{2-2(m) \rightarrow\left(s_{0}, s_{1}\right)}\left[B\left(s_{i_{j}}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right]
$$

while

$$
\underset{\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime}, s_{1}^{\prime}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}^{\prime}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j}\right)=1\right]
$$

We know that $\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{j}\right)=1\right]$

2-out-of-n Scheme: Hybrid Proof

So,

$$
\operatorname{Share}_{2-2(m) \rightarrow\left(s_{0}, s_{1}\right)}\left[B\left(s_{i_{j}}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right]
$$

while

$$
\underset{\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime}, s_{1}^{\prime}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}^{\prime}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j}\right)=1\right]
$$

We know that $\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{j}\right)=1\right]$, so

$$
\underset{\text { Share }_{2-2}(m) \rightarrow\left(s_{0}, s_{1}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}\right)=1\right] \neq \underset{\text { Share }_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime},,_{1}^{\prime}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}^{\prime}\right)=1\right]
$$

2-out-of-n Scheme: Hybrid Proof

So,

$$
\underset{\operatorname{Share}_{2-2}(m) \rightarrow\left(s_{0}, s_{1}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right]
$$

while

$$
\underset{\operatorname{Share}_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime}, s_{1}^{\prime}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}^{\prime}\right)=1\right]=\operatorname{Pr}\left[A\left(H^{j}\right)=1\right]
$$

We know that $\operatorname{Pr}\left[A\left(H^{j-1}\right)=1\right] \neq \operatorname{Pr}\left[A\left(H^{j}\right)=1\right]$, so

$$
\underset{\text { Share }_{2-2}(m) \rightarrow\left(s_{0}, s_{1}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}\right)=1\right] \neq \underset{\text { Share }_{2-2}\left(m^{\prime}\right) \rightarrow\left(s_{0}^{\prime}, s_{1}^{\prime}\right)}{\operatorname{Pr}}\left[B\left(s_{i_{j}}^{\prime}\right)=1\right]
$$

(so B breaks the perfect security of the 2-out-of-2 scheme - there exists m, m^{\prime}, an index i_{j} and an algorithm B such that the above probability holds.)

2-out-of-n Scheme: Hybrid Proof

This is a contradiction. We know from last class that the 2-out-of-2 scheme is perfectly secure.

So our original assumption (that there exists an A that breaks the perfect security of the 2 -out-of-n scheme) must be false, and therefore the 2-out-of-n scheme is perfectly secure.

Some Number Theory

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

Some Number Theory

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Some Number Theory

Everybody knows that "two points determine a line" (this is a postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.
Namely: $d+1$ points determine a unique degree-d polynomial, and this is true even working modulo a prime.

Some Number Theory

$$
\mathbb{Z}_{p}=\{0, \ldots, p-1\}
$$

Combined with modular addition and multiplication, \mathbb{Z}_{p} is a field when p is prime. (every nonzero element has an additive and multiplicative inverse)

Some Number Theory

$$
\mathbb{Z}_{p}=\{0, \ldots, p-1\}
$$

Combined with modular addition and multiplication, \mathbb{Z}_{p} is a field when p is prime. (every nonzero element has an additive and multiplicative inverse)
\mathbb{Z}_{p} has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

Some Number Theory

$$
\mathbb{Z}_{p}=\{0, \ldots, p-1\}
$$

Combined with modular addition and multiplication, \mathbb{Z}_{p} is a field when p is prime. (every nonzero element has an additive and multiplicative inverse)
\mathbb{Z}_{p} has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

A degree-d polynomial $f(x)=\sum_{i=0}^{d} f_{i} x^{i}$ can be evaluated on inputs in both \mathbb{R} and \mathbb{Z}_{ρ}

Some Number Theory

$$
\mathbb{Z}_{p}=\{0, \ldots, p-1\}
$$

Combined with modular addition and multiplication, \mathbb{Z}_{p} is a field when p is prime. (every nonzero element has an additive and multiplicative inverse)
\mathbb{Z}_{p} has p elements. A particular x is therefore drawn with probability $\frac{1}{p}$.

