
Haskell to Hardware and Other Dreams

Stephen A. Edwards

Columbia University

June 12, 2018

Popular Science, November 1969Popular Science, November 1969

Where Is My Jetpack?Where Is My Jetpack?

Popular Science, November 1969Popular Science, November 1969

Where The HeckWhere The Heck
Is MyIs My

10 GHz Processor?10 GHz Processor?

Moore’s Law

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year.”

Closer to every 24
months

Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.

Four Decades of Microprocessors Later...

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5
2000 2006 2012

1 core 2 cores 8 cores
Transistors: 42 M 291 M 2.3 G

The Cray-2: Immersed in FluorinertThe Cray-2: Immersed in Fluorinert

1985 ECL 150 kW1985 ECL 150 kW

Heat Flux in IBM Mainframes: A Familiar Trend

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.

Liquid Cooled Apple Power Mac G5Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW2004 CMOS 1.2 kW

Dally: Calculation Cheap; Communication Costly

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.

Dark SiliconDark Silicon

Deterministic Concurrency: A Fool’s Errand?

What Models of Computation Provide Determinstic Concurrency?

Synchrony The Columbia Esterel Compiler
2001–2006

Kahn Networks The SHIM Model/Language
2006–2010

The Lambda Calculus This Project
2010–

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Why Functional?

Ï Referential transparency simplifies
formal reasoning about programs

Ï Inherently concurrent and
deterministic
(Thank Church and Rosser)

Ï Immutable data makes it vastly
easier to reason about memory in
the presence of concurrency

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

Recursion

What Do We Do With Recursion?

Compile it into tail recursion with explicit stacks

[Zhai et al., CODES+ISSS 2015]

[Proceedings of the ACM Annual Conference, 1972]

Really clever idea:

Sophisticated language ideas such as recursion and
higher-order functions can be implemented using simpler
mechanisms (e.g., tail recursion) by rewriting.

Removing Recursion: The Fib Example

fib n = case n of
1 → 1
2 → 1
n → fib (n−1) + fib (n−2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (λn1 →

fibk (n−2) (λn2 →
k (n1 + n2)))

fib n = fibk n (λx → x)

Name Lambda Expressions (Lambda Lifting)

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (k1 n k)

k1 n k n1 = fibk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = fibk n k0

Represent Continuations with a Type

data Cont = K0 | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → fibk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k), n1) → fibk (n−2) (K2 n1 k)
((K2 n1 k), n2) → kk k (n1 + n2)
(K0, x) → x

fib n = fibk n K0

Merge Functions

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK k 1)
(Fibk 2 k) → fibk (KK k 1)
(Fibk n k) → fibk (Fibk (n−1) (K1 n k))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2) → fibk (KK k (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n K0)

Add Explicit Memory Operations

read :: CRef → Cont
write :: Cont →CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (read k) 1)
(Fibk 2 k) → fibk (KK (read k) 1)
(Fibk n k) → fibk (Fibk (n−1) (write (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) → fibk (KK (read k) (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n (write K0))1

Functional IR to Dataflow

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Non-strict function: body
starts evaluating lp before s is
available

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Read: pointer → data
Write: data → pointer

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Read: pointer → data
Write: data → pointer

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Pattern matching with a
decomposition mux

read

Nil Cons Nil Cons

+

lp s

x

x

xs

xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Pattern matching with a
decomposition mux

read

Nil Cons Nil Cons

+

lp s

x

x

xs

xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Tail recursion: physical loop read

Nil Cons Nil Cons

+

lp s

x

x

xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Non-strictness enables
pipeline parallelism: second
list element is read before
first processed

read

Nil Cons Nil Cons

+

lp s

x

x

xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

Buffer sizes affect pipeline
depth

read

Nil Cons Nil Cons

+

lp s

x

x

xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

s arrives: can start computing
sum

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Dataflow to Hardware

Patience Through Handshaking

Want patient blocks to handle delays from

Memory systems
Data-dependent

computations

Full buffers
Shared resources
Busy computational

units

u
p

stream

d
o

w
n

stream

data

valid

ready

valid ready Meaning

1 1 Token transferred
1 0 Token valid; held
0 − No token to transfer

Latency-insensitive Design (Carloni et al.)
Elastic Circuits (Cortadella et al.)
FIFOs with backpressure

Patience Through Handshaking

Want patient blocks to handle delays from

Memory systems
Data-dependent

computations

Full buffers
Shared resources
Busy computational

units

u
p

stream

d
o

w
n

stream

data

valid

ready

valid ready Meaning

1 1 Token transferred
1 0 Token valid; held
0 − No token to transfer

Latency-insensitive Design (Carloni et al.)
Elastic Circuits (Cortadella et al.)
FIFOs with backpressure

