
Towards using Cached Data Mining for Large Scale
Recommender Systems

Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{swapneel, kaiser}@cs.columbia.edu

Abstract—Recommender systems are becoming increasingly
popular. As these systems become commonplace and the number
of users increases, it will become important for these systems
to be able to cope with a large and diverse set of users whose
recommendation needs may be very different from each other.
In particular, large scale recommender systems will need to
ensure that users’ requests for recommendations can be answered
with low response times and high throughput. In this paper, we
explore how to use caches and cached data mining to improve the
performance of recommender systems by improving throughput
and reducing response time for providing recommendations.
We describe the structure of our cache, which can be viewed
as a prefetch cache that prefetches all types of supported
recommendations, and how it is used in our recommender system.
We also describe the results of our empirical study to measure
the efficacy of our cache.

Keywords-data mining, caching, recommender systems, empir-
ical study

I. INTRODUCTION

Recommender systems have become increasingly common-
place. Recommender systems are being used in a variety
of domains such as recommending music we may like [1],
[2], things we might like to buy [3], and friends we may
know [4]. There have also been many recommender systems
targeted towards specialized domains such as software engi-
neering [5], [6], [7], [8] and medicine [9]. While there has
been a lot of work in the academic community on various
aspects of recommender systems such as recommendation
algorithms [10], [11] and implications of social networks in
recommender systems [12], [13], there has been very limited
work that has explored the use of caches and cached data
mining to improve the performance of recommender systems
by increasing throughput and reducing response time for
providing recommendations. This will be of particular concern
as these recommender systems become even more popular
and their user and fan base grow. With a large number of
users, there are two specific issues that recommender systems
would have to deal with - how to generate recommendations
efficiently from a large set of data and how to provide these
recommendations efficiently to a diverse set of users, where
each user’s requirements for recommendations are different
from the others.

In this paper, we describe how we use cached data mining to
answer users’ queries and provide recommendations in a very
efficient way. We describe our background and motivation in
the next section. Section III describes in detail the recommen-

dations provided by our system and how we use cached data
mining. Section IV describes our empirical study and results.
Finally, we conclude the paper with a discussion of the related
work in Section V.

II. BACKGROUND AND MOTIVATION

We are working with researchers at Columbia University’s
Center for Computational Biology and Bioinformatics (C2B2),
particularly its MAGNet (Multiscale Analysis of Genomic and
Cellular Networks) Center to explore new ways in which
researchers in computational biology and bioinformatics can
collaborate to share data, analyze results, and share knowledge.
Our approach is based on social networking metaphors for
collaborative work where users can ask questions such as: Who
likes movies that I like?; What food and wine pairings go well
together?; What book would I like given that I like this book?

Our implementation of this approach is a system called
“genSpace” [14], which uses collaborative filtering to pro-
vide recommendations to users. genSpace is a plugin to
an open-source Java-based platform for integrated genomics
called “geWorkbench” [15]. Using geWorkbench, researchers
in computational biology and bioinformatics can load in data
sets such as DNA, protein, and gene sequences. They can then
run complex analysis tools such as filtering, normalization,
clustering, and pattern detection. There are over 50 such
analysis tools supported by geWorkbench, and each tool has
many different runtime parameters. Choosing the right tool to
use and the sequences in which to use these tools (workflows)
can be very daunting, especially to new users. One substantial
way that we diverge from and expand upon the collaborative
filtering provided by popular websites is that we address the
ordering among related activities conducted in sequence, i.e.,
as a workflow. E.g., a common workflow in geWorkbench
is to run the ARACNe (Algorithm for the Reconstruction of
Accurate Cellular Networks) analysis [16] followed by the
MINDy (Modulator Inference by Network Dynamics) analysis
[17]. Issues stemming from this ordering concern are, however,
outside of the scope of this paper.

genSpace aims to flatten the learning curve and enable
users to quickly become productive. In particular, for users
who do not know where to start, it recommends the most
popular three tools and workflows. For users already familiar
with using one or more tools in their standalone form outside
geWorkbench, it recommends the most popular workflow that
starts with or includes a particular tool and the best tool to run



next given that you’ve just run a particular tool. In order to
achieve this, we log users’ activities as they use geWorkbench
and send the logs to a central server, where data mining
and collaborative filtering techniques generate these and other
kinds of recommendations.

