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Abstract

We present a novel formalism for introducing deep
belief features to Hierarchical Machine Translation
Model. The deep features are generated by unsupervised
training of a deep belief network built with stacked sets of
Restricted Boltzmann Machines. We show that our new
deep feature based hierarchical model is better than the
baseline hierarchical model with gains for two different
languages pairs in two different data size settings. We ob-
tain absolute BLEU score improvement of +1.13 on Dari-
to-English and +0.66 on English-to-Dari Transtac Evalu-
ation task. We also observe gains on English-to-Chinese
translation task.

1. Introduction

Many different features have been explored for Ma-
chine Translation such as syntactic features [1], language
model features [2] and reordering features [3]. Many of
these features are manually designed based on linguistic
phenomena that relate two language pairs. Instead of de-
signing new features based on intuition, linguistic knowl-
edge and domain, we explore the possibility of induc-
ing new features in an unsupervised fashion using Deep
Learning (DL) paradigm.

There has been growing interest in use of Deep Learn-
ing for various NLP and speech processing tasks. [4] pro-
posed a unified framework based on DL for suite of NLP
tasks such as chunking, parts of speech tagging, named
entity tagging and semantic role labeling. They map the
words into continuous space features and build deep net-
works to perform classification. One of the more closely
related relevant work for Machine Translation is by [5].
They present a deep network structure which can per-
form Machine Transliteration. They train their network
by mapping characters into deep network features and
tie the source and target transliteration by a large hidden
layer on the top of the network.

2. Deep Learning for MT

Hierarchical Machine Translation Model (Hiero) has
been widely used since it’s introduction by [6]. We em-
ploy our implementation of Hiero as the baseline model.
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Hiero is based on Synchronous Context Free grammar
such that the MT model is a set of grammar rules that can
be used to parse the source sentence. Each rule has a set
number of features that are combined in log linear fash-
ion for a decoding process. Using Deep Belief Networks
we would like to induce new features for each rule.

2.1. Deep Belief Networks

Deep Belief Network (DN) is a type of generative model
that is composed of multiple layers of latent variables
with the first layer representing the visible feature vec-
tors. Deep Belief Network D consisting of [ layers mod-
els a joint distribution between the hidden nodes in all
layers h*, k = 1, ...,1 and all the visible nodes vj.

A key parameter of the model that needs to be es-
timated by training algorithm for DN is the weight ma-
trix, W, that defines the relationship between layers hf
and hf +1. Since the DN does not allow same layer node
connections, the factorial conditional distribution can be
given by

p(hF[RFY) = T p(h|R*HY) )
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The joint distribution between layer pairs can be mod-
eled using Restricted Boltzmann Machines (RBM). RBM
with v visible units and A hidden units has the following
joint distribution

p(o,h) = eap(~E(v, ) @
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Z is a normalization constant for the given distribu-
tion given by >, >, e F(9) where model parame-
ter § = (W, b, c) and b is biases for visible units; and ¢
is biases for hidden units. E(v, h) is also known as en-
ergy of the state (v,h). Since we do not allow visible-
visible and hidden-hidden connections the conditional
distributions p(v|h) and p(h|v) for RBM are factorials,
i.e. p(v|h) = [, p(v;|h) such that

pv; = 11h;0) = o (> Wishi +bj) 6)
and
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2.2. Deep Features based Hierarchical MT

Let us describe our Deep Features based MT model. Let
(sq,tq) be a source-target sentence pair in our training
corpus with a total of 7" number of sentences. Let the fi-
nal rule set R include rules with 0, 1 and 2 non-terminals.
Each rule in R consists of 4 static features which we de-
scribed earlier in Section 2. An example rule with 2 non-
terminals is shown below where f, is a feature for the
rule estimated from the phrase and alignment table.

X—> Xy the Xo, Xode Xy, fi1, f2, f3,f2 (8)

We build DN such that the first layer with visible
nodes equal the number of features in our baseline Hiero
model. Hence, the total number of visible nodes Vo = 4
in our Deep Network D. Each visible node v; corre-
sponds to our original feature f; of our Hiero model. We
then design our network with various layer sizes and var-
ious number of layers. There is no easy standard way
of inducing network structure for deep networks [7]. For
our models, we explore four different types of network
structures shapes which are Parallel (R), Pyramid (P), In-
verted Pyramid (I) and Diamond (D) shaped structures.
All of the structures have visible layer with 4 nodes for 4
baseline features.

