
Bootstrapping Phonetic Lexicons for New Languages

Sameer R. Maskey1, Alan W Black2,3, Laura M. Tomokiyo3

Dept. of Computer Science, Columbia University, New York, NY1

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA2

Cepstral LLC, Pittsburgh, PA3

smaskey@cs.columbia.edu, awb@cs.cmu.edu, laura@cepstral.com

Abstract
Although phonetic lexicons are critical for many speech appli-
cations, the process of building one for a new language can take
a significant amount of time and effort. We present a bootstrap-
ping algorithm to build phonetic lexicons for new languages.
Our method relies on a large amount of unlabeled text, a small
set of ’seed words’ with their phonetic transcription, and the
proficiency of a native speaker in correctly inspecting the gener-
ated pronunciations of the words. The method proceeds by au-
tomatically building Letter-to-Sound (LTS) rules from a small
set of the most commonly occurring words in a large corpus of a
given language. These LTS rules are retrained as new words are
added to the lexicon in an Active Learning step. This procedure
is repeated until we have a lexicon that can predict the pronun-
ciation of any word in the target language with the accuracy
desired. We tested our approach for three languages: English,
German and Nepali.

1. Introduction
Most speech applications utilize language-specific pho-
netic lexicons to derive word pronunciation. Unfortu-
nately, such lexicons are not readily available for new lan-
guages; this creates a significant barrier for applications
in speech synthesis and recognition. One way of address-
ing this problem is to list all pronunciations in the lexi-
con. This approach, however, is costly in terms of time
and errors. Stüker [1] has proposed an alternate strategy
for building such lexicons by voting among phoneme rec-
ognizers in nine different languages; however, they con-
clude that, as yet, their method is not suitable for high
quality lexicons. Bellegarda [2] has proposed a data-
driven grapheme-to-phoneme conversion procedure by
computing the distance between new words and words
whose pronunciation are known. Other methods have
been proposed by [3] and [4] to build or adapt available
pronunciation dictionaries, but these methods assume an
existing base phonetic lexicon.

Here we present a novel method to build such a base
lexicon for a new language. Our approach is based on
access to a substantial amount of text in the target lan-
guage and a small set of seed words with their phonetic
transcriptions. In some languages (e.g. Spanish), the re-
lationship between orthography and pronunciation is triv-
ial while in other languages (e.g. English, German), the
relationship is more opaque. The more opaque the lan-
guage, the more difficult it is to build its phonetic lexi-

con. We have used our method successfully for both triv-
ial (Nepali) and opaque languages (English).

In our approach, we begin with a seed lexicon of
hand-annotated pronunciations. We build an initial set
of LTS rules from this base lexicon. We add new entries
to the lexicon in a bootstrapping process designed to en-
hance the accuracy of the LTS rules. We iteratively add
entries to the lexicon until we reach a desired pronun-
ciation accuracy threshold. We demonstrate that, as we
enlarge the lexicon, the information provided by words
already in the lexicon help to predict words that are not
yet in the lexicon. The important issues we must address
in this process are i) what set of words should be added in
each iteration, and ii) how do we verify that the predicted
pronunciation of words in the lexicon is correct.

To address (i), we regard our process as a form of
Active Learning. An active learner always begins with
a small set of labeled data. It then looks for instances
in a pool of large unlabeled data that increase the clas-
sification accuracy most rapidly [5] [6], and then asks a
human annotator to label those instances. In our case, we
have a large amount of text (unlabeled for pronunciation)
and a few seed words labeled with their pronunciations.
Since the accuracy of phonetic lexicons can be measured
by the number of tokens in any given text that are pro-
nounced correctly, a basic function to select the words
which might increase the accuracy of the lexicon would
be to add the N most frequently occurring words in the
corpus that are not yet in the lexicon. The fact that the 250
most frequent words in English account for more than
50% of the tokens in any random sample of Wall Street
Journal (WSJ) [12] text intuitively supports the hypoth-
esis that incrementally adding the most frequent words
not yet in the lexicon at each iteration should boost its
accuracy. The second issue (ii) is not an easy task in ac-
tual practice for a new language. First, we predict the
pronunciation of each new word selected for addition to
the lexicon, together with a confidence score for that pro-
nunciation. If the confidence score is greater than a cer-
tain threshold, the word and its predicted pronunciation
is immediately added to the lexicon. Otherwise we ask a
native speaker to correct the pronunciation, if necessary.

In this paper, we first describe the bootstrapping al-
gorithm we employ (Section 2). In Section 3 we describe
the corpus we used. In Section 4 we describe the exper-

imental setup and accuracy results, and in Section 5 we
present our conclusions.

