Efficient, Deterministic and Deadlock-free
Concurrency

Nalini Vasudevan

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

©2011
Nalini Vasudevan
All Rights Reserved

ABSTRACT

Efficient, Deterministic and Deadlock-free
Concurrency

Nalini Vasudevan

Concurrent programming languages are growing in importance with the advent
of multicore systems. Two major concerns in any concurrent program are data
races and deadlocks. Each are potentially subtle bugs that can be caused by non-
deterministic scheduling choices in most concurrent formalisms. Unfortunately,
traditional race and deadlock detection techniques fail on both large programs, and
small programs with complex behaviors.

We believe the solution is model-based design, where the programmer is pre-
sented with a constrained higher-level language that prevents certain unwanted
behavior. We present the SHIM model that guarantees the absence of data races by
eschewing shared memory.

This dissertation provides SHIM based techniques that aid determinism - mod-
els that guarantee determinism, compilers that generate deterministic code and
libraries that provide deterministic constructs. Additionally, we avoid deadlocks,
a consequence of improper synchronization. A SHIM program may deadlock if it
violates a communication protocol. We provide efficient techniques for detecting
and deterministically breaking deadlocks in programs that use the SHIM model.

We evaluate the efficiency of our techniques with a set of benchmarks. We
have also extended our ideas to other languages. The ultimate goal is to provide
deterministic deadlock-free concurrency along with efficiency. Our hope is that
these ideas will be used in the future while designing complex concurrent systems.

Table of Contents

4.1 Reviewing SHIMo 27
4.2 Design exploration with SHIM . . . oo oo 29

il

ii

143
144
147
149
151
152
153
153
154
154
158
159
160

13.2 Flexible, Fixed-Owner Biased Lockso 166
13.3 Iransfcm'ng Ownership On—The—FI;I 168

13.5 Asvmmetric Locka 171
13.6_Read-Write Biased Locks . . .« .« v v v oo e 172

13.8 imental Resultdo 176

13.8.6_Ownership transfer with incorrect dominanced 183

13.8.7 Overheads for nondominant behavios 183

13.8.8 Performance of biased read-write lockd 184

13.8.9 Performance on a simulated router application 184

[13.9 Related Work and Conclusions 184
IV__Conclusions 186
[14_Conclusions 187

v

188

List of Figures

2.1 Example of Kahn Processes ooo 11

2.2 Kahn network of Figureﬁ 11
inginparallel 13

A A _concurrent SHIM program with communication and exceptiond 27
4 Dependencies in JP decoding 28
4 even-task schedule for JPEG 28
4.4 SHIM code for the schedule in Figure@ 30
4.5 A pipelined schedule for IPEG 30
4.6 SHIM code for the JPEG schedule in Figure @ 31
4.7 Shared data structures for tasks and chanpels 33
e :
ion for channel Al. 35

4,10 ode for throw Done infunction j(J 35
4 ode for calling f{) and ¢() inmain() 36
4 ode in function f{) controlling its execution 37
45

46

49

49

50

51

57

58

58

60

61

61

vi

7.1 A SHIM program thatdeadlockd 79
-free SHIM programl v oo oo . 82
7.3 The IR and automata for the example in Figure ﬁ 83

7.5 NuSMYV code for the program in Figure 7.2 - 87

vii

9 Possible and impossible configurations of tasks in the SHIM model115
Another example of the effect of our deadlock-breaking algorithm 116
0.2

9.3 Building the Dependency Graph for Figure©0.24. 117

13.5 Our asymmetric lock algm:i.l;hn] 173

13.6 _Read functions of biased read-write locks 174

8 __Behavio ving domination percentages 177
9 __Behavior at high domination percentaged 178
0_Lock overhead for a sequential programd 178

13.15_Performance of our biased locks on the SPLASH2 benchmarkl . 181
13.16 A comparison of our biased rwlock with Linux thread rwlock] . 181

[13.17 _Performance of our biased read-write locks on a router simulatod 182

viii

List of Tables

X

39
40

68

90

Acknowledgments

Here is my consolidated list of people I would like to thank:

Stephen Edwards (Columbia University)

I would like to foremost thank my advisor, who did a perfect mix of micro
and macro managing and at perfect times. Without his constant encourage-
ment, I would not have been able to start and complete my thesis. 1 owe a
major part of my success to Stephen.

Alfred Aho, Luca Carloni, Martha Kim (Columbia University)

I can best describe them as ‘easily approachable’. Not only did they serve
on my thesis committee, but they also never denied when I asked for recom-
mendations.

Julian Dolby, Vijay Saraswat, Olivier Tardieu (IBM Research)
A major part of my ideas towards my thesis originated at IBM. I would like to
thank them for their guidance and providing me with the right infrastructure.

Kedar Namjoshi (Bell Laboratories)
I would like to thank Kedar for his expertise and guidance in theoretical
concepts without which I would have felt incomplete.

Satnam Singh (Microsoft Research)

The biggest stepping stone of my thesis was my first paper with Satnam.
I would like to thank him for sponsoring me a paid vacation to the United
Kingdom and also for serving on my thesis.

Prakash Shankor, Saraswathi Vasudevan, Vasudevan Venkataraman (My fam-
ily)

I blame Prakash for igniting the idea of PhD in my head and letting me do
what I wanted to. I owe the entire non-technical part of my thesis to him. I
finally thank my parents for letting me fulfil their wishes.

Part 1

Introduction

CHAPTER 1. THE PROBLEM 2

Chapter 1

The Problem

Multicore shared-memory multiprocessors now rule the server market. While such
architectures provide better performance per watt, they present many challenges.

Scheduling—instruction ordering—is the biggest issue in programming shared-
memory multiprocessors. While uniprocessors go to extremes to provide a se-
quential execution model despite caches, pipelines, and out-of-order dispatch units,
multiprocessors typically only provide such a guarantee for each core in isolation;
instructions are at best partially ordered across core boundaries.

Controlling the scheduling on multiprocessors is crucial not only for perfor-
mance, but because data races can cause scheduling choices to change a program’s
function. Worse, the operating system schedules nondeterministically.

We say that a program produces nondeterministic output if it is capable of
producing different outputs during reruns of the program with the same input. The
program in Figure[Tlis nondeterministic. It uses C++-like semantics with Cilk [19]-
like constructs for concurrency. It creates two tasks f and g in parallel using the
spawn construct. Both functions take x by reference. Clearly, x is getting modified
concurrently by both the tasks, so the value printed by this program is either 3 or
5 depending on the schedule. One way to avoid races is to protect x by a lock
and thereby ensure atomic updates to x, but this still gives nondeterministic output.
This is because operations within atomic blocks are not commutative.

Such nondeterministic functional behavior arising from timing variability—a
data race—is among the nastiest things a programmer may confront. It makes de-
bugging all but impossible because unwanted behavior is rarely reproducible [11].
Rerunning a nondeterministic program on the same input usually does not produce
the same behavior. Inserting assert or print statements or running the program in
a debugger usually changes timing enough to make the bug disappear. Debugging
such programs is like trying to catch a butterfly that is only visible from the corner

CHAPTER 1. THE PROBLEM 3

void f(int &a) {

a = 3;

}

void g (int &b) {
b = 5;

}

main () {
int x = 1;
spawn f(x)
spawn g (x) ;
sync; [+ Wait for f and g to finish */
print x;

}

Figure 1.1: A nondeterministic parallel program

of your eye.

We believe a programming environment should always provide functional de-
terminism because it is highly desirable and is very difficult to check for on a
per-program basis. Virtually all sequential programming languages (e.g., C) are
deterministic: they produce the same output given the same input. Inputs include
usual things such as files and command-line arguments, but for reproducibility and
portability, things such as the processor architecture, the compiler, and even the
operating system are not considered inputs. This helps programmers by making
it simpler to reason about a program and it also simplifies verification because if
a program produces the desired result for an input during testing, it will do so
reliably.

By contrast, concurrent software languages based on the traditional shared
memory, locks, and condition variables model (e.g., pthreads or Java) are not
deterministic by this definition because the output of a program may depend on
such things as the operating system’s scheduling policy, the relative execution
rates of parallel processors, and other things outside the application programmer’s
control. Not only does this demand a programmer consider the effects of these
things when designing the program, it also means testing can only say a program
may behave correctly on certain inputs, not that it will.

A few concurrent programming languages provide determinism through se-
mantics. SHIM [47; [116] is one such instance. It is an asynchronous concurrent
language that is scheduling independent: its input/output behavior is not affected
by any nondeterministic scheduling choices taken by its runtime environment due

CHAPTER 1. THE PROBLEM 4

to processor speed, the operating system, scheduling policy, etc. A SHIM program
is composed of sequential tasks that synchronize whenever they want to commu-
nicate. The language is a subset of Kahn networks [70] (to ensure determinism)
that employs the rendezvous of Hoare’s CSP [62] for communication to keep its
behavior tractable.

Kahn’s unbounded buffers would make the language Turing complete, even
with only finite-state processes, so the restriction to rendezvous makes the language
easy to analyze. Furthermore, since SHIM is a strict subset of Kahn networks,
it inherits Kahn’s scheduling independence: the sequence of data values passed
across each communication channel is guaranteed to be the same for all correct
executions of the program (and potentially input dependent).

The central hypothesis of SHIM is that deterministic concurrent languages
are desirable and practical. That they relieve the programmer from considering
different execution orders is clear; whether they impose too many constraints on
the algorithms they can express is also something we attempt to answer here.

Although SHIM is deterministic, it is not deadlock free; a programmer may
use language constructs incorrectly to cause the program to deadlock. We demon-
strate that deadlocks can be easily detected statically because of the deterministic
property of SHIM.

Our ultimate goal is to have both determinism as well as deadlock freedom. In
the next section, we discuss the terms used in this thesis followed by the problem
we are addressing. Then, we discuss some of things to remember while designing
deterministic, deadlock free systems. Finally, we give an outline of this thesis.

1.1 Terminology

This section defines the terms used in this thesis.

A multi-core processor is a system that consists of two or more cores. Mul-
ticores are used for reduced power consumption and simultaneous processing of
multiple tasks, therefore resulting in enhanced performance. A task or a process is
a sequential unit of computation. A sequential program has a single task. By con-
trast, a parallel program consists of multiple tasks that may execute concurrently.