A degree-d polynomial $f(x)=\sum_{i=0}^{d} f_{i} x^{i}$ can be evaluated on inputs in both \mathbb{R} and \mathbb{Z}_{ρ}

Some Number Theory

Theorem (Polynomial Uniqueness and Interpolation)
Let p be a prime, and let $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\right\} \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ be a set of points whose x_{i} values are all distinct.
Then there is a unique degree-d polynomial f with coefficients in
\mathbb{Z}_{p} that satisfies $y_{i}=f\left(x_{i}\right)$ for all i.
(This f can be obtained from the $d+1$ points via polynomial interpolation).

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just saw that $d+1$ points are enough to uniquely define a degree d polynomial (the polynomial can be reconstructed via polynomial interpolation).

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just saw that $d+1$ points are enough to uniquely define a degree d polynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just saw that $d+1$ points are enough to uniquely define a degree d polynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

To share a secret $m \in \mathbb{Z}_{p}$ with threshold t out of n to reconstruct, we choose a degree $t-1$ polynomial that satisfies $f(0)=m$, with all other coefficients chosen uniformly at random from \mathbb{Z}_{p}. The share of the i th user is $(i, f(i))$.

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just saw that $d+1$ points are enough to uniquely define a degree d polynomial (the polynomial can be reconstructed via polynomial interpolation).

A natural approach to build a secret sharing scheme is to let each user's share be a point on a polynomial. This is exactly what Shamir Secret Sharing does.

To share a secret $m \in \mathbb{Z}_{p}$ with threshold t out of n to reconstruct, we choose a degree $t-1$ polynomial that satisfies $f(0)=m$, with all other coefficients chosen uniformly at random from \mathbb{Z}_{p}. The share of the i th user is $(i, f(i))$.

The interpolation theorem says any t shares can uniquely determine f, and hence recover the secret $f(0)=m$.

Shamir's Secret Sharing Scheme

Share $_{\text {shamir: }}$ On input $m \in \mathbb{Z}_{p}$,

- select f_{1}, \ldots, f_{t-1} uniformly at random from \mathbb{Z}_{p}.

Shamir's Secret Sharing Scheme

Share $_{\text {shamir }}$: On input $m \in \mathbb{Z}_{p}$,

- select f_{1}, \ldots, f_{t-1} uniformly at random from \mathbb{Z}_{p}.
- define $f(x)=m+\sum_{i=1}^{t-1} f_{i} x^{i}$

Shamir's Secret Sharing Scheme

Share $_{\text {shamir: }}$ On input $m \in \mathbb{Z}_{p}$,

- select f_{1}, \ldots, f_{t-1} uniformly at random from \mathbb{Z}_{p}.
- define $f(x)=m+\sum_{i=1}^{t-1} f_{i} x^{i}$
- for $i=1$ to n :
- create share $s_{i}=(i, f(i))$.
- output: $\left(s_{1}, \ldots, s_{n}\right)$

Shamir's Secret Sharing Scheme

Share $_{\text {shamir }}$: On input $m \in \mathbb{Z}_{p}$,

- select f_{1}, \ldots, f_{t-1} uniformly at random from \mathbb{Z}_{p}.
- define $f(x)=m+\sum_{i=1}^{t-1} f_{i} x^{i}$
- for $i=1$ to n :
- create share $s_{i}=(i, f(i))$.
- output: $\left(s_{1}, \ldots, s_{n}\right)$

Reconstruct $_{\text {shamir }}$: On input $\left(s_{i}: i \in S\right)$

- interpolate t points of s_{i} to obtain f, the unique degree $t-1$ polynomial passing through these points.
- output $f(0)$

Shamir's Secret Sharing Scheme

Share $_{\text {shamir }}$: On input $m \in \mathbb{Z}_{p}$,

- select f_{1}, \ldots, f_{t-1} uniformly at random from \mathbb{Z}_{p}.
- define $f(x)=m+\sum_{i=1}^{t-1} f_{i} x^{i}$
- for $i=1$ to n :
- create share $s_{i}=(i, f(i))$.
- output: $\left(s_{1}, \ldots, s_{n}\right)$

Reconstruct $_{\text {shamir }}$: On input $\left(s_{i}: i \in S\right)$

- interpolate t points of s_{i} to obtain f, the unique degree $t-1$ polynomial passing through these points.
- output $f(0)$
(correctness follows from interpolation theorem)