We first experimented with deep networks with a sin-
gle layer of hidden nodes, effectively Restricted Boltz-
mann Machine (RBM). We consider RBM with Gaussian
visible units with a fixed variance of 1. Hence, the update
Equation 6 needs to be modified to Equation 9.

p(v; = 1|h;0) = N(O_ Wijhi + b)) ©)
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We maximize the log-likelihood of the feature distri-
bution using Equation 10.

dlogp(v,h) OlogE(v,h)

7< OlogE (v, h)
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where < . >( denotes an average with respect to
the product of the data distribution (Hiero feature distri-
butions) and p(h|v). On the other hand < . >, rep-
resents an average with respect to the model distribu-
tion. [8] proposed an efficient training ‘contrastive diver-
gence’ algorithm where < . > is estimated by < . >,
where k can be as small as 1. This results in a very sim-
ple gradient estimator for weight W;; simply by getting
p(hi = 1jv)v; — p(h; = 1|v’)v} where v’ is a sample
from reconstructed data distribution. Hence, to train our
deep network for Hiero features we first take all the rules
to form a rule set Ry. We divide the rule set into B num-
ber of batches where B = %; N is the number of rules
in each batch.

For each batch the derivative of log likelihood is com-
puted as shown in Equation 10 and update the weights.
The updates are averaged across all the rules in the batch.
One full iteration of training includes B number of up-
dates to RBM parameters 6 which are W, b, c. We keep
track of reconstruction error p(h; = 1lv)v; — p(h; =
1|v’)v} and iterate until it converges. Once the training is
completed the trained weights W, and biases b are used
to generate RBM features F); for all of our rules in rule
set R such that | Fy| = |R|. We should note that the train-
ing is an unsupervised training algorithm and we do not
assume presence of any human labels.

3. Experiments and Results
3.1. Data and Baseline Model

We first performed evaluations on a task of Dari-English
bi-directional speech translation task. The training data
consisted of about 150K parallel sentences. A held out
set of randomly sampled sentences were selected to pre-
pare held out development and test set. The held out test
sets contained 1569 and 1275 sentences for E2F and F2E
directions respectively. We also performed our experi-
ments on a larger data set size for a different language
pair: Chinese-English. For the larger set we had 0.878
million sentences with 1500 sentences for E2F and 1000
sentences for F2E test set respectively. The corpus is
a part of conversational MT corpus and is a superset of
IWSLT corpus [9].

E2F F2E
Baseline | Dev | 0.1355 | 0.1425
Test | 0.1337 | 0.1422

Table 1: Baseline Results for Dari-English MT model

(Hiero) 1-reference
We first built our baseline hierarchical MT (Hiero)

model following [6]. We obtained development and test
set BLEU scores as shown in Table 1 which were 0.1425
and 0.1422 respectively for Foreign to English (F2E) di-
rection. Similarly, BLEU scores were 0.1355 and 0.1337
for E2F direction respectively.



3.2. Deep Feature Hierarchical Model

Deep Model E2F F2E
4x4 Dev | 0.1354 | 0.1504
Test | 0.1342 | 0.1481
4x4x4 Dev | 0.1382 | 0.1473
Test | 0.1390 | 0.1503
4x4x4x4 Dev | 0.1382 | 0.1497

Test | 0.1388 | 0.1522
4x4x4x4x4 Dev | 0.1373 | 0.1466
Test | 0.1367 | 0.1456
4x4x4x4x4x4 Dev | 0.1377 | 0.1455
Test | 0.1385 | 0.1471
4x4x4x4x4x4%4 Dev | 0.1342 | 0.1455
Test | 0.1358 | 0.1507
4x4x4x4x4x4x4x4 | Dev | 0.1261 | 0.1445
Test | 0.1254 | 0.1453

Table 2: Deep Models with Additional Layers of Hidden
Nodes : Dari-English (1-reference)

Using the 4 features of baseline Hiero model as in-
put features to 4 visible nodes we then built Deep Belief
Network of various sizes and types. First, a single layer
network (effectively RBM Model) with 1 layer of 4 hid-
den nodes was trained. We ran 50 iterations of contrastive
divergence with 0.001 for learning rate and 0.0002 for
weight decay. Learning rate and weight decay were de-
cided empirically. After obtaining the trained weight W;;,
and biases b we generated the features by passing all Ry
rules through the network. Each set of resulting features
were normalized by an average for that feature set and
were appended as extra features to the model. The re-
sults are shown in Table 2. We can see that the deep
model with 1 layer (4x4 RBM Model) does better on both
tune and test sets for both direction with BLEU scores of
0.1504 and 0.1481 respectively which is +0.79 and +0.59
absolute better than baseline for F2E direction. We see
that with 1 layer RBM Model we do not see much gain in
E2F direction.

3.2.1. Discussion : Network Depth and Structure vs. MT
Performance

[10] has shown that adding more hidden layers always
maximizes the log-likelihood of the generative deep net-
work model. In order to explore the best depth of the
deep network we built deep networks of various sizes. In
total we build eight deep networks Di, D3, ..., Di with
1,2, ...,8 layers of hidden nodes respectively. D3 with 3
layers and 4 hidden nodes on 3rd layer is represented by
4x4x4 in Table 2. The effect of increasing the depth of
our deep network can be seen in Table 2. We should note
that the deep network starts to overtrain when we add too
many layers. The best network for E2F direction is D}
with depth level of 3 and for F2E direction D} with depth

level of 4. The test set BLEU score for D3 for E2F di-
rection is 0.1390 which is +0.53 absolute better than the
baseline model. Similarly, test set BLEU score for DfL
for F2E direction is 0.1522 which +1.00 absolute better
than the baseline as shown in Table 2. We would like
to emphasize that we obtained above improvement in a
completely unsupervised fashion of inducing features.

