
Esterel and the Synchronous Approach

Stephen A. Edwards

Columbia University

April 2009

The Big Picture

The Digital Approach

Discretize value to

completely eliminate noise

The Synchronous Approach

Discretize time to

completely eliminate noise

Digital Is Everywhere

DNA

Written Language

Spoken Language

Cellular Structure

Atomic Structure

Synchrony Is Everywhere

Clocks

Railroads
Conductors

Day and Night

Seasons

The Esterel Language

Developed by Gérard Berry starting 1983

Originally for robotics applications

Imperative, textual language

Synchronous model of time like that in

digital circuits

Concurrent

Deterministic

Timeline

1983 How do you program an infinitely fast computer?

1984 First semantics, LISP-based V2 compiler

1988 Better semantics, Efficient V3 compiler

1990 First hardware synthesis to FPGAs (DEC)

1992 BDD-based verification facilities (Dassault)

1995 Causality and cyclic circuits

1997 Sequential optimization

1999 V7 specification started

2001 Esterel Technologies founded

2003 Esterel V7 compiler released

2005 First silicon produced by Esterel V7

2007 Fast code generation, System C backend

2008 IEEE Standardization process started

Standardization Effort

Project P1778 approved by IEEE on March 20th, 2007

G. Berry (Chair, Esterel)

S. Dissoubray (Secretary, Esterel)

E. Badi (TI)

G. Clavé (TI)

L. Blanc (TI)

B. Bentayibi (ST Micro)

J-P. Cousin (ST Micro)

R. Bernhard (Orange)

M. Duranton (NXP)

M. Kishinevsky (Intel)

M. Perreaut (Esterel)

S. Ramesh (GM)

R.K. Shyamasundar (IBM)

O. Tardieu (IBM)

S. Edwards (Vice-Chair, Columbia)

C. André (U. Nice)

R. de Simone (INRIA)

K. Schneider (U. Kaiserslautern)

R. von Hanxleden (U. Kiel)

L. Zaffallon (EIG Geneva)

A Simple Example

The specification:

The output O should occur when inputs A and B have both

arrived. The R input should restart this behavior.

A First Try: An FSM

BR’/ AR’/

ABR’/O

R/

AR’/O

R/

BR’/O

R/

The output O

should occur when

inputs A and B have

both arrived. The R

input should restart

this behavior.

The Esterel Version

module ABRO :
input A, B, R;
output O;

loop
[

await A
||

await B
];
emit O

each R

end module

Esterel programs consist of modules

Interface comprising input and output

signals

loop...each for reset behavior

await waits for the next cycle when a

condition is true

emit makes a signal present

|| runs statements in parallel; waits for

all to terminate

The Big Ideas of Esterel

Global Clock

“Combinational” statements

(e.g., emit, if)

Sequential statements

(e.g., pause)

Esterel Success Stories

Processor

SoC Power Management

Serial ATA link layer protocol

High throughput DMA for video processor

Flash card (SD/MMC) controller

Memory architectures, including caches

(From website of Esterel EDA Technologies)

Advantages of Esterel

Model of time gives programmer precise timing control

Concurrency convenient for specifying control systems

Completely deterministic

Guaranteed: no need for locks, semaphores, etc.

Finite-state language

Easy to analyze

Execution time predictable

Much easier to verify formally

Amenable to both hardware and software implementation

Disadvantages of Esterel

Finite-state nature of the language limits flexibility

No dynamic memory allocation

No dynamic creation of processes

Limited support for data, although much better in V7 than V5

Synchronous model of time can lead to overspecification

Semantic challenges:

Avoiding causality violations often difficult

Difficult to compile

Limited number of users, tools, etc.

Esterel’s Model of Time

The standard CS model (e.g., Java’s) is asynchronous: threads run at

their own rate. Synchronization is through calls to wait() and notify().

Esterel’s model of time is synchronous like that used in hardware.

Threads march in lockstep to a global clock.

