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Definitions

A group is a set G with binary operation * that satisfies the following 4 properties:

• Closure: If a, b ∈ G, then a ∗ b ∈ G

• Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀ a, b, c ∈ G

• Identity: ∃e ∈ G s.t. a ∗ e = e ∗ a ∀ a ∈ G

• Inverse: ∀a ∈ G ∃b ∈ G s.t. a ∗ b = b ∗ a = e

Note that commutativity does not generally hold! (commutative groups are called abelian)

The order of a group is the number of elements in the group.

Let + = addition as normally defined, × = multiplication as normally defined.
Examples: (Z,+), (Even Z,+)
Non-Examples: (Z,×) , (Odd Z,+), (Non-negative Z,+)

Zn = {0, 1, 2, . . . , n− 1} with the operation + (mod n) is always a group.
Z∗n = {a ∈ [1, N − 1]|gcd(a, n) = 1} with the operation × (mod n) is always a group.

In particular, we often work with Z∗p = {1, 2, . . . , p− 1}.

G′ is a subgroup of G if:

• G′ ⊆ G

• G′ and G share an operation

• G′ is a group

Example: Subgroups of Z∗5 = ({1, 2, 3, 4},×): {1, 2, 3, 4}, {1, 4}, {1}

Greatest Common Divisor (GCD): gcd(a, b) is defined as the largest integer d s.t. d|a
and d|b. The Euclidean algorithm gives us an efficient way to calculate the gcd.

Thm: For all a, b, ∃x, n ∈ Z s.t xa+ nb = gcd(a, b)
⇒ If a and b are relatively prime (gcd(a, b) = 1), then xa+ nb = 1⇒ a ≡ x−1(mod n)
⇒ a is an inverse to x modulo n!
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Euclidean Algorithm Example: Find the inverse of 8 mod 11.

11 = 8 + 3 3 = 11− 8

8 = 2 · 3 + 2 2 = 8− 2 · 3
3 = 2 + 1 1 = 3− 2

2 = 2 · 1
⇒
1 = 3− 2 · 1

= 3− (8− 2 · 3) = 3 · 3− 8

= 3(11− 8)− 8

= 3 · 11− 4 · 8

⇒ −4 (or 7) is inverse of 8 modulo 11 – confirm that 8 · 7 ≡ 56 ≡ 1(mod11).

Modular Arithmetic: x ≡ y (mod n) iff n|x− y.

x ≡ y (mod n)⇒ x+ a ≡ y + a (mod n)

x− a ≡ y − a (mod n)

x · a ≡ y · a (mod n)

Note that this does not (in general) hold for division!
(e.g. 7 · 3 = 4 · 3(mod9) but 7 6≡ 4(mod9))

Euler number: φ(n) = |Z∗n|. We see this implies φ(p) = p − 1 for all primes p, and that
φ(pα) = pα−1(p− 1) (since all numbers besides multiples of p are relatively prime to pα).

We also know that φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Fermat’s Little Theorem: xφ(n) ≡ 1 (mod n) for gcd(x, n) = 1. This can be used to
perform large exponential calculations very efficiently.
Example:

100077(mod13) ≡ 100072+5(mod13) ≡ 10005(mod13)

≡ 905(mod13)

≡ (−1)5(mod13)

≡ −1(mod13)

≡ 12(mod13)

A cyclic group is a group that can be generated by a single element.
Example: Z∗13 = {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} is generated by 2.

For all primes, in fact, Z∗p is cyclic. We say that x ∈ Z∗p is a quadratic residue (QR) if it has
a square root in Z∗p. More specifically, we define:
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QRn = {x ∈ Z∗n|∃w s.t. x = w2 (mod n)}
QRp = 〈g2〉 for prime p

Z∗p has a subgroup 〈g2〉, with |〈g2〉| = p−1
2

. If this size is prime, then p is known as a safe
prime, and DDH believed to be hard.

Example of 〈g2〉: Look at Z∗13 again (not a safe prime!) - we see that 〈22〉 = 〈4〉 =
{4, 3, 12, 9, 10, 1}. Note that |〈g2〉| = 6 = 12

2
= |Z∗13|/2, as expected.

Assumptions

Discrete Log Assumption

• Choose cyclic group G of order q of bit length n, with a generator g ∈ G.

• Choose uniformly random exponent a ∈ Zq

• Output description of G, its order q, g, and h = ga

Attacker receives this output (G, q, g, h), and outputs a′ - wins iff ga
′
= h.

Assumption: Pr[A→ a′ s.t. ga
′
= h] ≤ negl(n) for all PPT A

Computational Diffie-Hellman Assumption (CDH)

• Choose cyclic group G of order q of bit length n, with a generator g ∈ G.

• Choose uniformly random exponents a, b ∈ Zq

• Output description of group G, its order q, g, and h1 = ga, h2 = gb

Attacker receives this output (G, q, g, h1, h2), and outputs z ∈ G - wins iff z = gab.
Assumption: Pr[A→ z s.t. z = gab] ≤ negl(n) for all PPT A

Decisional Diffie-Hellman Assumption (DDH)

• Choose cyclic group G of prime order q of bit length n, with a generator g ∈ G.