Shamir Security

Recall the perfect security definition:
Definition (secret sharing security via identical distributions)
A t-out-of- n secret sharing scheme (Share, Reconstruct) over M is perfectly secure if:
$\forall m, m^{\prime} \in \mathcal{M}, \forall S \subseteq\{1, \ldots, n\}$ s.t. $|S|<t$, the following distributions are identical:

$$
\begin{aligned}
& \left\{\left(s_{i} \mid i \in S\right):\left(s_{1}, \ldots, s_{n}\right) \leftarrow \operatorname{Share}(m)\right\} \\
& \left\{\left(s_{i}^{\prime} \mid i \in S\right):\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \leftarrow \operatorname{Share}\left(m^{\prime}\right)\right\}
\end{aligned}
$$

Shamir Security

Equivalently: $\forall m, m^{\prime} \in \mathcal{M}, \forall S \subseteq\{1, \ldots, n\}$ s.t. $|S|<t$, and for any set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|S|}\right)$, we have that
$\underset{\operatorname{Share}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]=\underset{\text { Share }\left(m^{\prime}\right) \rightarrow\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)}{\operatorname{Pr}}\left[\left(s_{i}^{\prime} \mid i \in S\right)=\alpha\right]$

Shamir Security

Consider the distribution of Share $_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)$. Then, for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|S|}\right)$, consider:

$$
\underset{\text { Share }_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]
$$

for an unauthorized set S of size $t-1$.

Shamir Security

Consider the distribution of Share $_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)$. Then, for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|S|}\right)$, consider:

$$
\underset{\text { Share }_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]
$$

for an unauthorized set S of size $t-1$.
$\left(s_{i} \mid i \in S\right)=\alpha$ happens if and only if the polynomial chosen by Share $_{\text {shamir }}$ happens to have $f(i)=\alpha_{i}$ for each $i \in S$ and $f(0)=m$.

Shamir Security

Consider the distribution of $\operatorname{Share}_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)$. Then, for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|S|}\right)$, consider:

$$
\underset{\text { Share }_{\text {shamir }}(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]
$$

for an unauthorized set S of size $t-1$.
$\left(s_{i} \mid i \in S\right)=\alpha$ happens if and only if the polynomial chosen by Share shamir happens to have $f(i)=\alpha_{i}$ for each $i \in S$ and $f(0)=m$.

By the polynomial interpolation theorem, there is one unique degree $t-1$ polynomial that satisfies these t constraints. The Share $_{\text {shamir }}$ chooses a degree $t-1$ polynomial uniformly from the set of p^{t-1} polynomials that satisfy $f(0)=m$ (this is done by choosing f_{i} at random from \mathbb{Z}_{p} for $i=1, \ldots, t-1$). So, this probability is $\frac{1}{p^{t-1}}$.

Shamir Security

So we have that:

$$
\operatorname{Phare}_{\text {shamir }^{\text {(m) } \rightarrow\left(s_{1}, \ldots, s_{n}\right)}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]=\frac{1}{p^{t-1}}
$$

for an unauthorized set S of size $t-1$.

Shamir Security

So we have that:

$$
\operatorname{Share}_{\text {shamir }(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}^{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]=\frac{1}{p^{t-1}}
$$

for an unauthorized set S of size $t-1$.
Notice that we can repeat this argument for the distribution of $\operatorname{Share}_{\text {shamir }}\left(m^{\prime}\right) \rightarrow\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$! (Nothing in the argument depended on the particular value for m).

Shamir Security

So we have that:

$$
\operatorname{Share}_{\text {shamir }(m) \rightarrow\left(s_{1}, \ldots, s_{n}\right)}^{\operatorname{Pr}}\left[\left(s_{i} \mid i \in S\right)=\alpha\right]=\frac{1}{p^{t-1}}
$$

for an unauthorized set S of size $t-1$.
Notice that we can repeat this argument for the distribution of $\operatorname{Share}_{\text {shamir }}\left(m^{\prime}\right) \rightarrow\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$! (Nothing in the argument depended on the particular value for m).

So we also have that:

$$
\operatorname{Pr}_{\text {Share }_{\text {shamir }}\left(m^{\prime}\right) \rightarrow\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)}\left[\left(s_{i}^{\prime} \mid i \in S\right)=\alpha\right]=\frac{1}{p^{t-1}}
$$

for an unauthorized set S of size $t-1$.

Shamir Security

Therefore, for any m, m^{\prime}, for any α, and for any unauthorized set S of size $t-1$, we have that:

and therefore Shamir t-out-of- n secret sharing satisfies perfect security.