A programming model is an abstraction or a template to express algorithms.
Programming languages are more concrete and are based on programming models.
They have specific forms of syntax and semantics.

An application is an instance of a sequential or parallel program that imple-
ments an algorithm in a programming language. A benchmark is a set of standard
applications used to assess the performance of something, usually by running a
number of standard tests.

CHAPTER 1. THE PROBLEM 5

1.2 Problem Statement

This thesis wishes to provide programming language support for the following:

e Determinism: By determinism, we mean that the output of a program de-
pends only on the input of the program and not on the running environment.
Inputs include things such as files and command-line arguments. We do not
deal with reactive systems. Programming environment includes things such
as the processor architecture, compiler, and even the operating system and
these are not considered inputs.

e Deadlock-freedom: A deadlock is a situation in which two or more tasks
wait for each other to make progress, but neither ever does causing an indef-
inite wait. A deadlock usually arises because of improper synchronization.
We require techniques to detect and avoid these situations. We do not wish
to solve the termination problem.

1.3 Design Considerations

While we design a deterministic and a deadlock-free system, our goal is to achieve
three things: performance, scalability and programmer flexibility.

1.3.1 Performance

A general hypothesis is that determinism introduces performance degradation be-
cause of synchronization. There are two types of synchronization: centralized
and distributed. A centralized synchronization forces all tasks in a system to
synchronize while a distributed synchronization forces only a subset of tasks to
synchronize. Distributed methods perform better because the tasks have to wait
less, but they are more susceptible to deadlocks. An out-of-order synchronization
between subsets of tasks may lead to a deadlock. On the other hand, in centralized
systems, deadlocks are avoided because all tasks are forced to synchronize at the
same point.

In some cases, the programming environments are nondeterministic, but there
are techniques and tools to check for determinism and deadlocks during runtime.
The problem with these tools is that they add a considerable amount of overhead
that reduces performance drastically.

CHAPTER 1. THE PROBLEM

Part Chapter Question to answer Published
&} How can we achieve determinism ? SES 2010 [50l
[%1} Is determinism efficient? DATE 2008 [511
(Determinism) Is determinism practical? SAC 2009 [124]
Determinism: Language vs. Library ? IPDPS 2008 [130]
[m i How do we solve the deadlock problem? MEMOCODE 2008 [122]
(Deadlock-freedom) [l How can we efficiently detect deadlocks? EMSOFT 2009 [109]
How can we deterministically break deadlocks? ~HOTPAR 2010 [127]
(10l How can we enforce deadlock freedom? HIPC-SRS 2010 [128]
1Y} [Can we reduce memory in deterministic MEMOCODE 2009 [123]
(Efficiency) programs? TCAD 2010 [126]
2 Can we optimize deterministic constructs? CC 2009 (1311
13 Can we optimize locks? PACT 2010 [[1291
™ 4 What are the limitations? IPDPS Forum 2008 [123]
(Conclusions) What next? PLDI-FIT 2009 [123]

Table 1.1: Thesis outline

1.3.2 Scalability

A number of programming environments provide determinism at compile time.
Static verifiers and type systems are examples of such environments. These tech-
niques do not explicitly introduce deadlocks but they do not scale at compile time
because they have to consider all possible interleavings of tasks in the program.

Among the systems that provide determinism at runtime, distributed systems
are known to scale better than centralized systems in both performance and ease of
implementation.

1.3.3 Programmer Flexibility and Ease of Use

Most deterministic programming models provide determinism by imposing a num-
ber of restrictions. Most type systems require programmers to explicitly annotate
the program. Static verifiers do not force any restrictions on the program, but
they simply do not scale with flexible programs and give false positives as results.
Our goal is to achieve a balance between performance, scalability and programmer
flexibility.

1.4 Thesis Outline

Table [[.1] gives the overview of this thesis. We first provide a background study
in Chapter2l We then begin by describing the SHIM model in Part[[Il We evaluate
our model by generating code for different architectures. We illustrate a backend
in Chapter 4] for SHIM that generates C code that made calls to the POSIX thread

CHAPTER 1. THE PROBLEM 7

(pthread) library to ask for parallelism. Each communication action acquires the
lock on a channel and checks whether every process connected to it also had
blocked (i.e., whether the rendezvous could occur).

We also illustrate a backend for IBM’s CELL processor in Chapter [5l A direct
offshoot of the pthread backend, it allows the user to assign computationally inten-
sive tasks to the CELL’s synergistic processing units (SPUs); remaining tasks run
on the CELL’s PowerPC core (PPU).

Next, we illustrate the feasibility of SHIM as a library. We provide a determin-
istic concurrent communication library in Chapter 6] for an existing multithreaded
language. We implemented the SHIM in the Haskell functional language, which
supports transactional memory.

SHIM is interesting because it is deterministic but it is not deadlock free. We
provide simple techniques to detect deadlocks in SHIM in Part[IIl SHIM does not
need to be analyzed under an interleaved model of concurrency since most prop-
erties, including deadlock, are preserved across schedules. In Chapter[7l we use a
synchronous model checker NuSMV [34] to detect deadlocks in SHIM—a surpris-
ing choice since SHIM’s concurrency model is fundamentally asynchronous. We
later take a compositional approach in Chapter [8/in which we build an automaton
for a complete system piece by piece. The result: our explicit model checker
outperforms the implicit NuSMV on these problems. Our evaluations led to other
directions. We wanted a more robust concurrent programming model that is both
deterministic and deadlock free — we discuss the D?>C model in Chapter [I0l

We then provide a few optimization techniques to improve the efficiency of
SHIM and other related languages like X10 [29] in Part IVl To improve the
efficiency of the SHIM model, we applied model checking to search for situations
where buffer memory can be shared [123}; [126]]. In general, each communication
channel needs its own space to store any data being communicated over it. How-
ever, in certain cases, it is possible to prove that two channels can never be active
simultaneously and thus share buffer memory.

In Chapter[I2] we describe a tool that mitigates the overhead of general-purpose
clocks in IBM’s X10 language by analyzing how programs use the clocks and
then by choosing optimized implementations when available. These clocks are
deterministic barriers and are similar to SHIM’s communication constructs.

The major bottleneck of deterministic programs is due to synchronization.
Synchronization constructs are implemented using low level locks. In Chapter[13]
we describe efficient locking algorithms for specialized locking behavior.

Finally, we discuss the limitations of SHIM in Chapter [4. We report our
conclusions and open new directions for future work.

CHAPTER 2. BACKGROUND 8

Chapter 2

Background

Concurrent programming languages suffer from a number of problems including
nondeterminism and deadlocks. This chapter surveys the various issues involved
while designing concurrent systems and particularly focuses on techniques that
deal with nondeterminism and deadlocks. We provide a survey of the various
programming models, tools and techniques that are in use today to build concurrent
systems, and specifically how they address deadlock and nondeterminism problems
at various levels — compiler, programming language, operating systems and hard-
ware.

2.1 Problems with concurrent programming
Concurrency comes with an abundant number of problems. We list a few below.

e Paradigm shift: Sequential computers were ruling the world but not any-
more. Most programmers find concurrency hard because they are trained to
think sequentially.

e Lack of a good model: There is no widely accepted concurrent program-
ming or memory model. The next section surveys the programming models
that are in use today and discusses their pros and cons.

e Concurrency bugs: Bugs like nondeterminism and deadlocks that are vir-
tually absent in sequential programming are exposed in concurrent program-
ming. We list some of the concurrency bugs here:

— Nondeterminism: A condition when some possible interleaving of tasks
results in undesired program output.

CHAPTER 2. BACKGROUND 9

— Deadlock: A state in which two or more tasks indefinitely wait for each
other.

— No Fairness: A condition when some task does not get a fair turn to
make progress.

— Starvation: A state when a task is deprived of a shared resource forever.

e Portability: Programmers are generally required to have knowledge about
the underlying layers(no. of cores, operating system scheduling policy, cache
size and policy, memory layout and other hardware features) to produce effi-
cient concurrent programs. Therefore, a program written for one architecture
may not be suitable for another architecture resulting in poor portability.
Also, with emerging and changing architectures, programs may have to be
rewritten to suit different architectures.

This thesis mainly addresses nondeterminism and deadlocks, although we be-
lieve that all the issues listed are equally important. We also try not to neglect these
issues while designing deterministic and deadlock-free systems.

2.2 Concurrent programming models

Concurrent programming models are becoming more prominent with the advent
of multicore systems. They provide a layer of abstraction between the application
and the underlying architecture including the operating system. A programming
model may choose to hide or expose aspects of the operating system and hardware.
Specifically, a concurrent programming model controls the concurrency features
provided by the operating system or hardware.

Generally, the more the model exposes, the more efficient code can a program-
mer write. As a consequence of more exposure, the programmer has to explicitly
work with the lower layers and therefore, productivity is reduced. He is also
exposed to a number of bugs like nondeterminism and deadlocks, since he has
access to lower layers.

Alternatively, a programming model may choose to expose very little of the
underlying layers and hence release the programmers the burden of dealing with
low level details that include the operating system and hardware. Such a model
may also hide low level bugs, thereby allowing programmers to deal with bug-free
code. The SHIM model is an instance of this kind of programming model. It
abstracts away nondeterminism from the programmer.

The SHIM model forces synchronization of tasks while accessing shared data
to provide determinism. The model eliminates data races by design and also simpli-
fies the deadlock detection process. Tasks in SHIM can be created in parallel using

CHAPTER 2. BACKGROUND 10

the par statement. It uses message-passing-like semantics for communication. We
discuss the model in detail in the next chapter.

Message passing is a well known approach used by parallel tasks to com-
municate with each other and works well for distributed systems. The Message
Passing Interface (MPI) is a popular standard library for creating and communicat-
ing between concurrent threads. The communication pattern is flexible (blocking,
unblocking, variable buffer size) and easily programmable. MPI was not designed
to deal with issues such as nondeterminism and deadlocks; the programmer has to
deal with these issues explicitly.

CSP (Communicating Sequential Processes)[61] is another parallel program-
ming model that uses message passing. The communication is blocking — both the
sender and the receiver have to rendezvous for the communication to be successful.
A task may choose to wait on two or more channels at the same time, and resume
execution as soon as data is available on one of the channels. This makes the output
dependent on time, making the model nondeterministic.