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0

in1 out

f

Datapath

Combinational function ignores flow control

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0

in1 out

f

Valid network

Output valid if both inputs are valid

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0

in1 out

f

Ready network

Input tokens consumed if output token is consumed
(output is valid and ready)

Multiplexer Block

in0 in1 in2

out

select

in0

in1

in2

select out

decoder

Demultiplexer Block

out0 out1 out2

in

select

select

in

out2

out1

out0

decoder

Buffering a Linear Pipeline

Combinational block

Data buffer:
Pipeline register
with valid, enable

0
1

Control Buffer:
Register diverts token when
downstream suddenly stops

0
1

0
1 0

1
0

Long Combinational Path (Data + Valid)

Long Combinational Path (Ready)

Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

Buffering a Linear Pipeline

Combinational blockData buffer:
Pipeline register
with valid, enable

0
1

Control Buffer:
Register diverts token when
downstream suddenly stops

0
1

0
1 0

1
0

Long Combinational Path (Data + Valid)

Long Combinational Path (Ready)

Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

Buffering a Linear Pipeline

Combinational block

Data buffer:
Pipeline register
with valid, enable

0
1

Control Buffer:
Register diverts token when
downstream suddenly stops

0
1

0
1 0

1
0

Long Combinational Path (Data + Valid)

Long Combinational Path (Ready)

Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

Buffering a Linear Pipeline

Combinational blockData buffer:
Pipeline register
with valid, enable

0
1

Control Buffer:
Register diverts token when
downstream suddenly stops

0
1

0
1 0

1
0

Long Combinational Path (Data + Valid)

Long Combinational Path (Ready)

Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

Buffering a Linear Pipeline

Combinational blockData buffer:
Pipeline register
with valid, enable

0
1

Control Buffer:
Register diverts token when
downstream suddenly stops

0
1

0
1 0

1
0

Long Combinational Path (Data + Valid)

Long Combinational Path (Ready)

Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

The Problem with Fork

Combinational Block:
inputs ready when
both valid &
output ready

Fork:
outputs valid only
when all are ready

Oops: Combinational Cycle
This is not compositional

The Problem with Fork

Combinational Block:
inputs ready when
both valid &
output ready

Fork:
outputs valid only
when all are ready

Oops: Combinational Cycle
This is not compositional

The Problem with Fork

Combinational Block:
inputs ready when
both valid &
output ready

Fork:
outputs valid only
when all are ready

Oops: Combinational Cycle
This is not compositional

The Problem with Fork

Combinational Block:
inputs ready when
both valid &
output ready

Fork:
outputs valid only
when all are ready

Oops: Combinational Cycle
This is not compositional

The Problem with Fork

Combinational Block:
inputs ready when
both valid &
output ready

Fork:
outputs valid only
when all are ready

Oops: Combinational Cycle
This is not compositional

The Solution to Combinational Loops

valid

ready

XXXXX

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Combinational Loops

valid

ready

XXXXX

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Combinational Loops

valid

ready

XXXXX

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Combinational Loops

valid

ready
XXXXX

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Fork: A Little State

in

out2

out1

out0

Valid out ignores ready
of other outputs

Flip-flop set after token
sent suppresses duplicates

Input consumed once one
token sent on every output

The Solution to Fork: A Little State

in

out2

out1

out0

Valid out ignores ready
of other outputs

Flip-flop set after token
sent suppresses duplicates

Input consumed once one
token sent on every output

The Solution to Fork: A Little State

in

out2

out1

out0

Valid out ignores ready
of other outputs

Flip-flop set after token
sent suppresses duplicates

Input consumed once one
token sent on every output

Nondeterministic Merge

f f f
Share with

merge/demux

merge

f

demux

select

Two-Way Nondeterministic Merge Block w/ Select

in0

in1

out

sel

0
1

A
rb

iter

“Two-way fork with multiplexed output
selected by an arbiter”

Ï Moore’s Law is alive and well

Ï But we hit a power wall in 2005.
Massive parallelism now
mandatory

Ï Communication is the culprit

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

Ï Dark Silicon is the future: faster
transistors; most must remain off

Ï Our project: A Pure Functional
Language to FPGAs

Ï Removing recursion

Ï Functional to dataflow

Ï Dataflow to hardware

Add Explicit Memory Operations

read :: CRef → Cont
write :: Cont →CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (read k) 1)
(Fibk 2 k) → fibk (KK (read k) 1)
(Fibk n k) → fibk (Fibk (n−1) (write (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) → fibk (KK (read k) (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n (write K0))1

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Input and Output Buffers

Input Buf. Core Output Buf.Input Output

0
1 0

1

0
1

⊥

data

ready

1
0

ready

datadata

ready

Combinational paths broken:

Input buffer breaks ready path

Output buffer breaks data/valid path

	Recursion
	Functional IR to Dataflow
	Dataflow to Hardware