Currently, our genSpace recommender system is modest in
size. Our database has about 10000 rows of data from around
150 distinct users. Since we anticipate a significant increase in
usage when geWorkbench soon introduces a Web-based client,
we wanted to study how our system would respond to and/or
if it could cope with a large increase in the number of users
and user data.

In this paper, we discuss how we use cached data mining
for providing recommendations to users in genSpace. We also
describe an empirical study highlighting their benefits and
improvements to the response time and throughput to user
queries.

III. CACHED DATA MINING AND GENSPACE
RECOMMENDATIONS

A. Recommendations in genSpace

In genSpace, we support two different kinds of recommen-
dations - static and dynamic.

1) Static Recommendations: Static Recommendations are
those recommendations that do not depend on the current
activity of the user. Typically, such recommendations follow
a “pull” model where a user explicitly asks for these recom-
mendations. Examples of such recommendations include the
top tools, the top workflows, and the most popular workflow
that includes or starts with a particular tool.

2) Dynamic Recommendations: Dynamic Recommenda-
tions are those recommendations that do depend on the current
activity of the user. Typically, such recommendations follow
a “push” model where the system automatically pushes these
recommendations to the user. Examples of such recommen-
dations include suggesting the best analysis tool to run next
based on what the user has done so far and suggesting
popular superflows (workflows that include the user’s current
workflow).

All these recommendations are generated using data mining
to derive patterns and trends from the user data.

B. genSpace Caching

genSpace has a server-side cache that supports pushing or
pulling recommendations to/from the users. It can be viewed as
a prefetch cache that prefetches all types of recommendations
supported by the system. It is not a traditional cache where
items are added to the cache when they are requested and there
exist notions of cache hits, cache misses, cache replacement
policies and so on. Every recommendation that we need will
be present in the cache and we won’t need to go to the database
for any information. Due to this, we do not have the problem
of a cache miss and we do not need to worry about cache
replacement and by definition, our hit rate and recall is 100%.
When the genSpace server starts up, the genSpace cache is
generated using a combination of SQL queries and stored

procedures from our SQL database backend that stores all the
user data. The cache is periodically re-generated as needed -
currently, every day. If we did not have a cache, we would
have to run the SQL queries on demand every time a user
request came in for recommendations. We would also have to
re-run the same query multiple times if different users asked
for the same set of recommendations.

We also address the problem of concept drift [18] where
workflows performed by users six months may not be so
relevant today. E.g., after publication of major findings that
involved a form of analysis that was previously rare or
after upgrading to a new geWorkbench release that integrates
additional tools or even for no known reason, many users
shift their usage patterns. We use an exponential time-decay
formula [19] to weigh recent user data more heavily. This
weighting is done each time the cache is generated.

After weighting the data, the static recommendations are
computed and stored in the cache. We build an index for each
analysis tool found in the log data, to represent the following
information: the number of times this tool has been used,
the number of times this tool has been used as a workflow
head, the most popular tool before and after this tool in
workflows, the most popular workflows containing this tool,
and all workflows that include this tool. This cached index uses
hashing based on the tool name to give us constant time lookup
for tool-specific information. Finally, a tree-based index of
popular workflows aids in the dynamic recommendations. All
these parts together comprise the genSpace Caching System.

genSpace usually gets around 10-20 new logs every day and
due to this, we re-generate our cache every day. As the number
of users for our system increases, concept drift may take place
on shorter timescales and we may need to re-generate the
cache more often to deal with it. The re-generation frequency
is easily configured on our server and will be ramped up as
needed. However, more studies need to be done to measure
and fully understand the effect of concept drift on cache re-
generation and this is part of our future work. The next section
contains some empirical results on the time required to re-
generate our cache.

Finally, due to the structure of the genSpace cache, it can
only support the currently existing types of recommendations.
If we wanted to support additional types of recommendations,
the cache would need to be augmented with the appropriate
information. E.g., we currently don’t support providing rec-
ommendations based on the file-type on which the analysis
tools are run. To support this, our cache would need to store
information regarding the file-types for the analyses.

IV. EMPIRICAL STUDY

The genSpace cache has already been deployed in our
production system although it may not be needed currently
due to the modest number of users. In order to understand
the prospective real-world improvements due to our cache, we
carried out an empirical study. For our study, we varied the
number of rows of our database (in the range of around 3500,
10000, 100000, and one million) and measured its impact



Fig. 1. Database Size vs. Average Response Time, for “Get Most Popular
Workflow Heads”

Fig. 2. Database Size vs. Throughput, for “Get Most Popular Tools”

on average response time and throughput to user queries
for recommendations. We simulated 1000 concurrent users
requesting recommendations. We also compared these results
to the results obtained if we did not have a cache and used SQL
queries instead every time for generating recommendations.