Time

Clock tick

Signals

Esterel programs communicate through signals

input Req, Ack; // Control signals
output Write;

input Addr : unsigned<[16]>; // Data signal

output Dout when Write : unsigned<[8]>; // Controlled signal

Kind Status Value Usage Examples

Control X Control/strobe reset, req, ack

Data X Data address

Controlled X X Strobed data dout

Declarations: Data, Interfaces, and Modules

data SizeData : // types, constants, functions, and procedures
constant N : unsigned = 8;

end data

interface DoubleIntf : // adds inputs and outputs
extends data SizeData;
input I : signed<N>;
output O : signed<2*N>;

end interface

module Double : // adds behavior
extends interface DoubleIntf;
every I do

emit ?O <= 2 * ?I
end every

end module

Emitting Signals

Emit: sets the status to “present” for the current cycle

emit Req; // Set status
emit ?DataOut <= 253; // Set status & value
emit ?ConfReg <= ‘b100_010_11; // bitvector
emit ?ConfRegArray[0] <= ?Conf; // use value of another signal

Sustain: sets the status to “present” in current and future cycles

sustain Ack; // Ack now and forever
sustain {

?Addr <= pre(?Addr) + 1 mod MAX, // Count and wrap around
Write

}

Waiting

Pause: wait for a cycle

pause; // Wait for one cycle

Await expr: wait for next cycle in which expr is true

await FifoFull;
await Req and (?Addr > 0x00FF); // next valid request
await 3 tick; // like ‘‘pause; pause; pause’’

Conditionals

Esterel (finally!) has the usual if-then-else construct and variants.

if S and (?S > 0) then // Statement
emit ?DataValid <= ?S

else
await Ready

end if

emit {
if S and (?S > 0) then // Within an emit
?DataValid <= ?S

else
Grant

end if
}

emit {
?DataValid <= ?S if S and (?S > 0) // In a case list

| 0
}

Simple Example

module Example1:
output A, B, C;

emit A;
if A then

emit B
end;
pause;
emit C

end module

A

B

C

Signal Coherence Rules

a Each signal is only present or absent in a cycle, never both

All writers run before any readers do

Thus

if A else
emit A

end

is an erroneous program. (Deadlocks.)

The Esterel compiler rejects this program.

Advantage of Synchrony

Easy to regulate time

Synchronization is free (e.g., no Bakers’ algorithm)

Speed of actual computation nearly uncontrollable

Allows function and timing to be specified independently

Makes for deterministic concurrency

Explicit control of “before” “after” “at the same time”

Time Can Be Controlled Precisely

This guarantees every 60th S an M is emitted

every 60 S do // invokes its body every 60th S
emit M // takes no time (cycles)

end

S S S S S

M M

1 · · · 59 60 61 · · · 120

The || Operator

Groups of statements separated || by run concurrently and terminate

when all groups have terminated

[
emit A; pause; emit B;

||
pause; emit C; pause; emit D

];
emit E

A B

C D

E

Communication Is Instantaneous

A signal emitted in a cycle is visible immediately

[
pause; emit A; pause; emit A

||
pause; if A then emit B end

]

A A

B

Bidirectional Communication

Processes can communicate back and forth in the same cycle

[
pause;
emit A; if B then emit C end;
pause;
emit A

||
pause;
if A then emit B end

]

A A

B

C

Concurrency and Determinism

Signals are the only way for concurrent processes to communicate

Esterel does have variables, but they cannot be shared

Signal coherence rules ensure deterministic behavior

Language semantics clearly defines who must communicate with

whom when

The Await Statement

The await statement waits for a particular cycle

await S waits for the next cycle in which S is present

[
emit A ; pause ; pause; emit A

||
await A; emit B

]

A A

B

The Await Statement

Await normally waits for a cycle before beginning to check

await immediate also checks the initial cycle

[
emit A ; pause ; pause; emit A

||
await immediate A; emit B

]

A A

B

Loops

Esterel has an infinite loop statement

Rule: loop body cannot terminate instantly

Needs at least one pause, await, etc.

