
Complexity and Security

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US

An Early Warning

“Finally, although the subject is not a pleasant one, I must mention PL/I, a
programming language for which the defining documentation is of a
frightening size and complexity. Using PL/I must be like flying a plane with
7,000 buttons, switches, and handles to manipulate in the cockpit. I absolutely
fail to see how we can keep our growing programs firmly within our intellectual
grip when by its sheer baroqueness the programming language—our basic
tool, mind you!—already escapes our intellectual control. . . .
“When FORTRAN has been called an infantile disorder, full PL/I, with its growth
characteristics of a dangerous tumor, could turn out to be a fatal disease.”

Edsger W. Dijkstra, 1972

Complexity and Security 2 / 58

Complexity is Bad

We’ve known since the beginning of computers that it’s hard to write
correct code
We’ve known for decades that complexity leads to buggy code.
Why?

Complexity and Security 3 / 58

Perfection

First, one must perform
perfectly. The computer
resembles the magic of
legend in this respect, too.
If one character, one
pause, of the incantation is
not strictly in proper form,
the magic doesn’t work.

Frederick P. Brooks, Jr.
The Mythical Man-Month

Code has to be (nearly) perfect to work
The more complex it is, the harder it is to
grasp all of it, and to see the interactions
between the different pieces
In theory, code’s mental complexity is
O(n2) in the number of lines of code
The goal of modularization techniques is to
cut that to O(m(n

m)2 + (mε)2): code in each
module interacts only within the module,
plus APIs to other modules

Complexity and Security 4 / 58

Security

“If our software is buggy, what does that say about its security?”

Robert H. Morris

Complexity and Security 5 / 58

Buggy Code is Insecure Code

Bugs are just as likely in security-sensitive code as in “ordinary”
application code
Example: an open source Yubikey server has a really bad SQL injection
attack
Security-sensitive code has to be correct, or it might be insecure
How?

Complexity and Security 6 / 58

https://www.yubico.com/support/security-advisories/ysa-2020-01/

The Fundamental Problem

The real issue: interaction
To be secure, a program must minimize interactions with the outside
All interactions must be controlled

Complexity and Security 7 / 58

Definition: Attack Surface

“The set of points on the boundary of a system, a system element, or an
environment where an attacker can try to enter, cause an effect on, or extract
data from, that system, system element, or environment.”

NIST Computer Security Resource Center

Complexity and Security 8 / 58

https://csrc.nist.gov/glossary/term/attack_surface

Relative Attack Surface Quotient

RASQ: Relative Attack Surface Quotient
Microsoft metric of how vulnerable an application is
Roughly speaking, it measures how many input channels it has
Must reduce RASQ

Complexity and Security 9 / 58

Not All Channels Are Equal

Some channels are easier to exploit
Some are more accessible to attackers
Some have a bad track record

Complexity and Security 10 / 58

RASQ Examples

Weak ACLs on shared files: .9—names are generally known; easy to attack
remotely
Weak ACLs on local files: .2—only useful to attacker after initial
compromise
Open sockets: 1.0—potential target

Complexity and Security 11 / 58

Note Well: Relative

We cannot assign an absolute value to attack surface
We can compare two different alternatives
In other words, we do not say “this is insecure”; rather, we say “this is less
secure”

Complexity and Security 12 / 58

Note Well: Attack Surface

We are also not measuring code correctness
Rather, we are measuring how many points an attacker can try to exploit
RASQ says nothing about whether, say, socket-handling code is correct or
not; rather, it says “Danger: here is socket code”
We can compare two programs to see which has fewer danger points
It also points us at areas of code that demand more scrutiny and more
testing

Complexity and Security 13 / 58

Reducing RASQ: A Management Issue

RASQ is a tool; you have to use it properly
Example: Microsoft decreed that the RASQ of a subsystem could not go up
The security group reviewed all code and had the authority to block
anything from shipping
Security is partially a management problem

Complexity and Security 14 / 58

Security and Complexity

Complex code is buggy and hence insecure
We thus have four challenges

1 To the extent possible, eliminate complexity
2 Protecting the unavoidably complex (i.e., buggy) application code from

attackers
3 Presenting a simple interface to the world
4 Ensuring that our security code is simple

Complexity and Security 15 / 58

Reducing Complexity

Rule 1 Follow standard advice on good programming, modularity, etc.