2. The Bootstrapping Algorithm
1. We begin by collecting a substantial amount of text

in the target language. We build a set of the most
frequent words, which we call set Li. We select
the top 200–500 most frequent words from set Li

depending on the percentage of tokens these words
account for in random segment of the corpus as the
SEED WORDS for our procedure, which we term
Si. In addition, we also add enough words to en-
sure that every letter in the language’s orthography
occurs at least once.

2. We next ask a native speaker to assign pronunci-
ations to Si. We use a generic data-driven LTS
rule system [7] to build a set of initial pronunci-
ation rules from our seed lexicon. We term this set
of rules plus lexicon built at this stage Pi.

3. We next select the N most frequent words from the
new set Li+1 (Li − Si), which we term Si+1.
The value of N is defined by the user, however,
we suggest that N should be small in the first few
iterations and larger in later iterations. Since the
earlier LTS rules will be less accurate, a large N

would mean that more words are mis-pronounced,
and thus must be corrected in the active learning
stage.

4. We then predict pronunciations for each word in
Si+1 using our previously derived LTS rules and
lexicon the pronunciation module Pi.

5. We compute confidence scores Co for all the
pronunciations generated by the system for these
words. We first compute Co using an orthography
distance measure between the test word w and all
words in the lexicon.

Co =
2 ∗ |(lcs(w, wk)|

|w| + avg(|wk |)
(1)

k = 1..m (Num. of words in lexicon with LCS)

The computation of Co assumes that similar or-
thography correlates with similar pronunciation.
So, if there are words in the lexicon that are or-
thographically similar to w, our confidence in the
pronunciation predicted by Pi for w will be higher.
Co is computed by finding all words wk in the lex-
icon with the longest common subsequence (LCS)
’q’ compared with w; e.g., if the LCS between w
and any word in the lexicon has length ’q’, then we
find all words in the lexicon with LCS of length ’q’,
whether they are the same strings or not. We term
this set Sw. Then we divide 2 times ’q’ (the length
of the LCS) by the sum of the length of w and the
average length of Sw. Thus, if there is a close to

exact match between w and any current lexical en-
tries, the confidence score for the pronunciation of
w will be close to 1; otherwise it will be less. If the
Co is higher than some threshold to, we compute
an additional confidence score, Cp.

6. After finding the orthographically similar words to
w, we next want to compute how closely related
the pronunciation of the words in Sw with the pro-
nunciation of w proposed by Pi. There may be
many words orthographically similar to w which
have quite different pronunciations; in such cases
we should not be confident about the pronuncia-
tion Pi has predicted for w. We compute Cp for
the words in Sw using a variant of the phonetic dis-
tance measure DICE [8].

Cp =
2

m

m∑

k=1

|trigrams(w)∩trigram(wk)|
(1+(pos(w)−pos(wk))2)

(|trigram(w)| + |trigram(wk)|)

(2)
k = 1..m (Num of words in Sw

For each word in Sw, we compute the trigram over-
lap of the phones of its pronunciation with the
phones of the test word and scale it by the posi-
tion of the overlap. That is, we weight overlap oc-
curring in similar position in the phone sequence
more highly. The denominator in equation 2 takes
account of the length of the phone sequences in the
pronunciations of w and wk . We compute average
of these scores for all M words in the set Sw to ob-
tain the confidence score Cp for w. If Cp is greater
than a threshold tp, we assume that the pronuncia-
tion proposed for w by Pi is correct, and we add w
and its pronunciation to the lexicon.

The following is an example from one of iteration
of this procedure:

TEST WORD: rune TEST PHONES: /r uw n/
prunes : /p r uw n z/
pruned : /p r uw n d/
brunei : /b r uw n ay/

prune : /p r uw n/
brunet : /b r uw n eh t/

gruneich : /g r uw n ay k/
where Co =0.78688 Cp =0.24722

We can safely keep the second threshold tp low,
as we have already filtered candidate words with
Co. In our example above, if the to < 0.78 and tp
< 0.24 then the pronunciation of the test word rune
would be considered highly likely to be correct and
added to the lexicon. In the early iterations, to is
set fairly high, so that incorrect pronunciations are
unlikely to be added to a small lexicon.

7. On the remaining words of Si — for which the pro-
nunciation hypothesized by Pi has been deemed

below threshold by the above procedure — we ask
a human annotator to evaluate their pronunciations
and correct them by hand if needed. We then add
these words to the lexicon as well. From this new
lexicon, we build a new set of LTS rules and thus
produce a new pronunciation module Pi+1.