Can’t do an infinite amount of work in a single cycle

loop
emit A; pause; pause; emit B

end

A A A A

B B B

Loops and Synchronization

Instantaneous nature of loops plus await provide very powerful

synchronization mechanisms

loop
await 60 S;
emit M

end

S S S S S

M M

1 · · · 59 60 61 · · · 120

Preemption

Often want to stop doing something and start doing something else

E.g., Ctrl-C in Unix: stop the currently-running program

Esterel has many constructs for handling preemption

The Abort Statement

Basic preemption mechanism

General form:

abort
statement

when condition

Runs statement to completion. If condition ever holds, abort

terminates immediately.

The Abort Statement

abort
pause;
pause;
emit A

when B;
emit C

A

C

Normal Termination

B

C

Aborted termination

B

C

Aborted termination;

emit A preempted

B A

C

Normal Termination

B not checked

in first cycle

(like await)

Strong vs. Weak Preemption

Strong preemption:

The body does not run when the preemption conditionholds

The previous example illustrated strong preemption

Weak preemption:

The body is allowed to run even when the preemptioncondition

holds, but is terminated thereafter

“weak abort” implements this in Esterel

Strong vs. Weak Abort

Strong abort

emit A does not run

abort
pause;
pause;
emit A;
pause

when B;
emit C

B

C

Weak abort

emit A runs

weak abort
pause;
pause;
emit A;
pause

when B;
emit C

A

B

C

Strong vs. Weak Preemption

Important distinction

Something may not cause its own strong preemption

Erroneous

abort
pause; emit A

when A

OK

weak abort
pause; emit A

when A

The Trap Statement

Esterel provides an exception facility for weak preemption

Interacts nicely with concurrency

Rule: outermost trap takes precedence

The Trap Statement

trap T in
[

pause;
emit A;
pause;
exit T

||
await B;
emit C

]
end trap;
emit D

A D Normal termination

from first process

A

B

C D emit C also runs

A B

C

D

Second process

allowed to run

even though

first process

has exited

Nested Traps

trap T1 in
trap T2 in
[

exit T1
||

exit T2
]
end trap;
emit A

end trap;
emit B

Outer trap takes

precedence; control

transferred directly to the

outer trap statement.

emit A not allowed to run.

B

The Suspend Statement

Preemption (abort, trap) terminate something, but what if you want

to resume it later?

Like the unix Ctrl-Z

Esterel’s suspend statement pauses the execution of a group of

statements

Only strong preemption: statement does not run when condition

holds

The Suspend Statement

suspend
loop

emit A; pause; pause
end

when B

A A B A B A

B delays emission

of A by one cycle

B prevents A

from being emitted here;

resumed next cycle

Causality

Unfortunate side-effect of instantaneous communication coupled

with the single valued signal rule

Easy to write contradictory programs, e.g.,

if A else emit A
end

abort
pause; emit A

when A

if A then
nothing

end;
emit A

These sorts of programs are erroneous; the Esterel compiler refuses

to compile them.

Causality

Can be very complicated because of instantaneous communication

For example, this is also erroneous

abort
pause;
emit B

Emission of B
indirectly causes
emission of Awhen A

||
pause;
if B then emit A end

Causality

Definition has evolved since first version of the language

Original compiler had concept of “potentials”

Static concept: at a particular program point, which signals could be

emitted along any path from that point

Latest definition based on “constructive causality”

Dynamic concept: whether there’s a “guess-free proof” that

concludes a signal is absent

Causality Example

emit A;
if B then emit C end;
if A else emit B end;

Considered erroneous under the original compiler

After emit A runs, there’s a static path to emit B Therefore, the value

of B cannot be decided yet

Execution procedure deadlocks: program is bad

Causality Example

emit A;
if B then emit C end;
if A else emit B end;

Considered acceptable to the latest compiler

After emit A runs, it is clear that B cannot be emitted because A’s

presence runs the “then” branch of the second present

B declared absent, both present statements run

Compiling Esterel

Semantics of the language are formally defined and deterministic

It is the responsibility of the compiler to ensure the generated

executable behaves correctly w.r.t. the semantics

Challenging for Esterel

Compilation Challenges

Concurrency

Interaction between exceptions and concurrency

Preemption

Resumption (pause, await, etc.)