E2F F2E

4x4x8x12x12 Dev | 0.1365 | 0.1469
Test | 0.1392 | 0.1464
4x4x8x12x12x16 | Dev | 0.1399 | 0.1474
Test | 0.1388 | 0.1449
4x8x12x16 Dev | 0.1357 | 0.1559
Test | 0.1375 | 0.1538
4x4x8x12x12x8x4 | Dev | 0.1403 | 0.1499
Test | 0.1403 | 0.1399
4x3x2 Dev | 0.1329 | 0.1522
Test | 0.1340 | 0.1521

Table 3: Various Deep Network Structure based Features
for MT: Dari-English (1-reference)

Network structure of DN can also make a signifi-
cant difference in the MT performance. We also experi-
mented with different types of Network structure such as
Diamond, Pyramid, Inverse Pyramid and Parallel shaped
structure. Results in Table 3 show that we can obtain the
highest F2E dev and test set performance with Inverse
Pyramid structure 4x8x12x16 (4 layers with 16 nodes at
the top layer) with a BLEU score of 0.1559 and 0.1538
respectively.

Although general trend of improvement with the use
of DN applies for both direction as seen in result Ta-
bles 2 and 3 we observe that different network struc-
tures may work better for different directions of trans-
lations. For example, 4x8x12x16 model was the best for
F2E while 4x4x8x12x12 worked the best for E2F direc-
tion. For both direction we see that instead of having
only 4 hidden nodes in each layer having more nodes in
higher level layers is helpful; but again this property also
seem direction dependent. This can be noted by observ-
ing that 4x4x8x12x16x4 structure which is worse than
4x4x8x12x12 on F2E but better on E2F. In fact, we see
for this diamond like deep network structure, E2F does
the best with +0.66 absolute BLEU score improvement
over the the baseline. Hence, finding the optimal struc-
ture of deep network is important when we use deep net-
work feature for machine translation.

E2F F2E
4x4x8 | Dev | 0.0950 | 0.1347
Test | 0.0969 | 0.1403

Table 4: Deep Hiero with No Baseline Features; Dari-
English (1-reference)



E2F F2E
Baseline | Dev | 0.1821 | 0.2621
Test | 0.1808 | 0.2428

Table 5: Baseline Chinese-English Hiero Model (1-
reference)

In order to validate our deep feature based MT model
further we also experimented on a larger data set for a dif-
ferent language. We experimented on Chinese-English
translation task with more than 0.878 million sentence
pairs of training data as described in 3.1. Our baseline
model resulted in BLEU scores of 0.1808 for E2F direc-
tion and 0.2428 for F2E direction (1 reference) on the
dev set as shown in Table 5. Even though we did not see
significant gains on F2E direction, our best deep network
model for Chinese-English resulted in BLEU scores of
0.1865 for E2F (Table 6) which is +0.57 absolute better
than than the baseline models showing that unsupervised
DN features are useful for larger data set as well.

In both languages different network structures pro-
vided the best performance for different directions. For
future work, we would like to automatically induce the
optimal network structure for given data size and lan-
guage pair instead of performing an exhaustive search.
One should also note that our formalism has no con-
straints tied to hierarchical model and one can use the
same technique to generate deep belief features for phrase
based model as well.

E2F F2E

4x4 Dev | 0.1887 | 0.2626
Test | 0.1865 | 0.2430
4x4x4 | Dev | 0.1855 | 0.2627
Test | 0.1844 | 0.2418
4x8x12 | Dev | 0.1849 | 0.2557
Test | 0.1825 | 0.2467

Table 6: Results with Deep Features in Chinese-English
Model (1-reference)
4. Conclusion

We presented a new formalism of using deep learning for
introducing unsupervised features based on deep belief
networks to Hierarchical Machine Translation model and
presented results for Dari-English and Chinese-English
translation tasks. Our method produced deep feature
Hiero model which was better than the baseline by
+1.13 on F2E direction and +0.66 on E2F direction for
Dari-English language pair. We also showed gains for
Chinese-English translation. We experimented with ef-
fect of increasing the depth of networks and its effect
on BLEU; and we saw that after a certain depth, adding
layers may not necessarily help translation. We also ex-
perimented with different types of deep network struc-
ture including parallel (R), Pyramid (P), Inverse Pyramid
(InvP), Diamond shaped (D) structures. We noted that

structure had a significant influence on the deep feature
Hiero model performance, and in general increasing the
number of hidden nodes at higher layers provided better
deep MT model. We believe the deep belief features are
adding discriminating power to the translation decoder
such that the noisy hypothesis are pruned. To our best
knowledge, this is the first paper to show the use of un-
supervised deep belief features that improves statistical
machine translation.
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