By contrast, a Kahn network is a deterministic concurrent programming model
that uses message passing for communication. A Kahn Network [70] is composed
of a set of communication processes that may send and receive on channels. Each
communication channel connects a single sending process with a single receiving
process. The communication structure of a system is therefore a directed graph
whose nodes are processes and whose arcs are channels. There is no shared data;
processes communicate only through channels. The receiver process is blocking: it
waits until the sender writes the data. The receiver cannot choose to wait based on
whether the data is available or not. This property makes the model deterministic.
The sender is nonblocking; it writes to one end of the channel and the receiver
reads from the other end. The channel is implemented as an unbounded buffer.

Figure is an example of a Kahn processes and its corresponding network
is shown in Figure f, g and h are three parallel tasks created by the par
construct in main(). The two producer tasks f and g send values 1 (on channel a)
and O (on channel b) respectively. Task A receives the values from channels a and
b into variable j. j sees an alternating stream of 1’s and 0’s.

In Figure 2.1l suppose f runs faster than g or A, then the channel a fills in
quickly. However, & will not be able to receive the data as quickly as f sends.
Therefore, there will be an accumulation of data on the channel. This is not a
problem in Kahn’s model, because the channel acts as an infinite queue between
the producer and the consumer.

In practice, this infinite bound is impossible to implement. The SHIM model
provides functional determinism by adopting Kahn networks, and also solves the
unbounded buffer problem by using CSP-style rendezvous for communication.
The sender and the receiver have to wait for each other to communicate data.

CHAPTER 2. BACKGROUND 11

void f(out a)

{
Jor(;;) {
send a = 1; /xsends | onchannel a %/
}
}
void g (out b)
{
Jor(;;) {
send b = 0; /xsends O onchannel b %/
}
}
void h(in a, in b) {
int j;
Jor (int i = 0; i++;) {
if (i%2)
j = recv a; [xreceives | x/
else
j = recv b; /xreceives O x/
}
}
main () {

chan int a, b;

fla) par g(b) par h(a, b); /xRuns the three tasks in parallel «/
}

Figure 2.1: Example of Kahn Processes

N

h

Figure 2.2: Kahn network of Figure 2.1

CHAPTER 2. BACKGROUND 12

Concurrent programming models also control the mode of parallelism and it
can be broadly classified into two types: data level parallelism and task level par-
allelism. Data level parallelism forces parts of data to be distributed over different
processors and computed concurrently. A classic example is allowing different
elements of an array to be processed concurrently. By contrast, task level paral-
lelism is allowing code to run concurrently. For instance, SHIM supports task level
parallelism.

Programming models also restrict the class of applications that can be imple-
mented. MIT’s Streamlt [119] model, for example, is primarily suitable for stream
processing applications. Stream computing has various applications including im-
age and single processing. It is based on synchronous data flow [76]] that operates
on streams of data known as tokens. These tokens pass through a number of
computation units known as filters. Filters communicate with each other through
channels. Channels are implemented as buffers and pass tokens. Streamlt programs
have single input and single output filters. Filters use push, pop and peep functions
to operate on input and output streams. Streams can be pipelined. They can also
be split and joined for data level parallelism.

Streamlt is completely deterministic. It has simple static verification tech-
niques for deadlock and buffer overflow. However, Streamlt is a strict subset of
SHIM and Streamlt’s design limits it to a smaller class of applications.

By contrast, Cilk [19] is a an interesting programming language that it covers
a larger class of applications. It is C based and the programmer must explicitly
ask for parallelism using the spawn and the sync constructs. Cilk is definitely
more expressive than SHIM and StreamlIt. However, Cilk allows data races. Fig-
ure [I, for example, is a nondeterministic concurrent program in Cilk. Explicit
techniques [30] are required for checking data races in Cilk programs.

X10 [29; [106] is another language that adopts the Cilk model. It uses async
and finish instead of spawn and sync. It is a parallel and distributed object-oriented
language. To a Java-like sequential core it adds constructs for concurrency and
distribution through the concepts of activities and places. An activity is a unit of
work, like a thread in Java, and is created by an async statement; a place is a logical
entity that contains both activities and data objects.

Just like Cilk, the X10 language allows races and does not impose hard restric-
tions on how activities should be created. We describe the language in detail in
Chapter [121

Synchronous programming languages like Esterel [17] are deterministic. An
Esterel program executes in clock steps and the outputs are synchronous with its
inputs. Although an Esterel program is susceptible to causality problems, this
form of deadlock can be detected at compile time. Unfortunately, synchronous
models require constant, global synchronization and force designers to explicitly

CHAPTER 2. BACKGROUND 13

schedule virtually every operation. Although standard in hardware designs, global
synchronization is costly in software. Furthermore, the presence of a single global
clock effectively forces entire systems to operate at the same rate. Frustration with
this restriction was one of the original motivations for SHIM.

2.3 Determinizing tools

A number of tools provide determinism. For example, Kendo is a software system
that deterministically multithreads concurrent applications. Kendo [93]] ensures a
deterministic order of all lock acquisitions for a given program input. Consider
two threads, 71 and 7> in Figure Suppose x is initialized to 0O, then the final
value of x is either 1 or 2, depending on which thread acquires the lock first.
Kendo removes this nondeterministic behavior by deterministically ordering the
acquisition of locks. An example of deterministic ordering is lowest thread id first.
In this case, Kendo waits for all threads to contend for the lock, then forces 7; to
acquire the lock before 75, thereby always giving the final value of x as 2.

Thread Ty Thread 75

lock (m) ; lock (m) ;
X++; X*x=2;
unlock (m) ; unlock (m) ;

Figure 2.3: Two threads 77 and 75 running in parallel

Kendo comes with three shortcomings. It operates completely at runtime, and
there is a considerable performance penalty. Secondly, if we have the sequence
lock(A); lock (B) in one thread and lock(B); lock(A) in another thread, a determin-
istic ordering of locks may still deadlock. Thirdly, the tool operates only when
shared data is protected by locks.

Software Transactional Memory (STM) [110] is an alternative to locks: a
thread completes modifications to shared memory without regard for what other
threads might be doing. At the end of the transaction, it checks for conflict free-
dom and commits if the validation was successful, otherwise it rolls back and
re-executes the transaction. STM mechanisms avoid races but do not solve the
nondeterminism problem.

Berger’s Gracel[[16 is a runtime tool that is based on STM. If there is a conflict
during commit, the threads are committed in a particular sequential order (deter-
mined by the order in which they appear in the source code), ensuring determinism.
For instance, for the code in Figure [Il f commits before g, therefore resulting in
output value 5. Grace works on Cilk programs. The tool ensures that the output

CHAPTER 2. BACKGROUND 14

of the concurrent code is same as its sequential equivalent, and this sequential
equivalent is obtained by removing spawn and sync statements from the concurrent
program.

The problem with Grace is that it incurs a lot of runtime overhead. This dis-
sertation partially solves this overhead problem by addressing the issue at compile
time and thereby reducing a considerable amount of runtime overhead.

Like Grace, Determinator[6] is another tool that allows parallel processes to
execute as long as they do not share resources. If they do share resources and the
accesses are unsafe, then the operating throws an exception (a page fault).

Cored-Det [13], based on DMP [42] uses a deterministic token that is passed
among all threads. A thread to modify a shared variable must first wait for the token
and for all threads to block on that token. DMP is hardware based. Although,
deadlocks may be avoided, we believe this setting is nondistributed because it
forces all threads to synchronize and therefore leads to a considerable performance
penalty. In the SHIM setting, only threads that share a particular channel must
synchronize on that channel; other threads can run independently.

Deterministic replay systems [315; 3] facilitate debugging of concurrent pro-
grams to produce repeatable behavior. They are based on record/replay systems.
The system replays a specific behavior (such as thread interleaving) of a concurrent
program based on records. The primary purpose of replay systems is debugging;
they do not guarantee determinism. They incur a high runtime overhead and are
input dependent. For every new input, a new set of records is generally maintained.

Like replay systems, Burmin and Sen [23]] provide a framework for checking
determinism for multithreaded programs. Their tool does not introduce deadlocks,
but their tool does not guarantee determinism because it is merely a testing tool
that checks the execution trace with previously executed traces to see if the values
match. Our goal is to guarantee determinism at compile time — given a program, it
will generate the same output for a given input.

2.4 Model checkers and verifiers

There are a number of model checkers that verify concurrent programs. SPIN
[63], for instance, supports modeling of asynchronous processes. Properties to
be verified are given as Linear Temporal Logic (LTL). SPIN expands all possible
interleavings to verify a concurrent program. It is a general purpose tool and
can be used to verify concurrent programs for properties including determinism
and deadlocks. The problem with model checkers is that they do not scale to
large programs. Also, they cannot express programs with complex structures and
behaviors.

CHAPTER 2. BACKGROUND 15

Martin Vechev’s tool [132]] finds determinacy bugs in loops that run parallel
bodies. It analyzes array references and indices to ensure that there are no read-
write and write-write conflicts.

Type and effect systems like DPJ [20] have been designed for deterministic
parallel programming. These systems do not themselves introduce deadlocks, but
type systems generally require programmer annotations. SHIM does not require
annotations; it provides restrictions through its constructs. One may argue against
learning a new programming paradigm or language like SHIM, but SHIM can be
implemented as a library (Chapter [6)) and the deadlock detector (Part [[II) can be
incorporated into it. The second problem with annotation based systems is that the
programmer has to ensure correct annotation; otherwise it results in incorrect effect
propagations.

Part 11

Determinism

16

17

Outline

This part illustrates techniques to guarantee input-output determinism. We use a
combination of compile-time and runtime techniques to obtain scheduling-independent
behavior. Our approach is a deterministic programming model and language —
SHIM. We start by explaining SHIM and its semantics. We then provide ways to
generate efficient runtime code from SHIM programs for different architectures.
We finally provide a deterministic concurrent library in Haskell that adopts the
SHIM model for race-free behavior.

CHAPTER 3. THE SHIM MODEL 18

Chapter 3

The SHIM Model

Because of the popularity of multicore chips, there is a growing need for program-
ming techniques, models, and languages that help exploit parallel hardware. In this
chapter, we describe the concurrency model underlying a programming language
called SHIM—*“software/hardware integration medium” [116] for its initial bias
toward embedded system applications—to ease the transition from single-threaded
software to robust multicore-aware implementations.