Rule 2 There is no Rule 2

Complexity and Security 16 / 58

Reducing Complexity

Rule 1 Follow standard advice on good programming, modularity, etc.
Rule 2 There is no Rule 2

Complexity and Security 16 / 58

Living with Complexity

There are some unavoidably complex programs—there is no way to build a
simple web browser for today’s world
(Personally, I think the web took a very dark turn with some of that
complexity, but I was outvoted)
Strategy: security boundaries between some modules: isolate complex
code!

Complexity and Security 17 / 58

Example: Web Browsers

Rendering HTML is inherently complex and risky: HTML comes from the
enemy
JavaScript is even worse
But: accepting user clicks keystrokes is not sensitive
Copying a pixel string to the display is not complex
So: let that guide your modularization

Complexity and Security 18 / 58

First Cut: Web Browser Design

Process HTML in a separate process
Probably handle JavaScript in yet another process
Do the user interface in a third process
Have a simple message-passing interface between the processes
Why? Because processes are a security boundary; one process cannot (to
a first approximation) read or modify another process’ memory

Complexity and Security 19 / 58

Strengthening the Design

Sandbox the risky processes
Why? To protect the operating system (and hence user files) if the
complex code is buggy and insecure
All current operating systems support some form of sandboxing

Complexity and Security 20 / 58

More Security Boundaries

Web sites don’t trust each other
You also don’t want user cookies leaking
Have a process per site visited
(It’s more complex than that; see the reading)

Complexity and Security 21 / 58

Proper Modularization: The 4.3BSD FTP Daemon (1986)

(Not interesting by itself, but it’s a good example.)
Implements the standard File Transfer Protocol
Input defined by RFC 959; no ability to change it
Small enough to understand; large enough to provide examples, good and
bad. . .

Complexity and Security 22 / 58

The FTP Protocol

Download and upload files
Sequence of simple, 3- and 4-letter commands
Commands have zero or one operands
Responses prefixed by 3-digit result code
Must support anonymous ftp — unauthenticated access to restricted set of
resources
Alternatively, permit login with username and password

Complexity and Security 23 / 58

Sample FTP Session

$ ftp ftp.netbsd.org
220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20040809) ready.
USER anonymous
331 Guest login ok, type your name as password.
PASS anything
230 Guest login ok, access restrictions apply.
LIST
150 Opening ASCII mode data connection for ’/bin/ls’.

(data transferred on separate TCP connection)
226 Transfer complete.
FBAR
500 ’FBAR’: command not understood

Complexity and Security 24 / 58

Things to Notice

USER and PASS are separate commands
331 indicates only one command can follow: PASS
(rename also uses a 300-class reply)
200-class replies indicate success
100-class replies are intermediate states
400- and 500-class replies are temporary and permanent failures

Complexity and Security 25 / 58

The Structure of FTPD

Read a command line at a time
Parse the line
Before executing most commands, see if the user is logged in—some
commands are legal before login
Use flag and state variables for multi-command sequences such as
USER/PASS and RNFR/RNTO
Use chroot() to contain anonymous FTP users

Complexity and Security 26 / 58

Consider This Command Sequence

USER anonymous
CWD ~root
PASS anything

How is it processed?

Complexity and Security 27 / 58

Processing USER

Set the anonymous login flag
Retrieve the anonymous entry from /etc/passwd

This will be needed for its home directory and uid

Complexity and Security 28 / 58

Processing PASS

Check the anonymous login flag
If set, accept any password; otherwise, check the password against the
retrieved /etc/passwd entry
Do “login” processing: setuid to that user, chdir() to the home directory
If anonymous login, do a chroot() before giving up root privileges
But there’s a problem in the parser. . .

Complexity and Security 29 / 58

What’s Wrong with This Parser?

The legal sequence is
USER
PASS
session commands

ftpd’s parser treats all commands the same, including USER and PASS
This is a recipe for trouble. . .

Complexity and Security 30 / 58

The Fatal Sequence

USER anonymous
CWD ~root
PASS xxx

The USER command read in the /etc/passwd data for the anonymous login.

When parsing the CWD command, the r̃oot operand was parsed—and the
profile entry for root retrieved—before the command was rejected as
untimely.
The PASS command completed the login sequence—as root. . .

Complexity and Security 31 / 58

The Fatal Sequence

USER anonymous
CWD ~root
PASS xxx

The USER command read in the /etc/passwd data for the anonymous login.
When parsing the CWD command, the r̃oot operand was parsed—and the
profile entry for root retrieved—before the command was rejected as
untimely.