Checking causality

Reincarnation

Loop restriction prevents most statements from executing more

than once in a cycle

Complex interaction between concurrency, traps, and loops

allows certain statements to execute twice or more

What To Understand About Esterel

Synchronous model of time

Time divided into sequence of discrete instants

Instructions either run and terminate in the sameinstant or

explicitly in later instants

Idea of signals and broadcast

“Variables” that take exactly one value each instant and don’t

persist

Coherence rule: all writers run before any readers

Causality Issues

Contradictory programs

How Esterel decides whether a program is correct

What To Understand About Esterel

Compilation techniques

Automata: Fast code, Doesn’t scale

Netlists: Scales well, Slow code, Good for causality

Control-flow: Scales well, Fast code, Bad at causality

People Counter Example

Construct an Esterel program that counts the number of people in a

room. People enter the room from one door with a photocell that

changes from 0 to 1 when the light is interrupted, and leave from a

second door with a similar photocell. These inputs may be true for

more than one clock cycle.

The two photocell inputs are called ENTER and LEAVE. There are

two outputs: EMPTY and FULL, which are present when the room is

empty and contains three people respectively.

Source: Mano, Digital Design, 1984, p. 336

Overall Structure

ENTER

LEAVE

Conditioner

Conditioner

Counter

EMPTY

FULL

ADD

SUB

Conditioner detects rising edges of signal from photocell.

Counter tracks number of people in the room.

Implementing the Conditioner

module Conditioner:
input A;
output Y;

loop
await A; emit Y;
await [not A];

end

end module

Testing the Conditioner

esterel simul cond.strl
gcc o cond cond.c lcsimul # may need L
./cond
Conditioner> ;
 Output:
Conditioner> A; # Rising edge
 Output: Y
Conditioner> A; # Doesn’t generate a pulse
 Output:
Conditioner> ; # Reset
 Output:
Conditioner> A; # Another rising edge
 Output: Y
Conditioner> ;
 Output:
Conditioner> A;
 Output: Y

Implementing the Counter: First Try

module Counter:
input ADD, SUB;
output FULL, EMPTY;

var count := 0 : integer in
loop

if ADD and count < 3 then
count := count + 1 end;

if SUB and count > 0 then
count := count 1 end;

if count = 0 then emit EMPTY end;
if count = 3 then emit FULL end;
pause

end
end

end module

Testing the Counter

Counter> ;

 Output: EMPTY

Counter> ADD SUB;

 Output: EMPTY

Counter> ADD;

 Output:

Counter> SUB;

 Output: EMPTY

Counter> ADD;

 Output:

Counter> ADD;

 Output:

Counter> ADD;

 Output: FULL

Counter> ADD SUB;

 Output: # Oops: should remain FULL

Counter, second try

module Counter:
input ADD, SUB;
output FULL, EMPTY;

var c := 0 : integer in
loop

if ADD then
if not SUB and c < 3 then

c := c + 1
end

else
if SUB and c > 0 then

c := c 1
end;

end;
if c = 0 then emit EMPTY end;
if c = 3 then emit FULL end;
pause

end
end
end module

Testing the second counter

Counter> ;
 Output: EMPTY
Counter> ADD SUB;
 Output: EMPTY
Counter> ADD SUB;
 Output: EMPTY
Counter> ADD;
 Output:
Counter> ADD;
 Output:
Counter> ADD;
 Output: FULL
Counter> ADD SUB;
 Output: FULL # Working
Counter> ADD SUB;
 Output: FULL
Counter> SUB;
 Output:
Counter> SUB;
 Output:
Counter> SUB;
 Output: EMPTY
Counter> SUB;
 Output: EMPTY

Assembling the People Counter

module PeopleCounter:
input ENTER, LEAVE;
output EMPTY, FULL;

signal ADD, SUB in
run Conditioner[signal ENTER / A, ADD / Y]

||
run Conditioner[signal LEAVE / A, SUB / Y]

||
run Counter

end

end module

Vending Machine Example

Design a vending machine controller that dispenses gum once. Two

inputs, N and D, are present when a nickel and dime have been

inserted, and a single output, GUM, should be present for a single

cycle when the machine has been given fifteen cents. No change is

returned.