One of the key features of SHIM is that the output behavior of a program
is deterministic: the output of a program just depends on its input; it does not
depend on the environment such as compiler, runtime, OS, or hardware platform.
Concurrent tasks in SHIM run asynchronously and do not share any data. The
environment may schedule the tasks in any way (i.e., different schedules produce
different interleavings of the tasks), but still the program will produce deterministic
output. If the tasks have to share data, they have to synchronize using rendezvous
communication, and the SHIM’s runtime system takes care of this. By rendezvous,
we mean that all tasks sharing a particular variable have to meet — in a way similar
to a barrier.

The deterministic property of SHIM simplifies validation. Most programs are
still validated by simply running them. It is hard enough to validate a deterministic,
sequential program with such an approach: the user must create an appropriate set
of test cases and check the results of running the program on these cases. If the
model is nondeterministic, as with most concurrent formalisms, even running a
program on a test case only tells us what the result of running the program might
be. It does not guarantee that the result is correct. A different testing environment
may cause the program to behave differently for the same input. This is not the
case with SHIM because it guarantees scheduling independence.

The SHIM model and language [47; [115] prevent data races by providing

CHAPTER 3. THE SHIM MODEL 19

scheduling independence: given the same input, a program will produce the same
output regardless of what scheduling choices its runtime environment makes. It
provides certain program correctness guarantees and makes others easy to check
by adopting CSP’s rendezvous [62]] in a Kahn network [70] setting. In particular,
SHIM’s scheduling independence makes other properties easier to check because
they do not have to be tested across all schedules; one is enough. Deadlock is
one such property: for a particular input, a program will either always or never
deadlock; scheduling choices (i.e., different interleaving of tasks) cannot cause or
prevent a deadlock.

SHIM [116] is a C-like language with additional constructs for communica-
tion and concurrency. Specifically, p par g runs statements p and ¢ in parallel,
waiting for both to terminate before proceeding; send c¢ and recv ¢ are blocking
communication operators that synchronize on a variable (or a channel) ¢. As an
alternative to send and recv, next c is a blocking communication operator that
synchronizes on channel ¢ and either sends or receives data depending on which
side of an assignment (=) the next appears.

SHIM tasks communicate exclusively through this multiway rendezvous; there
are no global variables or pointers. Any variable that is shared should be a channel
and be declared as chan. We illustrate SHIM with examples taken from Tardieu’s

paper [117].
void f(chan int a) { //aisacopyofc
a = 3;
recv a; [/ synchronize with g; a gets ¢’s value
lla=5
}
void g (chan int &b) { //bisan alias forc
b = 5;
send b; //synchronize with f
IIb=5
3
void main () {
chan int ¢ = 0;
Sfle); par g(c);
}

Here, the program runs two tasks f and g concurrently. a and b are incarnations
of channel c¢. In f, a is a copy of c that is first modified by a=3 before being
updated by recv. By contrast, b is an alias for ¢ in g, so the assignment b=5
actually modifies c. Because they are associated with the same variable, the send
and recv operations must synchronize to execute. When they do, the recv statement
copies the master value of a—c, which was set to 5 in g—to the local copy of f.
Thus a is 5 just before f terminates.

The next operation can also used for communication. For instance, in the piece

CHAPTER 3. THE SHIM MODEL 20

of code we just saw, recv a can be replaced by next a, and b = 5; send b;, can be
replaced by next b = 5. In other words, next behaves like a send if it appears on the
left side of an assignment, and like recv otherwise.

Only the procedure that takes a channel by reference may send on that channel.
A channel may be passed by reference to at most one of the procedures. E.g.,

int f(chan int &x, chan int y) { x++; y--; }
int g(chan int z) { z--; }
void main () {

chan int a; a=0; chan int b; b=1;

fta, b); par f(b, a); par g(a); //OK:a=1,b=2
}
In the above piece of code, executes f(a,b) in parallel with f(b,a), and both run
in parallel with g(a); The first f takes a by reference and a is incremented once,
while the second f takes b by reference and increments b by 1. g does not take
any variable by reference. Therefore, it does not affect the values of a and b. So,
the values of a and b become 1 and 2 respectively after the execution of the second
line in main.

The following line would be illegal in main.
fla, a); par f(a, b); /lincorrect: ais passed twice by reference — compiler reject

Due to this restriction (enforced at compile time), concurrently running procedures
never share memory - every task maintains its own local copy. The sender task
alone references the actual copy, and there can be only one sender task on a chan-
nel.

In general, if there are two sender tasks on a particular channel in the code
section of the program, then the compiler rejects the program to guarantee de-
terminism. Summarily, the asynchronous parts in SHIM are totally independent
because they never share memory. Sharing is only through explicit synchronization
using rendezvous communication. This makes SHIM deterministic.

It is not necessary for the statements in the par statement to be procedure calls.

For instance:
void main ()

{

chan int a, b;

{ // Task 1
a =5;
send a; // Send 5 on a (wait for task 2)
//nowa=>5
recv b; // Receive b (wait for task 2)
//now b =10

} par { //Task?2
recv a; [/ Receive a (wait for task 1)
//nowa=>5

CHAPTER 3. THE SHIM MODEL 21

b =10
send b; // Send 10 on b (wait for task 1)
//now b =10
}
}
The SHIM compiler dismantles the above code as:
[+ Task 1 %/
void mainl (int &a, int b) {
a =5;
send a; // Send 5 on a (wait for task 2)
/I now a=>5
recv b; // Receive b (wait for task 2)
//now b =10
}
/% Task 2 x/

void main2 (int a, int &b) {
recv a; [/ Receive a (wait for task 1)

/Inowa=>5

b =10

send b; // Send 10 on b (wait for task 1)
//now b =10

}

void main ()

{chan int a, b;

mainl (a,b) ; par main2(a,b) ;

/*a=5,b=10 %/

}
Task 1 (represented by mainl), being the sender on a, takes a by reference. Simi-
larly, main?2 takes b by reference. The two peer tasks communicate on channels a
and b. Tasks 1 and 2 are executed in parallel. The send a in task 1 waits for task 2
to receive the value. The tasks therefore rendezvous, then continue to run after the
communication takes place. Next, the two tasks rendezvous at b. This time, task 2
sends and task 1 receives.

Here is another example that illustrates how the send and recv instructions

enable communication between concurrently running procedures.
void f(chan int &x) { /xreference to a */
x = 3; /xmodifies a, ais 3 */
send x; /*sends3 */
x = 4; /xmodifies a, ais 4 */
}
void g(chan int y, chan int &z) {
y = 5; /xmodifies local copy */
recv y; /xreceives 3,y is 3 %/
z = y; /+*modifies b %/

CHAPTER 3. THE SHIM MODEL 22

void main() {

chan int a; a=0; chan int b; b=1;

fla); par g(a, b); //a=4,b=3
}
Here, send x in f and recv y in g synchronize and the value of x in f is copied into y
in g. Variables x and y are paired in this communication because both are instances
of variable a from main, that is, x is a reference to a and y is a “by-value” reference
to a. We say that procedures f and g share variable a from main even if only f has
access to the value of variable a through x.

When two or more concurrent procedures share the same variable a in this
sense, all of them must participate in each communication on a. Hence, each
procedure reaching a send x or recv y instruction (where x resp. y is the name
of the local instance of a) blocks, that is, stops executing until every procedure
involved is blocked on a. Then, a communication takes place atomically.

In other words, the primitive communication mechanism in SHIM is the mul-
tiway rendezvous that requires all participants in a communication to synchronize
— there can be multiple receivers but only one sender on a channel. Of course,
other traditional communication mechanisms can be built using this multiway ren-
dezvous. For instance, the fifo procedure described later in this section implements
buffered channels.

In SHIM, there are rules for the (static) disambiguation of multiple-sender-
multiple-receiver communications. In particular, a procedure can only send values

on a pass-by-reference parameter channel. For instance,
void snd(chan int &x) { send x; }
void rcv (chan int y) { recv y; }

void main() { chan int a; a=0; snd(a); } //OK

void main() { chan int a; a=0; snd(a); par rcv(a); par rcv(a); } //OK

void main() { chan int a; a=0; snd(a); par snd(a); } //incorrect

void main() { chan int a; a=0; rcv(a); } // OK — receives O (the last value on the channel)

void main() { chan int a; a=0; rcv(a); par rcv(a); } // OK — both receive 0
In the absence of a sender, the rendezvous deadlocks. Competing synchronization

barriers may also cause deadlocks. For example,

void f(chan int &x, chan int &y) { send x; send y; }

void g (chan int x, chan int y) { recv x; recv y; }

void main() { chan int a; a=0; chan int b; b=0; f(a, b); par g(b, a); }
/I deadlocks

Procedures f and g share a and b from main; f is waiting to synchronize on a
whereas g is blocked on b. Therefore, neither synchronization attempt completes.
This means coding in SHIM involves tracking down deadlocks, but we prefer
reproducible fatal errors to hard-to-detect, hard-to-reproduce data races. Deadlock
detection techniques are discussed in the later chapters.
A terminated procedure is no longer compelled to rendezvous. E.g.,

CHAPTER 3. THE SHIM MODEL 23

void f(chan int &x, chan int &y) { send x; send y; send x; }
void g (chan int x) { recv x; }
void main() {

chan int a; a=0; chan int b; b=0;

fla, b); par g(b); //nodeadlock: ais only shared by f

fla, b); par g(a); //nodeadlock: ais only shared by f once g returns
}

This is one of the two reasons multiway rendezvous is fundamental to SHIM.
Because procedures may terminate, a multiway channel may dynamically shrink;
because concurrent procedures may further divide into more concurrent proce-
dures, a multiway channel may dynamically extend. A procedure (or a task) that
takes a channel by value, may pass the channel to its subprocedures (or subtasks)
only by value.

Summarily, a send x or a recv x waits for all tasks that access channel x, to either
communicate on x or terminate. Once this condition is satisfied, the value is copied
from sender to all receivers. If there is no sender at the rendezvous, the last value
written on the channel is copied to the receivers. After this, the tasks continue
execution independently. When a task executes a statement x = a, it writes a to
its local copy of x if the task is a receiver. The sender alone writes to the actual
location of x.