The PASS command completed the login sequence—as root. . .

Complexity and Security 31 / 58

The Fatal Sequence

USER anonymous
CWD ~root
PASS xxx

The USER command read in the /etc/passwd data for the anonymous login.
When parsing the CWD command, the r̃oot operand was parsed—and the
profile entry for root retrieved—before the command was rejected as
untimely.
The PASS command completed the login sequence—as root. . .

Complexity and Security 31 / 58

The Heart of the Problem

The security of the code depended utterly on setting and checking state
variables
The flaw was that other commands could change other state
The programmer had to keep track of all of those state changes—but
didn’t get it right

Complexity and Security 32 / 58

Solution 1

All commands are not equal!
USER can be followed only by PASS; no other commands are valid until
after logging in
Why should the parser accept anything else?
In particular: do not even try to parse other commands until after login

Complexity and Security 33 / 58

Solution 1

def dologin():
while True:

ubuf = readinput()
if ubuf[0:3] != "USER": continue
pbuf = readinput()
if pbuf[0:3] != "PASS": continue
if checklogin(ubuf, pbuf): return

Complexity and Security 34 / 58

Solution 2

Put the login code into a separate program
When it’s done executing successfully, and after it’s set up the proper UID,
directory, etc., exec() the program that handles the rest of FTP
More secure—all the first program can do is log somone in
The rest of the code simply doesn’t exist
Another advantage: to log someone in, you have to change UID, which
requires root privileges
This way, the bulk of the FTP daemon does not require any privileges

Complexity and Security 35 / 58

Reducing Complexity

Both solutions drastically reduce the complexity of the login sequence
More precisely, they reduce its attack surface
Since the login sequence requires privileges and the rest doesn’t, we want
to make it utterly correct
Complex code is more likely to be buggy. . .

Complexity and Security 36 / 58

Guards

Sometimes, it’s possible to put “guard” modules in front of complex code
Guards sanitize inputs, limit string lengths, etc.
These can be buggy, too, of course—but formal specifications help
Lexical analyzer generators, parser generators, etc., are your friend

Complexity and Security 37 / 58

What Went Wrong Here?

(From http://xkcd.com/327/)

Complexity and Security 38 / 58

http://xkcd.com/327/

SQL Injection Attacks

Suppose a program is querying an SQL database based on a userID and
query string:
sprintf(buf, "select where user=\"%s\" && query="%s\"", uname, query);

What if query is
foo" || user="root

The actual command passed to SQL is
select where user="uname" && query = "foo" || user="root"

This will retrieve records it shouldn’t have

Complexity and Security 39 / 58

Input Sanitization?

Simple answer: the student’s name wasn’t processed properly
A name with quotes should have been rejected, or the quote mark should
have been escaped
Input sanitization is a good idea—but robust design is better

Complexity and Security 40 / 58

Input Sanitization is Hard!

What characters should you strip?
Remember names like O’Brien, with a quote mark
Remember Unicode
Remember that Windows uses \ as a pathname separator while Linux uses
/
Remember that there’s a Unicode character that looks like a /
Etc.

Complexity and Security 41 / 58

Interface Design

The deeper problem was the interface between the input module and the
database
The program rendered it as a command string, necessitating a parsing
operation
A better answer: use SQL stored procedures
No need for parsing!

Complexity and Security 42 / 58

Cheswick and Bellovin

“To paraphrase Einstein: make your security arrangements as simple as
possible, but no simpler. Complex things are harder to understand, audit,
explain, and get right. Try to distill the security portions down to simple, easy
pieces.”

Complexity and Security 43 / 58

How Do We Design Security-Sensitive Code?

First and foremost: avoid complexity
Second: modularization
Third: proper interfaces
In other words: the same basic principles, but here especially we want to
be guided by execution environments

Complexity and Security 44 / 58

A Look Back at Our Authentication Design

Developers

1 MFA use should be required,
including for social network
admins

2 U2F is probably the best choice
3 Internal, locked-down database
4 Recovery via management chain

and overnight shipping

Social Network Users

1 MFA should be available
2 U2F support is needed for

employees; TOTP with soft tokens
is more accessible to most users

3 Separate database for
authentication only

4 Recovery via email, plus
password for token loss

Complexity and Security 45 / 58

Why Separate Authentication Databases?

