loT: The Internet of Things

@O0

BY NC

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US

What is the “Internet of Things”?

OED A proposed development of the internet in which many
everyday objects are embedded with microchips giving
them network connectivity, allowing them to send and
receive data.

Merriam-Webster The networking capability that allows information to be sent
to and received from objects and devices (such as fixtures
and kitchen appliances) using the Internet.

Wikipedia A system of interrelated computing devices, mechanical and
digital machines, objects, animals or people that are
provided with unique identifiers (UIDs) and the ability to
transfer data over a network without requiring
human-to-human or human-to-computer interaction.

Me Non-computer objects that both contain a CPU and can
communicate over a wide-area network.

Excluded

@ Devices with only a CPU, e.qg., my toaster and coffeemaker
@ Devices with only local networking, e.g., RF remote controls for ceiling fans

@ Special-purpose CPUs embedded in larger, networked objects or
computers, e.g., USB flash drives, Apple’s Lightning connectors, laptop
cameras, keyboards, etc

1= Must distinguish |oT from embedded systems

Attributes of lIoT Devices

@ Not a “computer”, and hence often lacks conventional I/O devices: a
screen, a keyboard, a mouse or touchscreen, etc.

@ Users generally cannot reprogram them
@ Generally cannot run outside software (though that may change).
@ By definition, connected to a physical device

Questions

Standard questions
@ What are we trying to protect?
@ Against whom?

Plus...
@ Why is loT security different?
@ How do we protect loT

What Are We Trying to Protect?

@ The computer
@ Perhaps its network bandwidth
1= The physical device(s) it monitors and/or controls

Against Whom?

@ Who the enemies are depends on the attached physical device
@ Russia has supposedly been poking at the power grid
@ Iran has been accused of going after dams

loT Security Concerns

@ Why is loT different? Is loT different?

@ No antivirus

@ Limited support lifetime

@ Poor user interface

@ The programmers are not battle-hardened

@ The computer is connected to a physical device

Antivirus and loT

@ Antivirus software requires patterns of known malware, and there aren’t
many patterns

@ Antivirus software requires a subscription and payment, and there may not
be an economic model

@ Besides—is it helpful or harmful?

Support Lifetime

@ Who pays for support? What is the economic model?
@ How long will the chips last? How long will they be available?

@ When vendors switch to newer chips (because they have to), will older
code run on new chips? Will new code run on old chips?

Desktop and Laptop Computers

@ Typical product life: about five years, with a long tail

@ Businesses replace gear more often, but keep old operating systems
longer

@ Vendor support lifetime is often a crucial issue

OS Support Lifetimes

@ Windows: about 11 years
@ MacOS: about 3 years
@ Ubuntu: about 5 years

N.B. OS compatibility with new hardware can be much longer—it’s not
necessary to buy a new Mac every three years

@ Apple supports its phone hardware for about five years
@ Android: a bit over two years at best
@ N.B. The Android marketplace is more fragmented

Economics

@ Phones generally cost $500-1000
@ Computers cost at least that much, often more
@ Many loT gadgets cost a lot less

@ For expensive devices, the lifetime support cost is bundled into the OS
(and maybe hardware) price

@ That doesn’t work for cheap loT devices

loT Device Lifetime

@ How long does a light switch last? A smart light switch?
@ How long does a thermostat last? A smart thermostat?
@ Home routers? Security cameras? A multicooker?

@ What about toys? Home appliances? Cars?

Update Desires

@ Assume that updates are available? How often will they be installed?
@ For phones and computers, the impetus is often new features

@ What are the new features | would want that would induce me to upgrade
a smart lightbulb?

@ How will I know if my washing machine needs an update?

Some Devices Do Update

) isis agora lovecruft (they/them)
T @isislovecruft

my dishwasher won’t start until i let it update its
firmware over the wifi

7:33 PM - Jan 30, 2022 - Twitter for iPhone

17/52

Some Are Very “Smart”

" | Mat Brown
' @matmoeb

Replying to @isislovecruft and @SteampunkMuppet

Late Friday night, mine wouldn’t operate because it
had “Sabbath” on the screen. Not a joke. My
dishwasher apparently recognizes Shabbat.

9:23 AM - Jan 31, 2022 - Twitter for iPhone

18/52

User Interface

@ In general, loT devices offer a poor user experience

@ Things that are simply on a computer, e.qg., typing a password, are very
unpleasant on, say, a lightbulb

@ Ergo, authentication is often poor

@ There may be no display to indicate system state or to make requests of
users

Programmers

@ Programming is not the same as secure programming; the latter has to be
learned separately

@ Secure programs—and secure architectures—need all manner of defensive
techniques, including paranoid input checking and extensive fault
recovery, plus liberal helpings of cryptography

@ Organizations that are used to fighting hackers have learned many such
lessons the hard way. Newcomers often need to learn.