To perform I/O in SHIM, we declare cin and cout as channels. All tasks that
take cin by value, can read the input. The task that takes cout by reference, can
write to the output. To do this, we allow the main function to take parameters.
main takes cin by value and cout by reference. A "hello world" program in SHIM
will look like this:

void main (chan char cin, chan char &cout) {
cout << 'H';
cout << 'e’;
cout << 'l’;

cout << 'l’;
cout << 'd’;

The SHIM scheduler is a part of the runtime environment of the SHIM target
program. It runs the asynchronous (communication-free) parts of the program
independently — allowing the environment (operating system, hardware, etc.) to
schedule these asynchronous sections of tasks with arbitrary interleavings. How-
ever, the SHIM scheduler will not violate the interthread communication rules
forcing communication actions to synchronize.

All legal SHIM programs must be provably scheduling independent. For exam-
ple, the cell function below implements a one-place buffer with an infinite loop that

CHAPTER 3. THE SHIM MODEL 24

alternatively reads from its input channel and writes to its output channel. Then, by
combining recursion and parallel composition, the fifo function chains n one-place
buffers to build a fifo of size n.

void cell (chan int i, chan int &o) {

while (true) { recv i; o = i; send o; }
}
void fifo (chan int i, chan int &o, int n) {

chan int c; chan int m; m = n - 1;
if (m>0) { cell(i, c); par fifo(c, o, m); }
else { cell(i, o0); }
}
The distribution of data tokens in the fifo is under the control of the scheduler. For
instance, one scheduling policy may chose to move data tokens toward the output
of the fifo eagerly; another may move data tokens lazily. Nevertheless, because
this is a legal SHIM program, we know that the output of the fifo will always be
the same for a particular input sequence.
SHIM also has an exception mechanism that is layered on top of its communi-
cation mechanism to preserve determinism.
void source (chan int &a) throws T {
while (a > 0) {
a=a - 1;
send a;

}
throw T;

}
void sink (chan int b) {
while (1)
recv b;
}
void main () {
chan int x =
try {
source (x) ; par sink(x) ;
} catch (T) {}
}

The source procedure in the above piece of code sends 4, 3, 2, 1, and O to the sink.
The sink procedure calls recv five times to synchronize with the source’s sends.
Then, source throws an exception 7. When sink tries to receive the sixth time, it is
poisoned by the source and terminated. It should be noted that the sink receives the
poison only when it tries to communicate with source. As described, exceptions are
propagated to other tasks only during communication, making the exception model
of SHIM deterministic. We discuss a few more examples of SHIM programs with
exceptions in the following chapters.

The central hypothesis of SHIM is that its simple, deterministic semantics

5;

CHAPTER 3. THE SHIM MODEL 25

helps both programming and automated program analysis. That we have been
able to devise truly effective mechanisms for clever code generation and analysis
(e.g., deadlock detection) that can gain deep insight into the behavior of programs,
vindicates this view. The bottom line: if a programming language does not have
simple semantics, it is really hard to analyze its programs quickly or precisely.

In the following chapters, we describe a series of code generation techniques
suitable for parallel processors. Each actually works on a slightly different dialect
of the SHIM language, although all use the Kahn-with-rendezvous communication
scheme. The reason for this diversity is historical; we added features to the SHIM
model as we discovered the need for them. Our benchmarks are all batch programs;
we do not yet deal with reactive systems.

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 26

Chapter 4

Compiling SHIM to a Shared
Memory Architecture

We have described the SHIM programming language in the previous chapter. To
prove that the language can be practical, we describe a compiler that generates C
code and calls the Pthread library for parallelism.

As discussed in the previous chapter, the SHIM language [47; [116] only allows
deterministic message-passing communication to guarantee race freedom. The
programming model allows SHIM compilers to use a simple syntactic check to
verify that runtime scheduling choices cannot change a program’s 10 behavior.
While this model does restrict how concurrent tasks may interact, the burden for
the programmer and the performance penalty are a small price for correctness.

In this chapter, we demonstrate how SHIM facilitates writing interesting, time
efficient parallel programs for shared-memory multiprocessors. The challenge is
minimizing overhead - implementing SHIM s multiway rendezvous communication
with exceptions efficiently is the main code generation challenge. Each commu-
nication action acquires the lock on a channel, checks whether every connected
process had also blocked (whether the rendezvous could occur), and then checks if
the channel is connected to a poisoned process (an exception had been thrown).

We implement a parallel JPEG decoder and an FFT to show how SHIM helps
with coding and testing different schedules during design exploration (Section4.2]).
We present a compiler that generates C code that calls the POSIX thread (“Pthread”)
library for shared-memory multiprocessors (Section [4.3). For the JPEG and FFT
examples, our compiler’s output achieves 3.05 and 3.3 x speedups on a four-core
processor (Section [4.4]).

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 27

void h(chan int &A) {

A = 4; send A; void g (chan int A) {
A = 2; send A; recv A;
} recy A;

}
void j(chan int A) throws Done {

recv A; void main () {
throw Done; try {
} chan int A;
f(A); par g(A);
void f(chan int &A) throws Done { } catch (Done) {}
h(A); par j(A); }

}

Figure 4.1: A concurrent SHIM program with communication and exceptions

4.1 Reviewing SHIM

SHiM [116] is a concurrent programming language designed to guarantee schedul-
ing independence. The input-output function of a SHIM program does not depend
on scheduling choices; that is, if two concurrent tasks are ready to run, choosing
which to run first does not affect the program’s function.

It adopts an asynchronous concurrency model, a la Kahn networks [70] (SHIM
tasks can only block on a single channel), that uses CSP-like rendezvous [61].
The language does not expose shared memory to the programmer, but it does
provide single-sender multiple-receiver synchronous communication channels and
asynchronous exceptions. Both mechanisms were designed to prevent scheduling
decisions from affecting function.

SHIM’s syntax is a C subset augmented with constructs for concurrency, com-
munication, and exceptions. It has functions with by-value and by-reference argu-
ments, but no global variables, pointers, or recursive types.

The par construct starts concurrent tasks. p par g starts statements p and ¢ in
parallel, waits for both to complete, then runs the next statement in sequence.

To prevent data races, SHIM forbids a variable to be passed by reference to two
concurrent tasks. For example,

void f(int &x) {} void g (int x) {}
void main () {
int x, y;
f(x); par g(x); par f(y); /1 OK
f(x); par f(x); /I rejected because x is passed by reference twice
}

Internally, our compiler only supports parallel function calls. If p in p par q is

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 28

not a function call, p is transformed into a function whose interface—the formal
arguments and whether they are by-reference or by-value—is inferred [116].

SHIM’s channels enable concurrent tasks to synchronize and communicate with-
out races. The main function in Figure[d.T]declares the integer channel A and passes
it to f and g, then f passes it to & and j. Tasks f and & send data with send A. Tasks
g and j receive it with recv A.

A channel resembles a local variable. Passing a channel by value copies its
value, which can be modified independently. A channel must be passed by refer-
ence to senders.

Communication is blocking: a task that attempts to communicate must wait for
all other connected tasks to engage in the communication. If the synchronization
completes, the sender’s value is broadcast to the receivers. In Figure 4.l 4 is
broadcast from 4 to g and j. Task g blocks on the second send A because task j
does not run a matching recv A.

Like most formalisms with blocking communication, SHIM programs may dead-
lock. But deadlocks are easier to fix in SHIM because they are deterministic: on the
same input, a SHIM program will either always or never deadlock.

—~ Huffman }—{Process Macroblock H—>| Write |

[Huffman F—{Process Macroblock H—>| Write |

v v
[Huffman j—{Process Macroblock j|—{ Write |-~

Figure 4.2: Dependencies in JPEG decoding

critical path

Figure 4.3: Seven-task schedule for JPEG

SHIM’s exceptions enable a task to gracefully interrupt its concurrently running
siblings. A sibling is “poisoned” by an exception when it attempts to communicate
with a task that raised an exception or with a poisoned task. For example, when j

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 29

in Figure d.Ilthrows Done, it interrupts h’s blocked send A and g’s blocked recv A.
An exception handler runs after all the tasks in its scope have terminated or been
poisoned.

4.2 Design exploration with SHIM

SHIM facilitates the coding and testing of different schedules—a key aspect of
design exploration for parallel systems. To illustrate, we describe implementing
two parallel algorithms in SHIM: a JPEG decoder and an FFT.

4.2.1 Porting and parallelizing a JPEG decoder

We started by porting into SHIM a sequential JPEG decoder written in C by Pierre
Guerrier. SHIM is not a C subset, so some issues arose. The C code held Huffman
tables in global variables, which SHIM does not support, so we passed the tables
explicitly. The C code allocated buffers with malloc; we used fixed-size arrays.
We discarded a pointer-based Huffman decoder, preferring instead one that used
arrays.

After some preprocessing, the main loop of the original program unpacked a
macroblock—six Huffman-encoded 8 x 8 data blocks (standard 4:2:0 downsampling)—
performed an IDCT on each data block, converted from YUV to RGB, and blitted
the resulting 16x 16 pixel block to a framebuffer. It then wrote the framebuffer
to a file. Although macroblocks can be processed independently, unpacking and
writing are sequential (Figure [4.2)).

We first ran four IDCT transformers in parallel. Unfortunately, this ran slowly
because of synchronization overhead.

To reduce overhead, our next version divided the image into four stripes and
processed each independently. Fearing the cost of communication, we devised the
seven-task schedule in Figure which greatly reduced the number of synchro-
nizations at the cost of buffer memory.

The Figure schedule only gave a 1.8x speedup because the seventh task
waits for all the other stripes to be unpacked and then everything waits for the
seventh task. The arrow in Figure shows the critical path, which includes the
total cost of Huffman decoding and 14 of the IDCTs.

To strike a balance between the two approaches, we finally settled on the more
fined-grained schedule in Figure Each task processes a row of macroblocks at
a time (e.g., 64 macroblocks for a 1024-pixel-wide image). This schedule spends
less time waiting than the stripe-based approach and synchronizes less often than
the block-based approach.