Simplicity of code: no need for as many conditionals
Separation of modules: one module does employee authentication;
another does user authentication
Isolation between modules: no way for the user authentication module to
grant employee privileges; that code simply does not exist in that module

Complexity and Security 46 / 58

Protecting the Data

Also: the user authentication module has no access to the employee
authentication database, which is more sensitive
How do we protect either authentication database from the its
authentication module?
Put the database on a separate server?
Advantages and disadvantages—how do we analyze it?

Complexity and Security 47 / 58

Separating the Database

Advantages

If the code is buggy and insecure,
the database isn’t directly
reachable
The database can be centralized,
while login is distributed (but is
that a good idea?)

Disadvantages

We need another machine
(probably a minor issue)
We need another interface
There is extra code, and perhaps
extra complexity, to sending
queries and receiving responses
There is also a new failure mode:
the authentication database isn’t
reachable

Complexity and Security 48 / 58

How Do We Analyze This?

Execution environment: with separate machines, harder for an attacker to
reach more data
But: what is the interface like?
If it’s SQL-like—select where user="foo"—the attacker can dump the
database or iterate through it
We need a better interface: isvalid(user, pw, MFA)

Note the difference: it’s a semantic interface that enforces the separation
of execution environments
The server might even be able to do rate-limiting if each login server has
its own credentials to access the database

Complexity and Security 49 / 58

What’s the Answer?

It depends!
We are trading complexity for assurance
The exact answer will vary, depending on the threat environment—how
likely is it that the login server will be hacked?—and the complexity of the
actual interface design

Complexity and Security 50 / 58

Implementation Issues

If your coding environment has a good, simple way to pass complex
parameters safely, that reduces code complexity
Examples: Python’s pickle module; JSON encoder/decoders, some
implementations of Remote Procedure Calls (RPC)
The library may be more complex—but your code will be much simpler
(Do you trust the library vendor?)
A good mechanism makes separated databases more attractive

Complexity and Security 51 / 58

TLS Encryption

Conceptually simple to set up
Server: do crazy cryptographic handshakes, send client certificate chain
plus something signed
Client: verify signature, verify certificate chain, verify certificate validity,
verify that the certificate contains the name you wanted to connnect to
So why do so many apps get this wrong?

Complexity and Security 52 / 58

OpenSSL

OpenSSL does many, many things
There are many options, e.g., the list of symmetric ciphers accepted, the
list of asymmetric ciphers, the list of hash functions, the key lengths, and
more
There are different over-the-wire encodings, BER and DER
OpenSSL provides low-level routines for all of this, but doesn’t have the
right high-level routines
Consequence: programmers omit some validation steps
We need a simpler high-level API

Complexity and Security 53 / 58

Other API Considerations

Must protect keys—applications should not handle them
Conclusion: do not provide any API to export keys, only to do things like
encrypt, decrypt, verify, etc.
Sometimes, though, we need to move keys around
Answer: an API to “wrap” keys by encrypting them with another key
This creates complexity—but it is necessary complexity, to preserve the
proper execution environment

Complexity and Security 54 / 58

Language Protections

Object-oriented languages are good for hiding interface details
Example: C++ classes have public and private members
This is not a strong security measure—injected machine code can get at
private data—so what is it good for?
But: it keeps the programers from doing bad things
And: it allows for a future, more secure implementation—perhaps use an
HSM?—if circumstances demand
But: the real benefit is reduced code complexity

Complexity and Security 55 / 58

APIs

API design is crucial
It’s also difficult—it’s too easy to allow too much flexibility
You can provide high-level routines that take the place of many low-level
calls—but if the low-level routines are there, someone will use them
Best guidelines: use good taste, and don’t supply unnecessary options
Yes, it’s hard

Complexity and Security 56 / 58

Complexity

Complexity is the enemy of security
Reducing complexity was one of the original motivations for firewalls. In
1994, Bill Cheswick and I wrote

Corollary 3.1 (Fundamental Theorem of Firewalls) Most hosts cannot
meet our requirements: they run too many programs that are too large.
Therefore, the only solution is to isolate them behind a firewall if you
wish to run any programs at all.

In those days, of course, firewalls were small and simple—and that’s no
longer true. . .

Complexity and Security 57 / 58

Questions?

(Great egret, Central Park, April 1, 2019)

