
The Specification and Execution of
Heterogeneous Synchronous

Reactive Systems

Stephen Edwards

Doctoral Qualifying Examination

December 11th, 1995

Slide 1

The problem

We want to describe large systems
using a variety of languages.

C
FSMs

Dataflow

Boolean

Network

LISP

How to connect them?

Slide 2

Example: Digital answering machine

User

Interface

Controller

Line

Controller

Display

Buttons,

Switches

Dialtone

Detector

DTMF

Decoder
Compressor

Decom-

pressor

Memory

Tcl/Tk

Tcl/Tk

C FSM

Dataflow Dataflow ASM ASM

C

Digitized Phone Line

Slide 3

Two camps� Grand Unified Language

Translate everything into a single language:

C FSMs Dataflow
Boolean
Network

LISP

GUL (expensive) compilation� Hierarchical Heterogeneity (used here)

Leave parts of the system abstract:

Interface style imposed

Communication style imposed

Arbitrary module contents

Slide 4

My proposal

Expected contributions:� A mathematical framework for heterogeneously

specifying an important class of systems
(reactive) based on an existing communication

scheme (synchronous semantics).� A set of execution schemes (schedulers) for these

specifications.� An efficient implementation in an existing

multi-language environment (Ptolemy).

Hypothesis: Synchronous semantics can be made

heterogeneous and used effectively to describe

reactive systems.

Slide 5

Outline� Introduction and Motivation� Scope: Reactive Systems and Synchronous
Semantics� My Specification Scheme and its

Mathematical Framework� Execution Techniques� Work to Date and Future Work

Slide 6

Scope: Reactive systems

[Harel, Pnueli 85]� Maintain an ongoing dialog with their
environment—listen, don’t terminate� When things happen as important as what happens� Discrete-valued, time-varying� Examples:

– Systems with user interfaces� Digital watches� CD players

– Real-time controllers� Anti-lock braking systems� Industrial process controllers

Many currently designed with ad-hoc

techniques—difficult to do quickly and reliably

Slide 7

Synchronous semantics

[Berry, Halbwachs, Benveniste, et al.]

Basic idea: Instantaneous Computation

Induces a discrete model of time:

Time

Instants� Rigorous: Synthesis, verification made easier.

Fewer states than asynchronous.� Decomposable: Decomposes without affecting

behavior, expressiveness.� Predictable: Deterministic concurrency.� Buildable: Make system faster than environment.

Difficult to build systems with exact delays.

Slide 8

Cycles and zero delay

A contradictory specification!

A fundamental problem with zero delay

Existing Schemes Proposed Scheme

check at compile time check at run time

slow compilation fast compilation

no heterogeneity allows heterogeneity

Argument: Checking should not be necessary for

compilation—it is a verification problem.

Slide 9

Outline� Introduction and Motivation� Scope: Reactive Systems and Synchronous
Semantics� My Specification Scheme and its

Mathematical Framework� Execution Techniques� Work to Date and Future Work

Slide 10

My systems:
Network of communicating modules

M1

M2

M3 M4

M5

M6

M7� Synchronous: zero-time computation, instants� Cycles permitted� Exactly one module drives each “wire”� Each module computes a function in each instant� Module functions may change between instants

f0 f1 g0 g1

Slide 11

Wire values:
Finite complete partial orders

[Scott et al.]

A finite complete partial order (CPO): (S;v;?)� S: Finite set of values� v: binary relation (“approximates”) on S

– Transitive: xv y and yv z implies xv z

– Antisymmetric: xv y and yv x implies x = y

– Reflexive: xv x� ? 2 S: ?v x for all x 2 S?1 0 11 01 10 00?1 1? 0? ?0???v 0,?v 1 Pointwise extension

Slide 12

Modules:
Monotonic functions

A monotonic function f : S! S has

xv y implies f (x)v f (y)
x

y

f (x)f (y)
f

f

Intuition: Well-behaved functions:

more in) more out,
“doesn’t change its mind”

If f and g monotonic, so is f �g.

Slide 13

Extending module functions

The input and output to each module is the vector of

all wires in the system.

However, a module only examines its inputs, only

modifies its outputs.

m
A

B
C(A; B; C; D; E; : : :)x = (A; B; C; D; E; : : :)� � �fm(x) = m) Input and output domains are the same

Slide 14

Behavior in an instant:
The least fixed point

Why a fixed point?

f (xt) = xt

System function Wire values at time t

(f = f0 � f1 � � � �� fn) (zero delay)

f0 a
f1

b
f2

c(a;b;c) = (?;?;?)
f0(?;?;?) = (0;?;?)
f1(0;?;?) = (0;1;?)
f2(0;1;?) = (0;1;0)

f2(f1(f0(0;1;0))) = (0;1;0)
Slide 15

Unique least fixed point theorem

[well-known]

Theorem: A monotonic function on a finite complete

partial order has a unique least fixed point.? v f (?) (definition of ?)

f (?) v f (f (?)) (f is monotonic)

f (f (?)) v f (f (f (?)))
?