Physical Devices

@ For ordinary computers, the target is usually the data, though sometimes
it’s network connectivity

@ |oT devices rarely have much interesting data, though they do have
network connections

@ But—they’'re attached to physical devices
@ This can attract hackers. ..

If That's the Structure. ..

@ From these structural issues, it’s clear that loT security is hard
@ But—security people don’t get to decide if 10T is a good idea
@ Our challenge: securing things anyway

A Notional Architecture: Terminology

Thing The networked computer that talks to a physical device

Hub An intermediary between (some) Things and the Internet. Hubs
often use a local, non-TCP/IP link to talk to Things

Manager A local controller for Things. Managers may be built into Hubs or
may be separate boxes

Vendor A vendor server with which Things or Hubs must associate

Questions About Operational Environment

@ Is the Thing directly connected to the Internet?

@ If not, it behind a firewall or NAT, or is it behind a Hub?
@ Must the Thing use a Hub to talk?

@ Must Vendors be involved

Why Vendors?

@ In the consumer world, remote access to Things is often needed: think of
thermostats, alarm systems, and more

@ But—it’s hard to talk directly to consumer devices; they're almost always
behind NATs and usually don’t have stable IPv6 addresses

@ Battery-operated devices can’t be online 100% of the time, but they can
poll the vendor at reasonable intervals. (Some loT thermostats can only
charge their battery when the heat is not on)

@ Usability is a problem: most consumers would have trouble learning an IP
address and setting up a DNS entry for each of their devices

@ The usual solution: consumers talk to their devices indirectly, via the
vendor

@ This means that vendor security is part of our concern

A Possible Architecture

Analytic Approach

@ Metanote: assume that the attacker’s ultimate goal is the physical device
@ Identify vulnerable entities

@ Identify what is at risk from their compromise, i.e., what the desired
execution environment is for attackers

@ Identify the weak points and devise defense

Who Can Attack Whom?

@ Hubs can attack Things—but a Hub can be a firewall for its Things (and
we’'ll lump Managers with Hubs)

@ Of course, Things can attack Hubs. ..

@ Vendors can attack Hubs and Things, either directly or by pushing out
nasty firmware updates

@ Hubs and Vendors (and some Things) are subject to direct Internet attacks
or attacks from compromised home computers

@ In other words: this is an environment with many threats, and with threats
to all components

Mandatory Minimum Security

@ Encrypt all links

@ Partly for confidentiality, but often more for integrity

@ Addresses vulnerabilities of all parties

@ But—encrypted to whom? Who is the endpoint for each communication?

Encryption: End-to-End or Hop-by-Hop?

@ If a Thing needs to talk to a Vendor, where does its encryption terminate?
@ End-to-end is the ideal, but we need intrusion detection

@ IDS is hard for Things; they’re low-powered and can’t easily yell for help
@ So: encrypt hop-by-hop, but use end-to-end integrity checks

@ (A privacy risk? The user owns the Hubs and the Things. There may be
privacy issues with respect to the vendors, but end-to-end encryption
won’t solve that problem.)

30/52

Protecting Things: Hubs

@ Things can be attacked by Hubs—how?

@ Two obvious ways: something impersonating a Hub, and by a
compromised Hub sending malicious commands

@ The first can be dealt with by strong authentication
@ For the second, use good input parsing and sanity checks (stay tuned)

Introducing Endpoints

@ How does a Thing know the proper Hub?

@ How does it know the Hub’s authentication credentials?

@ What happens if you sell the Thing? How does the new owner reset it?
@ What happens if you replace the Hub?

The Resurrecting Duckling

@ No great solutions! No keyboards, no screens, setting lots of passwords is
a pain, etc.

@ Best solution: let Things imprint on the first Hub they talk to
@ Take advantage of physical proximity for initial pairing
@ Have a physical reset button to restart
1= Or: use a phone app as an intermediary
@ Use NFC (or maybe Bluetooth), QR codes with cameras, and more
@ Can exchange strong secrets—no passwords!

33/52

Protecting Things: Vendors

@ A compromised Vendor can send evil commands through the Hubs
@ It can also push malicious firmware

@ Do intrusion detection on the Hubs and the Things

@ Why on the Hubs? They’re more capable

°

Why on the Things? They have to protect themselves from compromised
Hubs, too

@ All firmware updates must be digitally signed

Digitally Signed Firmware

@ Vendors have developers and a server
@ Strongly separate the two halves, and protect the signing key

@ Vendor developer compromise is extremely serious—but consumers can’t
tell if vendors are doing things properly

@ No ducklings needed here—the vendor can manufacture in its certificate

@ (But what if the vendor signing key is compromised? What if that
certificate has to be revoked?)