We used Apache JMeter [20] for load testing our server and
measuring performance. The genSpace server, including the
cache, is implemented in Java. Our server and client machines
were common Windows XP machines with no non-essential
system processes running and had more than 2GB of surplus
RAM available.

Figure 1 shows the plot of the database size (in number
of rows) versus the Average Response Time for a recommen-
dation that gets the most popular workflow heads, i.e., tools
at the start of a workflow. The red line with squares as data
points shows the response time when using SQL queries-on-
demand and the blue line with triangles as data points shows
the response time when using our cache. As shown in the
figure, as the size of the database increases, the response time
using SQL queries-on-demand increases by a large amount.
Meanwhile, the response time using our cache remains roughly
constant. This shows that as the database size increases, using
SQL queries-on-demand is not practical whereas using the
cache enables us to answer users’ queries in roughly the same
time regardless of the database size.

Figure 2 shows the plot of the database size (in number
of rows) versus the Throughput for a recommendation that
gets the most popular tools in the system. The red line with
squares as data points shows the response time when using
SQL queries-on-demand and the blue line with triangles as
data points shows the response time when using our cache.

From the graphs, we see that the cache outperforms the SQL
queries-on-demand approach by a factor of at least 3 to as
much as 200 as database size increases.

Most of the static and dynamic recommendations mentioned
in Section III were part of the empirical study and our results
were similar to the ones shown above and generally show
that using the cache improves the throughput and reduces the
response time.

We also measured how long our cache generation process
takes. As mentioned earlier, we currently re-generate our cache
every day and it might be necessary to re-generate our cache
more often. In our study, it takes around ten seconds to
generate the cache for a database that has around one million
rows and about 100 seconds for a database that has around
ten million rows. Thus, even if our database size increases by
a large amount, we can still manage to re-generate the cache
periodically as often as needed.

V. RELATED WORK

To the best of our knowledge, there is very little in the
published literature discussing caches for recommendation
systems; in fact, we found exactly one paper that discusses
this. Qasim et al. [21] propose a general solution using
active caches for providing recommendations in all types of
recommender systems. Active Caches are caches that can an-
swer neighborhood queries for recommendations, i.e., similar
queries to a given query and act as limited query processors.
Due to this, the approach proposed by Qasim et al. is limited
to neighborhood queries for recommendations and will not
work well, in general, for all kinds of queries and focusing
on just neighborhood queries may not improve overall sys-
tem performance by a significant amount. As recommender
systems become increasingly popular, there might exist a
very diverse user base that is interested in different kinds of
recommendations from the system.

In fact, as mentioned in their paper, due to overheads
of caching, the system might actually perform worse than
having no cache. Our genSpace solution, on the other hand,
is not limited to neighborhood queries for recommendations
and works well for all kinds of recommendations supported
by our genSpace system. This is because our system, unlike
the one mentioned by Qasim et al., is a prefetch cache that
prefetches all recommendations; all user recommendations can
be answered using the cache, rather than just the neighborhood
ones. Of course, as our system evolves and new types of
recommendations are added, we would need to enhance our
cache to support those as well.

Further, Qasim et al., in the experimental section of their
paper, focus on the Hit Ratio, Recall, and Efficiency of
computing the cache. While these metrics are important, we
feel it would more meaningful to see what this translates to,
from a user’s point of view. A typical user is not directly
concerned about hit ratio and recall; rather, he is usually
directly concerned with the latency and response time for
these recommendations. Our empirical study shows that using
caches in genSpace has significantly improved the throughput



and reduced the response time for recommendations, thus
improving the overall user experience. Also, as we use a
prefetch cache that prefetches all types of recommendations
supported by the system, by definition, the hit ratio and recall
for our system is 100%.

VI. CONCLUSION

We have described how we use prefetch caching in our
genSpace recommender system. We have also described the
structure of our cache, which can be viewed as a prefetch
cache that prefetches all types of supported recommendations,
and our empirical study that shows the advantages of using
our cache, which improves throughput and reduces response
time for recommendations. We believe that the use of such
caches will prove very beneficial to recommender systems,
particularly as the number of users of such systems grow and
the system needs to support the diverse needs of its users,
where different users are interested in very different kinds of
recommendations from the system and the recommendations
they request do not overlap.