• Choose uniformly random exponents a, b ∈ Zq

• Output description of group G, order q, g, and h1 = ga, h2 = gb, as well as T , which is
either gab or gz, for uniformly random z ∈ G.

Attacker receives this output (G, q, g, h1, h2, T ), and has to determine whether T = gab or
T = gz.

Assumption: |Pr[A(G, q, g, h1, h2, g
ab) = 1] − Pr[A(G, q, g, h1, h2, g

z) = 1]| ≤ negl(n) for all
PPT A

Note the relationship between these three assumptions. If we can break discrete log, then
we can break CDH, and if we can break CDH then we can break DDH. Thus, DDH is the
strongest assumption of these three (and discrete log is the weakest).
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It is believed that discrete log and CDH hold for any Z∗p for prime p, but DDH could only
possibly be true over prime order groups, so not true for the group Z∗p (which is of order p−1).
If p is a safe prime p = 2q + 1 where q is also a prime, DDH is believed to be true for the
order q subgroup of Z∗p (namely over QRp).

Provided example (wrong!): This example was shown in the recitation, but as we will
discuss, it is actually not secure, as we use a non-safe prime. (Reproduced from online notes at
http://yums.org.uk/wp-content/uploads/2013/06/Diffie-Hellman-Key-Exchange-and-ElGamal.pdf)

Let p = 9967 and g = 3 (a generator). Alice secretly chooses a = 34, and computes ga = 334.
She can do this in polynomial time by repeatedly taking the exponent (we are working in
mod 9967):

32 = 9

34 = 92 = 81

38 = 812 = 6561

316 = 65612 = 43046721 ≡ 9215(mod9967)

332 = 92152(mod9967) ≡ 84916225 ≡ 7352(mod9967)

334 = 332 × 32 ≡ 7352× 9 ≡ 6366(mod9967)

Alice sends 6366 to Bob.

Bob, in the mean-time, picks b = 37, and we can use the same calculations above to see
337 = 332 × 34 × 3 ≡ 7452× 81× 3 ≡ 2443(mod9967).

Bob sends 2433 to Alice.
Thus, currently, ga = 6366 and gb = 2433 are public, while a = 34 and b = 37 are secret to
Alice and Bob, respectively.

Alice can use this same fast exponentation to raise the public 2433 to the 34th power, obtain-
ing k = 244334 ≡ 7782(mod9967).

Likewise, Bob computes k = 636637 ≡ 7782(mod9967).

Thus, the keys match! gab = (ga)b = (gb)a as expected, and Bob and Alice now have a key
that they can use in public key encryption schemes.

Explanation: In this example, we use G = Z∗9967, with generator g = 3. The correctness does
indeed goes through as shown – clearly Bob and Alice do generate the same key k. However,
the only type of security we can get here, is that the adversary cannot completely reconstruct
the key that Alice and Bob agree on (7782) [this holds under the CDH assumption – it’s hard
to find gab from seeing just ga and gb].

However, it is **not** true that the key they agree on is indistinguishable from a random
element in the group (this we would get from DDH assumption, but DDH assumption is false
in general in Z∗p). In particular, if you look at the distribution of the agreed key gab when
Alice chooses a at random and Bob chooses b at random, we can show that gab has probability
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1
4

to be geven and probability 3
4

to be godd (while half ofZ∗p is geven and half is godd, so the prob-
ability distribution of the agreed key is skewed). This means the adversary, just by knowing
that they are using Diffie-Helman Key Exchange (without even looking at communication),
has some information on the key they agreed on.

A similar attack would work for any group of composite order. So for Diffie-Helman Key
Exchange (as well as El Gamal Public Key Encryption, and any other example that requires
DDH assumption for security), you must have a group of prime order.

If instead we are working in Z∗p but with generator g2 (mod p), then all the elements generated
will *all* be geven (and in fact, we are working in the subgroup QRp). In this example, if you
use 32 = 9 as a generator, you end up working in the subgroup QR9967, which is a group of
size 9966/2 = 4983.

If we were lucky with this example and 4983 happened to be prime, then we believe DDH
holds and this is indeed what Alice and Bob can use (ie., the same example, but with 9 as a
generator, not 3).

Unfortunately, 4983 is not a prime (it’s divisible by 3). So, while all the elements they will
use are indeed in QR9967 (i.e. all are 3even), the key is *NOT* distributed randomly over these
elements, it’s biased (as it always will be for any group of non-prime order – now it’s more
likely to be 9even rather than 9odd). So, the adversary learns information about the key (even
though they can’t completely reconstruct the key).

A correct and secure example would be to take something like this, but choose a safe prime p,
and then work with g2 rather than with g as a basis. See, for example, Problem 1 on HW 5.

Note that working in Z∗p was the original suggestions of DH and those early years, before we
developed a better understanding of security requirements.

From Edo: Apologies to the recitation-goers for not doing justice to this explanation. You
guys should have called out my mistake! ,
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