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE

void unpack (unpacker_state &state, stripe &stripe) { ... }
void process (const stripe &stripe, pixels &pixels) { ... }
void write (writer_state &wstate, const pixels &pixels) { ... }

unpacker_state ustate; writer_state wstate;
stripe stripel , stripe2, stripe3, stripe4;
pixels pixelsl; chan pixels pixels2, pixels3, pixels4;

unpack (ustate, stripel) ;
{ process (stripel , pixelsl) ; write (wstate, pixelsl) ;
recv pixels2; write (wstate, pixels2) ;
recv pixels3; write (wstate, pixels3) ;
recv pixels4; write (wstate, pixels4) ;
} par {
unpack (ustate, stripe2) ;
{ process (stripe2, pixels2) ; send pixels2;
} par {
unpack (ustate, stripe3) ;
{ process (stripe3, pixels3) ; send pixels3;
} par {
unpack (ustate, striped) ;
process (stripe4, pixels4) ; send pixels4;

} Yo
Figure 4.4: SHIM code for the schedule in Figure [4.3|
[Huf b~ Huf b~{ Huf ”|—-|Huf Fr-{Huf p~{ Huf | Huf f~{ Huf |~{ Huf ”|—-|Huf bt
[Process | Process h L_Iﬂ
Process :h L Process | —| Process h

—>| Process I— —{ Prockss h —{ Prodess

Figure 4.5: A pipelined schedule for JPEG

30

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE

void unpack (unpacker_state &state, row &row) { ... }

void process (in row row, out pixels &pixels)

{ for (;;) { recv row; /+IDCT etc.«/ send pixels; } 1}
void write (writer_state wstate, const pixels &pixels) { ... }

unpacker_state ustate; writer_state wstate; int rows;
chan row rowl, row2, row3;
chan pixels pixelsl, pixels2, pixels3;

try {
{ for (;;) {
unpack (ustate, rowl) ; send rowl; if (--rows == 0) break;
unpack (ustate, row2); send row2; if (--rows == 0) break;
unpack (ustate, row3); send row3; if (--rows == 0) break;

} throw Done; } par

process (rowl , pixelsl) ; par

process (row2, pixels2) ; par

process (row3, pixels3) ; par

{ for (;;) {
recv pixelsl; write (wstate, pixelsl) ;
recv pixels2; write (wstate, pixels2) ;
recv pixels3; write (wstate, pixels3); } }

} catch (Done) {}

Figure 4.6: SHIM code for the JPEG schedule in Figure

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 32

4.2.2 Parallelizing an FFT

We also coded in SHIM a pipelined FFT to test the effects of numerical roundoff. Its
core is the FFT from Numerical Recipes [101]], which we rewrote to use signed 4.28
fixed-point arithmetic. We added code that parses a .wav file, runs blocks of 1024
16-bit samples through the FFT, through an inverse FFT, then writes the samples to
another .wav file.

Our FFT uses a schedule similar to that of the more complex JPEG decoder: one
task reads 1024-sample blocks and feeds them to four FFT tasks in a round-robin
manner. Each reads its sample block, performs the FFTinverse FFT operation, and
sends its block to a writer task, which receives sample blocks in order and writes
them sequentially.

Synchronization costs limited this to a 2.3 speedup on four processors, so we
made it process 16 1024-sample blocks, improving performance to 3.3 x.

4.2.3 Race freedom

Both the JPEG and FFT examples illustrate that dividing and scheduling computa-
tion tasks is critical in achieving performance on parallel hardware. Although data
dependencies in JPEG were straightforward, finding the right schedule took some
effort. With traditional concurrent formalisms, it is easy to introduce data races
during design exploration.

SHIM’s channels and exceptions cannot introduce races. E.g., in Figure[4.6] the
first task throws an exception after reading all the rows. SHIM semantics ensure
that the three row-processing tasks and the writing task terminate just after they
have completed processing all the rows.

SHIM also guarantees data dependencies are respected. For instance, the SHIM
compiler rejects attempts to run unpackers in parallel because of the shared pass-
by-reference state (mostly, position in the file):
void unpack (unpacker_state &state, stripe &stripe) { ... }

unpack (ustate, stripel) ; par unpack (ustate, stripe2) ; /l rejected

4.3 Generating Pthreads code for SHIM

In this section, we describe our main technical contribution: a SHIM compiler
that generates parallel C code that uses the Pthread library’s threads (independent
program counters and stacks that share program and data memory), mutexes (mu-
tual exclusion objects for synchronizing access to shared memory), and condition
variables (can block and resume execution of other threads).

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 33

4.3.1 Mutexes and condition variables

Any Pthreads program must decide how many threads it will use, the number of
mutexes, the partition of shared state, and the number and meaning of condition
variables. These are partly engineering questions: coarse-grain locking leads to
fewer locking operations but more potential for contention; finer locking has more
overhead. Locking is fairly cheap, typically consisting of a (user-space) function
call containing an atomic test-and-set instruction, but is not free. On one machine,
locking and unlocking a mutex took 74x as long as a floating point multiply-
accumulate.

We generate code that uses one mutex-condition variable pair for each task and
for each channel. Figure [4.7] shows the data structures we use. These are “base
classes:” the type of each task and channel includes additional fields that hold the
formal arguments passed to the task and, for each function to which a channel
is passed by value, a pointer to the local copy of the channel’s value. To reduce
locking, we track exception “poisoning” in both tasks and channels.

#define lock (m) pthread_mutex_lock (&m)

#define unlock (m) pthread_mutex_unlock (&m)
#define wait(c, m) pthread_cond_wait (&c, &m)
#define broadcast (c) pthread_cond_broadcast (&c)

enum state { STOP, RUN, POISON };

struct task { struct channel {
pthread_t thread ; pthread_mutex_t mutex;
pthread_mutex_t mutex; pthread_cond_t cond;
pthread_cond_t cond; unsigned int connected;
enum Sstate state; unsigned int blocked ;
unsigned int attached_children ; unsigned int poisoned ;
/* Formal arguments. .. %/ /* Local copy pointers. .. */
}i }s

Figure 4.7: Shared data structures for tasks and channels

4.3.2 The static approach

For efficiency, our compiler assumes the communication and call graph of the
program is static. We reject programs with recursive calls, allowing us to transform
the call graph into a call tree. This duplicates code to improve performance: fewer
channel aspects are managed at run time.

We encode in a bit vector the subtree of functions connected to a channel. Since
we know at compile time which functions can connect to each channel, we assign
a unique bit to each function on a channel. We check these bits at run time with

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 34

logical mask operations. In the code, something like A_f is a constant that holds
the bit our compiler assigns to function f connected to channel A, such as 0x4.

4.3.3 Implementing rendezvous communication

Implementing SHIM’s multiway rendezvous communication with exceptions is the
main code generation challenge.

The code at a send or receive is straightforward: it locks the channel, marks
the function and its ancestors as blocked, calls the event function for the channel
to attempt the communication, and blocks until communication has occurred. If it
was poisoned, it branches to a handler. Figure [4.§]is the code for send A in h in
Figure 4.1l

lock (A . mutex) ; /* acquire lock for channel A x/
A .blocked |= (A_h|A_f|A_main) ; /* block h and ancestors on A */
event_A () ; /* alert channel of the change x/
while (A .blocked & A_h) { /+ while h remains blocked +/

if (A.poisoned & A_h) { /* were we poisoned? x/

unlock (A . mutex) ; goto _poisoned;

}

wait (A .cond, A.mutex) ; /* wait on channel A =/
}
unlock (A . mutex) ; /* release lock for channel A +/

Figure 4.8: C code for send A in function /()

For each channel, our compiler generates an event function that manages com-
munication. Our code calls an event function when the state of a channel changes,
such as when a task blocks or connects to a channel.

Figure [4.9] shows the event function our compiler generates for channel A
in Figure .11 While complex, the common case is quick: when the channel
is not ready (one connected task is not blocked on the channel) and no task is
poisoned, A.connected = A.blocked and A.poisoned == 0 so the bodies of the two
if statements are skipped.

If the channel is ready to communicate, A.blocked == A.connected so the body
of the first if runs. This clears the channel (blocked = 0) and main’s value for A
(passed by reference to f and & and passed by value to others) is copied to g or j if
connected.

If at least one task connected to the channel has been poisoned, A.poisoned != 0
so the body of the second if runs. This code comes from unrolling a recursive
procedure at compile time, which is possible because we know the structure of the
channel (i.e., which tasks connect to it). The speed of such code is a key advantage
over a library.

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE

void event A () {

unsigned int can_die = 0, kill = 0;

if (A.connected == A.blocked) { /* communicate
A .blocked = 0;
if (A.connected & A_g) *A.g = *A.main;
if (A.connected & A_j) *A.j = *A.main;
broadcast (A . cond) ;

} else if (A.poisoned) { /* propagate exceptions
can_die = blocked & (A_g|A_h|A_j); /% compute can_die set
if (can_die & (A_h|A_j) == A.connected & (A_h|A_j))

can_die |= blocked & A_f;
if (A.poisoned & (A_f|A_g)) { /* compute kill set
kill |= A_g; if (can_die & A_f) kill |= (A_f|A_h|Aj);

}
if (A.poisoned & (A_h|A_j)) { kill |= A_h; kill |= A_j; }

if (kill &= can_die & ~A.poisoned) { /* poison some tasks?
unlock (A . mutex) ;
if (kill & A_g) { /* poison g if in kill set

lock (g . mutex) ;
g .state = POISON;
unlock (g . mutex) ; '}
/* also poison f, h, and j if in kill set... x/
lock (A . mutex) ;
A .poisoned |= kill; broadcast (A .cond) ;
Yol

Figure 4.9: C code for the event function for channel A

lock (main . mutex) ; main.state = POISON; unlock (main.mutex) ;
lock (f.mutex) ; f.state POISON; unlock (f.mutex) ;

lock (j.mutex) ; j.state POISON; unlock (j . mutex) ;

goto _poisoned;

Figure 4.10: C code for throw Done in function j()

*/

*/
*/

*/

%/

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 36

This exception-propagation code attempts to determine which tasks, if any,
connected to the channel should be poisoned. It does this by manipulating two
bit vectors. A task can_die iff it is blocked on the channel and all its children
connected to the channel (if any) also can_die. A poisoned task may kill its sibling
tasks and their descendants. Finally, the code kills each task in the kill set that
can_die and was not poisoned before by setting its state to POISON and updating
the channel accordingly (A.poisoned |= kill).