ACKNOWLEDGMENTS

The authors would like to thank Aris Floratos, Kiran
Keshav, and Zhou Ji for their guidance and assistance with
genSpace. We would also like to thank Cheng Niu, Joshua
Nankin, Eric Schmidt, and Yuan Wang for their assistance in
the implementation of the genSpace cache and in the empirical
study to measure its efficacy. The authors are members of
the Programming Systems Lab, funded in part by NSF CNS-
0905246, CNS-0717544, CNS-0627473 and CNS-0426623,
and NIH 1 U54 CA121852-01A1.

REFERENCES

[1] “Pandora Radio,” http://www.pandora.com.
[2] “Last.fm,” http://www.last.fm.
[3] “Amazon.com,” http://www.amazon.com.
[4] “Facebook,” http://www.facebook.com.
[5] A. Begel, K. Y. Phang, and T. Zimmermann, “Codebook: discovering

and exploiting relationships in software repositories,” in ICSE ’10: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering. New York, NY, USA: ACM, 2010, pp. 125–134.

[6] F. McCarey, M. Cinnéide, and N. Kushmerick, “Rascal: A recommender
agent for agile reuse,” Artificial Intelligence Review, vol. 24, no. 3, pp.
253–276, 2005.

[7] R. Holmes, T. Ratchford, M. P. Robillard, and R. J. Walker, “Auto-
matically recommending triage decisions for pragmatic reuse tasks,”
in Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 397–408.

[8] C. Murphy, G. E. Kaiser, K. Loveland, and S. Hasan, “Retina: Helping
Students and Instructors Based on Observed Programming Activities,” in
Proc. of the 40th ACM SIGCSE Techn. Symp. on CS Education, March
2009, pp. 178–182.

[9] “WebMD Symptom Checker,” http://symptoms.webmd.com.
[10] Y.-J. Park and A. Tuzhilin, “The long tail of recommender systems and

how to leverage it,” in RecSys ’08: Proc. of the 2008 ACM Conf. on
Recommender systems, 2008, pp. 11–18.

[11] J. Zhang and P. Pu, “A recursive prediction algorithm for collaborative
filtering recommender systems,” in RecSys ’07: Proc. of the 2007 ACM
conference on Recommender systems, 2007, pp. 57–64.

[12] V. Zanardi and L. Capra, “Social ranking: uncovering relevant content
using tag-based recommender systems,” in RecSys ’08: Proc. of the 2008
ACM Conf. on Recommender systems, 2008, pp. 51–58.

[13] W. Geyer, C. Dugan, D. R. Millen, M. Muller, and J. Freyne, “Recom-
mending topics for self-descriptions in online user profiles,” in RecSys
’08: Proc. of the 2008 ACM conference on Recommender systems, 2008,
pp. 59–66.

[14] C. Murphy, S. Sheth, G. Kaiser, and L. Wilcox, “genSpace: Exploring
Social Networking Metaphors for Knowledge Sharing and Scientific
Collaborative Work,” in 1st International Workshop on Social Software
Engineering and Applications (SoSEA), September 2008, pp. 29–36.

[15] A. Califano, A. Floratos, M. Kustagi, and J. Watkinson, “geWork-
bench: An Open-Source Platform for Integrated Genomics,” http://www.
geworkbench.org.

[16] K. Basso, A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and
A. Califano, “Reverse engineering of regulatory networks in human B
cells,” Nature genetics, vol. 37, no. 4, pp. 382–390, 2005.

[17] K. Wang, M. Saito, B. Bisikirska, M. Alvarez, W. Lim, P. Rajbhandari,
Q. Shen, I. Nemenman, K. Basso, A. Margolin et al., “Genome-wide
identification of post-translational modulators of transcription factor
activity in human B cells,” Nature biotechnology, vol. 27, no. 9, pp.
829–837, 2009.

[18] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101,
1996.

[19] E. Cohen and M. Strauss, “Maintaining time-decaying stream aggre-
gates,” in Proc. of the 22nd ACM SIGMOD-SIGACT-SIGART symposium
on principles of database systems (PODS), 2003, pp. 223–233.

[20] Apache, “Jmeter,” http://jakarta.apache.org/jmeter/.
[21] U. Qasim, V. Oria, Y.-F. B. Wu, M. E. Houle, and M. T. Özsu, “A

partial-order based active cache for recommender systems,” in RecSys
’09: Proceedings of the third ACM conference on Recommender systems.
New York, NY, USA: ACM, 2009, pp. 209–212.