We iterate from 2 to 7 until the lexicon correctly pre-
dicts pronunciations for some percentage of new words
deemed “good enough” for the purposes of the applica-
tion.

3. Data and Languages

We did experiments using this procedure on three lan-
guages: English, German and Nepali.

3.1. Nepali

Nepali is an Indic language spoken by less than 25 mil-
lion people, primarily Nepalese. No phonetic lexicon was
available for Nepali until the current research produced
one. Written Nepali uses Devanagari script similar to
Hindi; there is a close relationship between orthography
and pronunciation. However the language is still complex
enough that the mapping is not trivial. Some characters
in the Devanagari script, such as that corresponding to the
phone /iy/ may appear orthographically either before or
after certain consonants but they are always pronounced
at the end of the consonant. We identify such characters
explicitly in the LTS rules.

We collected Nepali text comprising more than 1 mil-
lion words of text from approximately three years of daily
newspapers in Nepali [9]. We pre-processed the text
to remove English words that are sometimes embedded
within Nepali text. We further normalized the text by re-
moving punctuation and numbers. Then we obtained the
unique words and sorted them by frequency to obtain the
top 350 words as our initial seed set.

3.2. German

For our second test language, German, we obtained a
large volume of text from online newspaper sources. Ger-
man already has a phonetic lexicon, CELEX [10] so we
used this lexicon as an oracle, in place of a human annota-
tor, to evaluate and ‘correct’ our hypothesized pronuncia-
tions as described in Section 2, step 7. For the purposes of
this paper, we assume these pronunciations to be correct.

3.3. English

For English, we used 50 million words of WSJ text [12]
as a source of data. As for German, we used an exist-
ing lexicon, the Carnegie Mellon Pronouncing Dictionary
(CMUDICT) [11] as an oracle to evaluate and correct
pronunciations hypothesized by our method. We again
assume these pronunciations to be correct.

4. Experiments and Results

For each language, we first identified the J most frequent
words, where J varied between 118K for English, 225K
for German, and 100K for Nepali. We then divided J into
p development sets. We made the first few such sets small
– 100 words each for the sets used in the first 10 itera-
tions of the algorithm. We increased this size for later
iterations to 250, 500, 750, 1000, 2500 and 5000 words,
decreasing the number of iterations used with each set to
avoid fatigue for the Nepali annotators.

We also created 10 test sets of 5000 word (tokens) of
held out data for English from the news corpora described
in Section 3. We term these the TOKENS test sets. From
each TOKENS set, we created two other test sets: A set
consisting of all the unique words in the tokens set – the
TYPES test sets – and a set of all the types occurring more
than once in the TYPES set, which we term TYPES PLUS.

We tested on each of these test sets at each iteration of
lexicon creation – each in two different scenarios. i) We
check for pronunciations of all test words manually or by
oracle and add these to the lexicon; ii) We use the metrics
Co and Cp to identify pronunciations we are confident
in and automatically add these to the lexicon, and then
check the pronunciation of the remaining words manually
or by oracle and them as well.

We tested our algorithm on English, German and
Nepali. The results for English are shown in the Figure 1.
Out initial 250 word seed set produced a lexicon of more

0 2000 4000 6000 8000 10000 12000 14000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total words in the Lexicon

%
 o

f c
or

re
ct

 w
or

ds
 in

 th
e

he
ld

 o
ut

 te
st

 s
et

tokens
types>1
types

Figure 1: Accuracy of bootstrapped English lexicon on
each iteration for each of the 3 types of tests for 3 held
out test sets

than 55% accuracy on the Tokens test set. Lexicon ac-
curacy on held out test data quickly grew to above 90%
in just 18 iterations with only 4000 entries in the lexi-
con; after the twentieth iteration, accuracy improved only
slightly. On average, confidence scores added 9.92% of
test words automatically. Average precision for the con-
fidence metric was 87.79% with the threshold Co and Cp

set at 0.8 and 0.4, respectively after iteration 12.

After only 23 iterations we obtained a lexicon for En-
glish with 16,000 entries with a pronunciation accuracy
of 94.31% on the held-out TOKENS test set and 87.23%
on TYPES set. Furthermore, it is approximately one-
seventh the size of CMUDICT. The accuracy achieved
for the TYPES test set was lower than for the TOKENS

test set by 7.08%, as we had expected.
For German with a lexicon of only 350 words, we ob-

tain a pronunciation accuracy of 35% on the TOKENS test
set. In subsequent iterations, accuracy increased in the
same way as for English. After 13 iterations, our proce-
dure achieved an accuracy of 90%. For the TYPES test
set, we obtained a maximum of 80.67% accuracy, and for
TYPES PLUS our maximum accuracy was 87.04%. After
ten iterations accuracy on TYPES PLUS increased very lit-
tle, perhaps due to the high variation in the morphological
structure of words in German.