Code for throwing an exception (Figure [4.10) marks as POISON all its ances-
tors up to where it will be handled. Because the compiler knows the call tree, it
knows how far to “unroll the stack,” i.e., how many ancestors to poison.

4.3.4 Starting and terminating tasks

It is costly to create and destroy a POSIX thread because it usually requires a
system call, each has a separate stack, and doing so interacts with the operating
system’s scheduler. To minimize this overhead, because we know the call graph
of the program at compile time, our compiler generates code that creates at the
beginning as many threads as the SHIM program will ever need. These threads are
only destroyed when the SHIM program terminates; if a SHIM task terminates, its
POSIX thread blocks until it is reawakened.

lock (A .mutex) ; /* connect x/ lock (f. mutex) ; /x run f() */
A.connected |= (A_f|A_g); f.state = RUN; broadcast (f.cond) ;
event_A () ; unlock (f . mutex) ;
unlock (A . mutex) ;
lock (g . mutex) ; /* run g() =/
lock (main . mutex) ; g.state = RUN; broadcast(g.cond) ;
main . attached_children = 2; unlock (g . mutex) ;

unlock (main . mutex) ;
lock (main .mutex) ; /= wait for children x/

lock (f.mutex) ; /+ pass args =/ while (main . attached_children)
f.A = &A; wait (main . cond, main.mutex) ;
unlock (f . mutex) ; if (main.state == POISON) {
unlock (main . mutex) ;
/* A is dead on entry for g, goto _poisoned; }
so do not pass A to g */ unlock (main . mutex) ;

Figure 4.11: C code for calling f{) and g() in main()

Figure 4.1 shows the code in main that runs f and g in parallel. It connects f
and g to channel A, sets its number of live children to 2, passes function parameters,
then starts f and g. The address for the pass-by-reference argument A is passed to
/- Normally, a value for A would be passed to g, but our compiler found this value
is not used so the copy is avoided (discussed below). After starting f and g, main

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 37

waits for both children to return. Then main checks whether it was poisoned, and
if so, branches to a handler.

_poisoned :
int *A; /* value of channel A %/ lock(A.mutex); /x poison A */
A .poisoned |= A_f;

_restart: A.blocked &= ~A_f; event_A() ;
lock (f.mutex) ; unlock (A . mutex) ;
while (f.state != RUN)
wait (f.cond, f.mutex) ; lock (f.mutex) ; /* wait for children */
A = f.A; /x copy arg. x/ while (f.attached_children)
unlock (f . mutex) ; wait (f.cond, f.mutex) ;

unlock (f. mutex) ;
/* body of the f task */
lock (A .mutex) ; /= disconnect j, h x/

_terminated : A.connected &= ~(A_h|A_j);
lock (A .mutex) ; /+ disconnect f »/ A.poisoned &= ~(A_h|A_j);
A.connected &= ~A_f; event_A () ;
event A () ; unlock (A . mutex) ;

unlock (A . mutex) ;
_detach: /= detach from parent */

lock (f.mutex) ; /+ stop */ lock (main . mutex) ;

f.state = STOP; ——main.attached_children;
unlock (f . mutex) ; broadcast (main . cond) ;
goto _detach; unlock (main . mutex) ;

goto _restart;

Figure 4.12: C code in function f{) controlling its execution

Reciprocally, Figure shows the code in f that controls its execution: an
infinite loop that waits for main, its parent, to set its state field to running, at which
point it copies its formal arguments into local variables and runs its body.

If a task terminates normally, it cleans up after itself. In Figure B.12] task f
disconnects from channel A, sets its state to STOP, and informs main it has one
less running child.

By contrast, if a task is poisoned, it may still have children running and it may
also have to poison sibling tasks so it cannot entirely disappear yet. In Figure 4.12]
task f, if poisoned, does not disconnect from A but updates its poisoned field. Then,
task f waits for its children to return. At this time, f can disconnect its (potentially
poisoned) children from channels, since they can no longer poison siblings. Finally,
f informs main it has one less running child.

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 38

4.3.5 Optimizations

SHIM draws no distinction between sequential C-like functions and concurrent
tasks; our compiler treats them differently for efficiency. Our compiler distin-
guishes tasks from functions, which must not take any channel arguments, contain
local channels, throw or handle exceptions, have parallel calls, call any tasks, or be
called in parallel. Tasks are implemented as described above—each is assigned its
own thread. Functions follow C’s calling conventions.

Unlike Java, SHIM passes scalars, structures, and arrays by value unless marked
as by-reference. This is convenient at parallel call sites to avoid interference among
concurrent tasks. However, if tasks only read some data, the data can be shared
among them for efficiency. Similarly, a channel can be shared among tasks that
never update the channel’s value between recv instructions. We introduced a C++-
like const specifier that prohibits assignments to a variable, channel, or function
parameter. The compiler allows multiple concurrent const by-reference parameters
and allocates a shared copy for const parameters passed by value.

We implemented another optimization to reduce superfluous copies of large
data structures. Normally, the current value of a channel is copied when the channel
is passed by value, but copying is unnecessary if the value is never used before the
next value is recv’d. The overhead can be substantial for arrays. We perform live
variable analysis to determine which arguments are dead on entry. E.g., in
void myfunc (chan int input[65536]1) { recv input; ... }

the input channel value is dead on entry and will not be copied at any callsite for
myfunc, eliminating a 256K copy.

4.4 Experimental results

We implemented our SHIM compiler in OCAML. Code specific to the Pthreads
backend is only about 2000 lines.

To test the performance of our generated code, we ran it on a 1.6 GHz Quad-
Core Intel Xeon (E5310) server running Linux kernel 2.6.20 with SMP (Fedora
Core 6). The processor “chip” actually consists of two dice, each containing a pair
of processor cores. Each core has a 32 KB L1 instruction and a 32 KB L1 data
cache, and each die has a 4 MB of shared L2 cache shared between the two cores.

We compiled the generated C with gcc 4.1.1 with -O7 and -pthread options.
We timed it using the time command and ran sync to flush the disk cache.

The JPEG program uses much more stack space than typical C programs be-
cause it stores all data on the stack instead of the heap. We raised the stack size to
16 MB with ulimit -s.

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 39

Table 4.1: Experimental Results for the JPEG decoder
Cores Tasks Time Total TotalTime Speedup

1 T 25s 20s 0.8 1.0x (def)
1 1+3+1 24 24 1.0 1.04

2 1+3+1 13 24 1.8 1.9

3 1+3+1 11 24 2.2 2.3

4 1+3+1 8.7 25 2.9 2.9

4 1+1+1 16 24 1.5 1.6

4 1+2+1 9.3 25 2.7 2.7

4 1+3+1 8.7 25 2.9 2.9

4 1+4+1 8.2 25 3.05 3.05

4 1+5+1 8.6 25 2.9 2.9

T Reference single-threaded C implementation.

Run on a 20 MB 21600 x 10800 image that expands to 668 MB. Tasks is the number of parallel
threads (read and unpack + process row + write), Time is wallclock, Total is user + system time,
TotalTime is the parallelization factor, speedup is with respect to the reference implementation.

Table 1] shows results for the JPEG decoder. We ran it on a 20 MB earth
image from NaSAll and varied both the number of available processors and the
number of row-processing tasks in our program. The speedup due to parallelization
plateaued at 3.05, which we attribute to the sequential nature of the Huffman
decoding process.

Table shows statistics for our FFT. We compared handwritten C with
sequential SHIM and two parallel SHIM versions, one with six tasks that work on
single 1024-sample blocks and one that works on sixteen such blocks. The first
parallel implementation has overhead from synchronization and communication.
The “Parallel 16” version communicates less to reduce this overhead and achieve
a 3.3x speedup: 82% of an ideal 4 x speedup on four cores.

4.5 Related work

Like SHIM, the Streamlt language [120] is deterministic, but its dataflow model
is a strict subset of SHIM’s and there is no StreamIt compiler for shared memory
machines.

Other concurrent languages use different models. The most common is “loops-
over-arrays,” embodied, e.g., in compilers for OpenMP [121]. This would be

Tworld.200409.3x21600x 10800.jpg from [earthobservatory.nasa.gov

http:\/\/earthobservatory.nasa.gov

CHAPTER 4. SHIM ON A SHARED MEMORY ARCHITECTURE 40

Table 4.2: Experimental Results for the FFT
Code Cores Time Total TotalTime Speedup

Handwritten C 1 2.0s 2.0s 1.0 1.0x (def)
Sequential SHIM 1 2.1 2.1 1.0 0.95
Parallel SHIM 1 2.1 2.1 1.0 0.95
Parallel SHIM 2 1.3 2.0 1.5 1.5
Parallel SHIM 3 092 2.1 2.2 2.2
Parallel SHIM 4 086 2.1 2.4 2.3
Parallel 16 1 1.9 1.9 1.0 1.1
Parallel 16 2 1.0 1.9 1.9 2.0
Parallel 16 3 0.88 1.9 2.1 2.2
Parallel 16 4 0.6 1.9 3.2 3.3

Run on a 40 MB audio file—20 000 1024-point FFTs.

awkward for a schedule such as Figure The Cilk language [19] speculates
to parallelize sequential code. The Guava [9]] Java dialect prevents unsynchronized
access to shared objects by enforcing monitor use with a type system. Like SHIM,
it aims for race freedom, but uses a very different model.

4.6 Conclusions

A good parallel algorithm reliably computes the result quickly. Unlike most par-
allel languages, SHIM guarantees reliability by preventing data races. Correctness
remains a challenge, but at least running a SHIM program on a test case gives
consistent results for any scheduling policy.

SHIM is helpful during design exploration when testing different schedules; its
determinacy makes it easy to obey data dependencies. Its C-like syntax facilitates
porting existing code. We demonstrated this on a JPEG decoder.

Our SHIM compiler generated code for parallel programs that runs on a four-
core processor over three times faster than sequential C. Sequential SHIM code runs
no slower. We therefore believe that SHIM can be practical. We strengthen this
argument by generating code for a heterogeneous architecture in the next chapter.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 41

Chapter 5

Compiling SHIM to a
Heterogeneous Architecture

In the previous chapter, we demonstrated that the SHIM model can be practical for
a shared memory architecture. In this chapter, we evaluate the model for a different
parallel architecture: the Cell Broadband Engine.