35/52

Sanity Checks

@ For some devices, improper commands can have serious conseguences
@ Solution: separate sanity checks, preferably in hardware
@ Example: a low temperature circuit for an loT thermostat

@ Danger: watch out for sanity checks only in regular firmware (but cheap
devices probably can’t do better)

36/52

User Accounts

@ What protects user accounts on the Vendor?
@ We know how vulnerable most folks’ passwords are

@ MFA is best—but how to force adoption? And what about recovery from
lost credentials?

@ And: must have hardware reset on Things, in case they’re sold by
someone who forgets to execute some handover mechanism

@ Example: 10T light switches, conveyed with a house in an estate sale

We’'ve Had Problems!

@ Some devices, e.g., security cameras, have used default passwords and
been directly exposed on the Internet

@ Attackers have used these documented default passwords, which many
users never change

@ Sanity checks help here, too

38/52

Structural Problems

@ We still haven’t solved our structural problems

@ Sill have limited support lifetime, poor user interface, inexperienced
programmers

@ Plus: if we assume reliance on Vendors, what if the Vendor turns off the
servers or goes bankrupt?

39/52

Economic, Not Technical

@ These issues are fundamentally economic, not technical
@ In other words, a purely technical approach cannot solve them

@ Even “purely” technical problems have an economic dimension—what will
force adoption of expensive solutions?

= This means that the solutions will have to be economic and/or regulatory

@ Perhaps: mandatory second sourcing of abandoned services and devices

@ That is: a law requiring that code for all IoT devices and their services be
escrowed

@ When some device or service is EOLed or discontinued, the relevant code
must be offered for sale, and released to the public after 90 days if not
picked up

@ Exercise: what about code-signing keys?

@ Exercise: how should Things or Hubs be rehomed to a new server, or to a
personal server?

Suicide Switch

@ Should unpatched and unpatchable devices be allowed to exist?

@ Liability laws might help with companies that still exist, but what about
devices left behind by abandoned companies?

@ Sue the owners? Is that fair?
@ Maybe Things should have a finite lifetime. ..
@ (ldea due to Dan Geer)

Lifetimes and Costs

@ What is the normal lifetime of a Thing, independent of these security
issues?

@ Cars last 10-15 years, and sometimes longer—having them die after five
years is unacceptable

@ Major home appliances may last ten years—but they’re still too expensive
to discard

@ Light switches are cheap, but installation isn’t—most folks would need to
hire an electrician

@ And some bugs aren’t economically fixable, e.g., boot ROM issues

@ But—the cost of an unpatched bug is imposed on society, and that's an
economic issue, too

No Perfect Answers!

@ Support costs money

@ Vendor servers cost money

@ Lack of support and lack of vendor servers cost money
@ The ultimate questions: who should pay, and how?

@ Front-loading—demanding payment on first purchase—can be
economically feasible, but it drives up prices; without regulation, that
doesn’t work in the market

@ And if you think it's bad for consumer gear, what about industrial control
systems?

@ What are the fundamental issues?
@ What are approaches to solving them?
@ Are they feasible?

Economic Issues

@ Some of the basic problems are economic

@ If we can’t find a technical solution, we need either an economic solution
or a regulatory solution

@ But some of the economic issues, e.g., paying for support are pretty
fundamental, so we need either a technical solution or a regulatory one

@ Some of the technical issues appear extremely difficult, e.g.,
auto-generating patches or auto-backporting them to an old release

More Economic Issues

@ Who operates servers if the vendor goes bankrupt?
@ Who gains access to the firmware signing key?

@ It's one thing to make the code base open source; it's another to ensure
trust

There Are Some Technical Approaches

@ Auto-updating is probably a good idea
@ So is auto-rollback if the patch seems to be causing problems

@ There are ultra-reliable software systems: avionics, phone switch software,
satellites and Mars probes, etc.

@ It is currently expensive to produce such code—but could there be tools to
make it easier and cheaper?

“Safe Mode” on Mars Probes

@ Shut down all science activities
@ Find Earth

@ Keep the batteries charged

@ Send a “help!” signal

@ Listen for software updates

What is Safe Mode on a Car?

@ Shut down entertainment, tire pressure monitoring, cruise control and
driver assist, etc.

@ Keep the engine running, make sure that the throttle, brakes, and steering
still work

@ All that is harder on drive-by-wire cars!
@ Electric and hybrid vehicles need a lot more software just to function

50/52

Conclusions

@ The purely technical issues appear to be solvable, though it will take
research and tool development

@ There are economic issues that are probably beyond the reach of purely
technical efforts

@ Given the wide range of 10T devices, it is likely that no single solution,
technical, economic, or regulatory, will work for everything

Questions?

(Osprey, Central Park, October 7, 2021)