Finally, we tested our procedure on Nepali, for which
no phonetic lexicon was previously available. The lex-
icon had 350 most frequent words in the first iteration.
The lexicon and its LTS rules at this stage had accuracy
rate of 60%, when manually checked. We obtained a pre-
cision of 91.47% for our confidence metrics, Co and Cp.
No held-out test data was available for Nepali, so instead
we manually tested about 100 word types in the devel-
opment set for each iteration. In average 12 words were
added to the lexicon automatically using our confidence
scores; the rest had to be checked by hand. Thus, our con-
fidence scoring reduced the words that had to be manually
checked by 12%.

Lexicon accuracy for word types occurring with fre-
quency > 3 had an accuracy of 80.9% initially. After
16 iterations, we obtained a pronunciation accuracy of
92.9% on new data. For tokens that were not in the lexi-
con, the initial accuracy was 69.8%. After bootstrapping
was complete we obtained an accuracy of 94.6%.

We believe that fewer words need to be verified in
Nepali compared to the other two languages (English and
German) to achieve more than 90% accuracy rate because
Nepali has the advantage of having orthography and pro-
nunciation more closely related.

5. Conclusion

We presented a bootstrapping algorithm that can be used
to build phonetic lexicons for new languages without ex-
isting phonetic lexicons but where large amounts of un-
labeled text are available. Indeed, new, accurate, and ef-
ficient lexicons can be built in as short a duration as a
couple of weeks, as we did for Nepali. While it may be
easier to produce a lexicon for a language like Nepali,
whose orthography and pronunciation are closely linked,
we have also demonstrated that a similar process can be
followed for more opaque languages like English and
German, where there is a looser relationship between
written and oral forms. Our technique achieves signifi-
cant coverage for a language with a significant saving in
manual labor, since, by using active learning techniques
and effective confidence metrics, only some data must be

labeled by hand. We also show that a lexicon built using
our method is likely to need fewer entries than existing
lexicons for English and German, because of our incre-
mental approach; for example, our bootstrapped English
lexicon is five times smaller than the CMU lexicon but
achieves high accuracy nonetheless.

6. Acknowledgments
This work was partially supported by DARPA/TIDES
grant N66001-00-1-8919. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of DARPA/TIDES.

7. References
[1] Stüker, S., “Automatic Generation of Pronunciation Dic-

tionaries - For New, Unseen Languages by Voting Among
Phoneme Recognizer in Nine Different Language”, Studi-
enarbeit, Institut für Logik, University of Karlsruhe.

[2] Bellegarda, J.R, “A Novel Approach to Unsupervised
Grapheme to Phoneme Conversion” Pronunciation Mod-
eling and Lexicon Adaptation for Spoken Language, 2002

[3] Riley, D. M., and Ljolje A., “Automatic Speech and
Speaker Recognition: Advanced Topics”, Kluwer Pub-
lishers, 1995

[4] Lamel, L., and Adda, G, “On Designing Pronuncia-
tion Lexicons for Large Vocabulary, Continuous Speech
Recognition”, Proceedings of ICSLP-96, pp 6-9

[5] Sarawag, S., Bhmidipaty, A., “InterActive Deduplication
using Active Learning”, SIGKDD 02 Edmonton, Alberta,
Canada, 2002

[6] Tong, S., Koller, D., “Support Vector Machine Active
Learning with Applications to Text Classification”, Jour-
nal of Machine Learning Research, pages 45-46, 2002

[7] Black, A. Lenzo, K., and Pagel, V., “Issues in building
general letter to sound rules”, Proc. ESCA Workshop on
Speech Synthesis, (Australia, 1998), pp. 77–80.

[8] Brew, C. and D. McKelvie, “Word-pair extraction for lexi-
cography.”, In Proceedings of International Conference on
New Methods in Natural Language Processing, Bilkent,
Turkey, pp. 45-55

[9] Mercantile Communications Pvt. Ltd, Nepal news,
http://www.nepalnews.com, 2001.

[10] Linguistic Data Consortium, Celex2, LCD96L14, 1996.

[11] CMU, Carnegie Mellon Pronouncing Dictionary, 1998.

[12] Linguistic Data Consortium, Wall Street Journal, 1995.

