SSlang: A Sparse Synchronous
Language for Hard Real-Time
Tasks

Stephen A. Edwards et al.

CS@ COMPUTER SCIENCE AT

IFIP WG2.8 Functional Programming
May 2022, Cornell Tech, Roosevelt Island, NYC

gcdab=
if a==
a
else
if a<b
gcda (b — a)
else
gd(a—b)b

/I Inferred types
/I Indentation for grouping
/I Everything is an expression

/I User-defined binary infix operators
/I Juxtaposition for function calls

gcdabce = /Il gcd : &Int — &Int — &Int — ()

while deref a !=deref b /I While loops
if derefa<derefb /I OCaml-like references
b <— deref b — derefa // Assignment to references
else

a <— derefa — deref b
¢ <— derefa /I Sequencing

add2 a =a <— derefa +2
mult4d a =a <— derefa x4

main =

let a=new 1 // Allocate and name a new variable
par add2 a /l Parallel function calls

multd a /| execute in prescribed order

/l ais(1+2)*4=12 here

a<—1
par mult4 a

add2 a

/l ais (1 *4) +2 =6 here

blink led =

loop /I Infinite loop
after ms 50, led <— 1 // Schedule future variable update
wait led /I Block on variable update
after ms 50, led <— 0
wait led

3.940p-» 1.42Vavg 2.06Urms _ 10.0H=z

[TME T WANGE T TRIG T |

blink led =
while 1

after ms 50, led <— 1
wait led
after ms 50, led <— 0
wait led

blink led =

while 1
fib 19
after ms 50, led <— 1
wait led S P
after ms 50, led <— 0 %%%%_Hm_‘

wait led

blink led =

while 1
fib 23
after ms 50, led <— 1
wait led :
after ms 50, led <— 0 Vs o e —imE

“TRIG

wait led

50ms

100ms

Oms 50ms 100ms 150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms 100ms 150ms

L L L L L

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms 100ms 150ms

L L L L L

led 0

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

0Oms 50ms

led 0

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

0Oms 50ms

led 0

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

0Oms 50ms

led 0

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
0Oms 50ms 100ms 150ms

led 0

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
0Oms 50ms 100ms 150ms

led 0

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
Oms 50ms 100ms 150ms

led

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
Oms 50ms

led

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
Oms 50ms

led

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led < 1
Oms 50ms

led

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led « 1
Oms 50ms

led

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

led |

100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

led |

led < 0
100ms

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

led |

led < 0
100ms

150ms

blink led =
loop

Oms

led

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

50ms

led < 0
100ms

150ms

blink led =

loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led
led <0
Oms 50ms 100ms 150ms

led

blink led =

loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led
led <0
Oms 50ms 100ms 150ms

led

blink led =

loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led
led <0
Oms 50ms 100ms 150ms

led

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

led 0
100ms

led

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

100ms

led

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

100ms

led

150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

100ms

led

led < 1
150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

100ms

led

led < 1
150ms

blink led =
loop
after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

Oms 50ms

100ms

led

150ms

blink led period =
let event = new () /I Unit-valued variables pure events
loop
led <— 1 — deref led
after period, event <— () / Schedule pure event
wait event // Wait on write, not change

main led =
par blink led (ms 50)
blink led (ms 30)
blink led (ms 20) // LED may toggle three times

Deterministic concurrency

Immutable and mutable values

Algebraic data types, pattern matching

Compiles to C for portability across microcontrollers
Heap-resident function activation records
Reference-counted heap, inspired by Perceus [PLDI 2021]
No true parallelism (for now)

No gradual typing (sorry)

Priority queue of events (time, variable, value), ordered by time

Priority queue of threads, ordered by priority

tick()
While there are queued events now,
Dequeue event e = (now, v, n)
Update variable v with new value n
Schedule each thread blocked on variable v
While there are ready threads,
Dequeue the lowest-priority thread t
Run thread t from where it last blocked,
which may write variables immediately to trigger threads now,
or may schedule future variable update events

One event per variable: scheduling an update deletes any outstanding

Only “later”-priority threads are scheduled when a thread writes to a variable.

SSlang vs. Esterel

[Berry and Gonthier, SCP 1992]

SSLang
Deterministic Yes
Time Sparse
Within instants Totally-ordered
Runtime Dynamic Event Queues

Topology Dynamic, recursive

Esterel
Yes
Dense
Constructive
Statically Scheduled
Static

SSlang vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007] [Zou Ph.D 2011]

SSlang Ptides
Between instants Discrete-event Discrete-Event
Within instants Totally-ordered Discrete-Event
Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

$ imn}-

External
Inputs

Nl

—schedule—>»

tick

_)
Iey] 21| 135
Input queue
post l:] wait'—)
Semaphore L———
Alarm ISR

Timer @ <—set alarm

1:36

14e

143

Event queue

https://github.com/ssm-lang/sslang

https://github.com/ssm-lang/sslang

