EEE:
Programming Tiny, Colorful Computers

Stephen A. Edwards
Columbia University, Department of Computer Science

March 30, 2019
The Arduino Nano

- Mini USB Jack
- Atmel Mega328P Microcontroller
- Reset Switch
- Receive and Transmit LEDs
- Power Light
- User-controlled LED
Getting Started

Start the Arduino IDE
Select Tools → Board → Arduino Nano
Connect Your Arduino

Plug the USB cable into your board

Plug your board into your computer

The board’s power light should be on

Select Tools → Port → COM7

Which COM port may vary; choose the one that is there

Under “Tools → Processor,” select “ATmega328P (Old Bootloader)”
Select File → Examples → 01. Basics → Blink
Upload the Sketch to the Board

Should say “Done uploading.” The user LED should blink
The Blink Example

```cpp
void setup() {
    pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
    digitalWrite(LED_BUILTIN, HIGH);
    delay(1000);

digitalWrite(LED_BUILTIN, LOW);
    delay(1000);
}
```
Connect the RGB LED and switch
Controlling the RGB LED (cycleRGB.ino)

```cpp
const int rpin = 3, gpin = 5, bpin = 6;

void setup() {
    pinMode(rpin, OUTPUT);
    pinMode(gpin, OUTPUT);
    pinMode(bpin, OUTPUT);
}

void rgb(int r, int g, int b) {
    analogWrite(rpin, r);
    analogWrite(gpin, g);
    analogWrite(bpin, b);
}

void loop() {
    rgb(10, 0, 0);
    delay(500);
    rgb(0, 10, 0);
    delay(500);
    rgb(0, 0, 10);
    delay(500);
    rgb(10, 10, 10);
    delay(500);
}
```
const int rpin = 3, gpin = 5, bpin = 6;
const int spin = 19;

void setup() {
 pinMode(rpin, OUTPUT);
 pinMode(gpin, OUTPUT);
 pinMode(bpin, OUTPUT);
 pinMode(spin, INPUT_PULLUP);
}

void rgb(int r, int g, int b) {
 analogWrite(rpin, r);
 analogWrite(gpin, g);
 analogWrite(bpin, b);
}

void wait() {
 while (digitalRead(spin) == LOW);
 while (digitalRead(spin) == HIGH);
}

void loop() {
 rgb(10, 0, 0);
 wait();
 rgb(0, 10, 0);
 wait();
 rgb(0, 0, 10);
 wait();
 rgb(10, 10, 10);
 wait();
}
Controlling Each Color (fadeRGB.ino)

```cpp
const int rpin = 3, gpin = 5, bpin = 6;
const int spin = 19;
int red = 10, green = 0, blue = 0;

void setup() {
  pinMode(rpin, OUTPUT);
  pinMode(gpin, OUTPUT);
  pinMode(bpin, OUTPUT);
  pinMode(spin, INPUT_PULLUP);
}

void update(int &color) {
  while (digitalRead(spin) == HIGH);
  while (digitalRead(spin) == LOW) {
    color = (color + 1) % 12;
    analogWrite(rpin, red);
    analogWrite(gpin, green);
    analogWrite(bpin, blue);
    delay(200);
  }
}

void loop() {
  update(red);
  update(green);
  update(blue);
}
```
The input voltage to the board when it is running from external power. Not USB bus power.

Absolute MAX per pin 40mA

Recommended 20mA

Absolute MAX 200mA

For entire package

USB JACK

Mini Type B

PWM Pin

Port Power

Analog exclusively Pins
Each pin has a number (the pink boxes on “Nano pinout”)

Most pins can be either inputs or outputs

```c
pinMode(4, OUTPUT); // Control the voltage on pin 4
pinMode(6, INPUT);  // Observe the voltage on pin 6
pinMode(19, INPUT_PULLUP); // Observe 19; “suggest” it be high
pinMode(LED_BUILTIN, OUTPUT); // Control pin 13, LED “L”
```
Digital: on or off, high or low voltage; nothing in between

digitalWrite(13, LOW); // Turn off the user LED
digitalWrite(13, HIGH); // Turn on the user LED

A digital read from a pin reports either HIGH or LOW

if (digitalWrite(19) == LOW) {
 // Low voltage on pin 19, a "0"
}
if (digitalWrite(19) == HIGH) {
 // High voltage on pin 19, a "1"
}