N = or D = or

GUM =

Source: Katz, Contemporary Logic Design, 1994, p. 389

Vending Machine Solution

module Vending:
input N, D;
output GUM;

loop
var m := 0 : integer in

trap WAIT in
loop

if N then m := m + 5; end;
if D then m := m + 10; end;
if m >= 15 then exit WAIT end;
pause

end
end;
emit GUM; pause

end
end
end module

Alternative Solution

loop
await

case immediate N do await
case N do await

case N do nothing
case immediate D do nothing

end
case immediate D do nothing

end
case immediate D do await

case immediate N do nothing
case D do nothing

end
end;
emit GUM; pause

end

Tail Lights Example

Construct an Esterel program that controls the turn signals of a 1965

Ford Thunderbird.

Source: Wakerly, Digital Design Principles & Practices, 2ed, 1994, p. 550

Tail Light Behavior

Tail Lights

There are three inputs, LEFT, RIGHT, and HAZ, that initiate the

sequences, and six outputs, LA, LB, LC, RA, RB, and RC. The flashing

sequence is

LC LB LA step RA RB RC

1

2

3

4

A Single Tail Light

module Lights:
output A, B, C;

loop
emit A; pause;
emit A; emit B; pause;
emit A; emit B; emit C; pause;
pause

end

end module

The T-Bird Controller Interface

module Thunderbird :
input LEFT, RIGHT, HAZ;
output LA, LB, LC, RA, RB, RC;

...

end module

The T-Bird Controller Body

loop
await

case immediate HAZ do
abort

run Lights[signal LA/A, LB/B, LC/C]
||

run Lights[signal RA/A, RB/B, RC/C]
when [not HAZ]

case immediate LEFT do
abort

run Lights[signal LA/A, LB/B, LC/C]
when [not LEFT]

case immediate RIGHT do
abort

run Lights[signal RA/A, RB/B, RC/C]
when [not RIGHT]

end
end

Comments on the T-Bird

I choose to use Esterel’s innate ability to control the execution of

processes, producing succinct easy-to-understand source but a

somewhat larger executable.

An alternative: Use signals to control the execution of two processes,

one for the left lights, one for the right.

A challenge: synchronizing hazards.

Most communication signals can be either level- or edge-sensitive.

Control can be done explicitly, or implicitly through signals.

Traffic-Light Controller Example

C

C This controls a traffic light at the intersection
of a busy highway and a farm road. Normally,
the highway light is green but if a sensor detects
a car on the farm road, the highway light turns
yellow then red. The farm road light then turns

green until there are no cars or after a long timeout. Then, the farm
road light turns yellow then red, and the highway light returns to
green. The inputs to the machine are the car sensor C, a short
timeout signal S, and a long timeout signal L. The outputs are a timer
start signal R, and the colors of the highway and farm road lights.

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.

The Traffic Light Controller

module Fsm:

input C, L, S;
output R;
output HG, HY, FG, FY;

loop
emit HG ; emit R; await [C and L];
emit HY ; emit R; await S;
emit FG ; emit R; await [not C or L];
emit FY ; emit R; await S;

end

end module

The Traffic Light Controller

module Timer:
input R, SEC;
output L, S;

loop
weak abort

await 3 SEC;
[

sustain S
||

await 5 SEC;
sustain L

]
when R;

end

end module

The Traffic Light Controller

module TLC:
input C, SEC;
output HG, HY, FG, FY;

signal S, L, S in
run Fsm

||
run Timer

end

end module