Behavior: least fixed point of a

monotonic function on a finite CPO

Implications:� unique� always defined� quickly computed� heterogeneous
(only care about monotonicity)

Slide 16

Order-invariance theorem

[Murthy, Edwards 95]

Theorem: The least fixed point is the same for all

composition orders of these functions.

Proof. (technical) Consequence of “one wire,” “one

driver” rule.

Implication: Behavior independent of module

evaluation order—optimize for speed, code size, etc.

?f0 � f1 � f2

f1 � f2 � f0
f2 � f0 � f1

Slide 17

Interfacing with other languages

Original problem: Using multiple languages

One solution: Build a generic module interface

Outside:
A strict

monotonic
function

Inside:
Simple

“function call”
semantics� Need a complete partial order

Solution: Build a flat CPO:

0 1 2 � � � n?� Need a monotonic function

Solution: Make the foreign function strict:

f (: : :;?; : : :) = ?
Slide 18

Outline� Introduction and Motivation� Scope: Reactive Systems and Synchronous
Semantics� My Specification Scheme and its

Mathematical Framework� Execution Techniques� Work to Date and Future Work

Slide 19

Implementation

Problem: In each instant, find the least fixed point.

Solution: (follows from proof of fixed point theorem)?v f (?)v f (f (?))v �� � v LFP = LFP = � � �
For each instant,

1. Start with all wires at ?
2. Evaluate all module functions (in some order)

3. If any change their outputs, repeat Step 2

Challenge: Reduce the number of function evaluations.

Order-invariance ensures same result for all orderings.

Slide 20

Other Execution Schemes

Esterel V3 Compiler: Tabular FSM

[Berry et al. 88]

Recall results from a table at run time.

Esterel

source

explicit
exhaustive

simulation

FSM

Table

Esterel V4 Compiler: Boolean Network

[Berry, Shiple, Malik et al. 94]

Simulate a boolean network at run time.

Esterel

source

syntactic

translation

cyclic
boolean

network

implicit

(BDD-based)

exhaustive

simulation

acyclic
boolean

network

Slide 21

Execution Schemes Compared

My scheme No checking for contradications

Execution
Scheme

H
eterogeneous

C
om

pilation
T

im
e

E
xecutable

Size

E
xecution

Speed

Tabular
FSM no exp. exp. const.

Boolean
Network no exp. poly. poly.

Convergent
Iteration yes poly. poly. poly.

Slide 22

Scheduling

Possible objectives� Minimize execution time or code size

Possible approaches� Fully static scheduling

Determine evaluation order once at
compile-time.� Fully dynamic scheduling

Determine evaluation order at run-time.

Possible techniques� Clustering (e.g., [Buck 93])� Weak Topological Ordering [Bourdoncle 93]� Strong Component Decomposition

[Buhl et al. 93]� Minimum feedback arc set (NP-complete)

Slide 23

Outline� Introduction and Motivation� Scope: Reactive Systems and Synchronous
Semantics� My Specification Scheme and its

Mathematical Framework� Execution Techniques� Work to Date and Future Work

Slide 24

Work to date� Proof of concept:

Wrote a compiler for synchronous language
Esterel with simpleminded scheduler

lines 297 467 619

V3 Compilation (m:s) 0:52 4:43 15:57

My Compilation (m:s) 0:02 0:03 0:03

V3 Executable (K) 870 3700 12200

My Executable (K) 64 80 96

V3 Execution Time (s) 2.8 4.8 6.6

My Execution Time (s) 2.3 2.6 3.2� Foundation for future work:

A mathematical framework based on finite
complete partial orders and monotonic functions.

– unique solution always exists

– can be evaluated different ways

Slide 25

Future work� Extend and polish the mathematical framework� Implement this scheme as a domain in Ptolemy

– Write a simple-minded reference scheduler

– Create primitive modules

– Devise foreign module interface(s)� Work on scheduling schemes

– Find an exact algorithm for the optimal

schedule (probably NP-complete)

– Devise heuristics for approaching the optimum

Slide 26

Conclusion� A heterogeneous approach to reactive systems

based on synchronous semantics� Expected contributions:

1. A mathematical framework for describing

reactive systems using synchronous semantics

2. A set of scheduling algorithms for efficient

execution

3. A practical implementation of these� Proof-of-concept compiler created� Mathematical framework created

Slide 27