The Cell architecture is interesting but is notoriously difficult to program. In
addition to the low-level constructs (e.g., locks, DMA), it allows most parallel
programming environments to admit data races: the environment may make non-
deterministic scheduling choices that can change the function of a program.

In this chapter, we describe a compiler for the SHIM scheduling-independent
concurrent language that generates code for the Cell Broadband heterogeneous
multicore processor. The complexity of the code our compiler generates relative to
the source illustrates how difficult it is to manually write code for the Cell.

Our backend [124] is a direct offshoot of the pthreads backend but allows the
user to assign certain (computationally intensive) tasks directly to the CELL’s eight
synergistic processing units (SPEs); the rest of the tasks run on the CELL’s standard
PowerPC core (PPE). Our technique replaces the offloaded functions with wrap-
pers that communicate across the PPE-SPE boundary. Cross-boundary function
calls are technically challenging because of data alignment restrictions on function
arguments, which we would have preferred to be stack resident. This, and many
other fussy aspects of coding for the CELL, convinced us that such heterogeneous
multicore processors demand languages at a higher level than sequential software.

We demonstrate the efficacy of our compiler on two examples. While the SHIM
language is (by design) not ideal for every algorithm, it works well for certain
applications and simplifies the parallel programming process, especially on the
Cell architecture.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 42

We review the Cell processor, and describe the inner workings of our compiler.
In Section we describe how we instrumented our generated code to collect
performance data, and present experimental results in Section [5.4]

5.1 The Cell Processor

Coherent shared memory multiprocessors, such as the Intel Core Duo, follow a
conservative evolutionary path. Unfortunately, maintaining coherence costs time,
energy, and silicon because the system must determine when data is being shared,
and relaxed memory ordering models [[1] make reasoning about coherence difficult.

The Cell processor [98; [69; [72]], the target of our compiler, instead uses a
heterogeneous architecture consisting of a traditional 64-bit power processor el-
ement (PPE) with its own 32K L1 and 512K L2 caches coupled to eight synergistic
processor elements (SPES).

Each SPE is an 128-bit processor whose ALU can perform up to 16 byte opera-
tions in parallel. Each has 128 128-bit general-purpose (vector) registers, a 256K
local store, but no cache. Each SPE provides high, predictable performance on
vector operations.

Our compiler uses multiple cores to provide task-level parallelism. Most cell
compilers address the Cell’s vector-style data parallelism [53]].

Cell programs use direct-memory access (DMA) operations to transfer data
among the PPE and SPEs’ memories. While addresses are global (i.e., addresses
for the PPE’s and each SPE’s memories are distinct), this is not a shared memory
model. That our compiler relieves the programmer from having to program the
Cell’s memory flow controllers (DMA units) is a key benefit.

5.1.1 DMA and Alignment

The centerpiece of the Cell’s communication system—and a major concern of our
compiler—is the element interconnect bus (EIB): two pairs of counter-rotating
rings [[72} 4], each 128 bits (16 bytes—a quadword) wide.

The width of the EIB leads the DMA units to operate on 128-bit-wide memory.
Memory remains byte-addressed, but the 128-bit model puts substantial constraints
on transfers because of the lack of byte-shifting circuitry [64] p. 61].

A DMA unit most naturally transfers quadwords. It can copy between 1 and 1024
quadwords (16K) per operation; source and destination addresses must be quad-
word aligned.

A DMA unit can also transfer 1, 2, 4, or 8 bytes. The source and destination
addresses must be aligned on the transfer width and have the same alignment within

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 43

quadwords. For example, a 7-byte transfer requires three DMA operations, and
transferring a byte from address 3 to address 5 requires a DMA to a buffer followed
by a memory-to-memory move. To perform DMA operations, our compiler gen-
erates code that calls complex C macros that usually distill down to only a few
machine instructions.

Our compiler produces C code suitable for the port of GCC to the SPE. We take
advantage of a GCC extension that can place additional alignment constraints on
types and variables. For example, a struct type or array variable can be constrained

to start on a 16-byte boundary (e.g., to make it work with the DMA facility):
struct foo { int x, y; } __attribute__ ((aligned (16)));
int z[10] __attribute__ ((aligned (16)));

5.1.2 Mailboxes and Synchronization

For synchronization, our compiler generates code that uses the Cell’s mailboxes:
32-bit FIFO queues for communication between the PPE and an SPE. Each SPE has
two one-entry mailboxes for sending messages to the PPE and one four-entry queue
for messages from the PPE [64] p. 101].

We use mailboxes for synchronization messages between the main program
running on the PPE and tasks running on the SPEs. The SPE writing to an outbound
mailbox causes an interrupt on the PPE, prompting it to read and empty the mailbox.
In the other direction, the PPE writes to the SPE’s inbound mailbox and can signal
an interrupt on the SPE, but we just do a blocking read on the inbound SPE mailbox
to wait for the next message.

All our communication is done using handshaking through the mailboxes; our
protocol ensures the mailboxes do not overflow.

The Cell also provides signals: 32-bit registers whose bits can be set and read
for synchronization; our code does not use them.

5.2 Our Compiler

We generate asymmetric code because of asymmetries in the Cell architecture and
runtime environment. For example, the PPE supports pthreads but we do not know
of a similar library for the SPEs. Also, mailboxes, the more flexible of the Cell’s
two synchronization mechanisms, work best between the PPE and an SPE. They
can be used between SPEs, but are more awkward.

These considerations, along with our experience in implementing SHIM on
shared-memory systems [51], led us to adopt a “computational acceleration” model [69]]
in which the SPEs run more time-critical processes and the PPE is responsible for

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 44

the rest, including coordination among the SPEs. Communication in the code we
generate takes place between the PPE and an SPE.

Figure 5.1] shows the structure of the code we generate, here for the small
example from Figure 1] in the previous chapter. In Figure .1} the value 4 is
broadcast from 4 to g and j. Task g blocks on the second send A because task j
does not run a matching recv A.

We instructed our compiler to assign tasks £ and j to two SPEs; all the others
run on the PPE.

For PPE-resident tasks, our compiler generates almost the same pthreads-based
code we presented in the previous chapter. For each SPE-resident task, we generate
SPE-specific code that communicates through mailboxes and DMA to a proxy func-
tion running on the PPE (e.g., _func_j in Figure 5.I). The SPE functions, shown
at the bottom of Figure 5.1l translate communication from the SPE code to the
PPE-resident pthreads environment.

5.2.1 Code for the PPE

The C code we generate for the PPE uses the pthreads library to emulate concur-
rency much like we did for our shared-memory compiler [51]]. Each task and each
channel has its own shared data structure that includes a lock used to guarantee
access to it is atomic and a condition variable for notifying other threads of state
changes (Figure [5.2). Each of these channels resides in main (PPE) memory and
are manipulated mostly by the PPE code.

For each SHIM function, our compiler generates a C function that runs in its
own thread. For each channel, we generate an event function responsible for
managing synchronization and communication on the channel (e.g., _event_A at
the top of Figure [5.1)). For speed, our compiler “hardwires” the logic of each event
function because a SHIM program’s structure is known at compile time. A generic
function controlled by channel-specific data would be more compact but slower.

5.2.2 Code for the SPEs

For each SHIM function that will execute on an SPE, we generate a C function
and compile it with the standard port of GCC to the SPEs. Again, most of SHIM
is translated directly into C; code for communication and synchronization is the
challenge.

Our strategy is to place most of the control burden on the PPE and use the SPEs
to offload performance-critical tasks. This simplifies code generation by removing
the need for inter-SPE synchronization; we only need an SPE-PPE mechanism.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 45

PPE
struct { } _chan_A;
void _event A() { ... } // Synchronize and communicate on A
struct { ... } _task_main;
void _func_main () { Y} // Code for task main
struct { ... Y} _task_f;
void _func_f() { Y} // Code for task f
struct { } _task_g;
void _func_g() { } // Code for task g
struct { Y _task_h;

void _func_h() {

} // Communication proxy for task h

struct { . int AR _task_j;
void _func_j() { // mmunication proxy for task j
mailbox_send (START) ;
for (;;) A
switch (mailbox ()
case BLOCK A:
_chan/A . _blocke h; _event A();
while/ (_ » ed & h) wait(_chan_A._cond) ;
mailbox_send (ACK) ;
break
case | TERM :
case| POISON,
}
}
' I
SPE 1
struct { in struct { int A; } _task_h;
void main ()| \{ // Code for task j void main() { // Code for task h
for (;;) ..
if (mailbox () == EXIT) }
return
DMA _recejve (_task_j . A)
mailbox_send (BLOCK _A) ; Figure 5.1: The structure of the code
if (mailbox () == POISON) our compiler generates for the pro-
break; . gram in Figure 4.1l Each task be-
DMA _receive (_task_j.A) ; .
mailbox._send (POISON) - comes a function on the PPE; tasks
} B that run on an SPE communicate with

a PPE-resident proxy function using
mailboxes and DMA.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 46

int foo(int a, int &b, chan uint8 cin, chan uint8 &cout) {
next cout = a; next cout = b; next cout = next cin;
return ‘'\n’;

}

struct {

pthread_t _thread;

pthread_mutex_t _mutex;

pthread_cond_t _cond;

enum _state { _STOPPED, _RUNNING, _POISONED } _state;
unsigned int _attached_children;

unsigned int _dying_children;

int xb;

int ~__return_var;

struct {

struct {
unsigned char cout;
int b;
int __return_var;

Y _byref;

unsigned char cin;

int a;
} _args

} _foo;

struct {

__attribute__((aligned (16))) ;

pthread_mutex_t _mutex;
pthread_cond_t _cond;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} _cin;

int _connected;
int _blocked;
int _poisoned ;
int _dying;
char *foo;
char x=main_1I;
char *main;

Figure 5.2: Shared data for the foo task and cin channel.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 47

Using command-line arguments, the user specifies one or more “leaf” functions
to run on the SPEs, such as tasks # and j in Figure 5.1l Such functions may
communicate on channels, but may not start other functions in parallel or call
functions that communicate. However, a leaf function may call other functions
that do not communicate or invoke functions in parallel, i.e., those that behave
like standard C functions. This restriction saves us from creating a mechanism for
starting tasks from an SPE.

The pthreads synchronization mechanisms (mutexes, condition variables) our
code uses do not work across the PPE/SPE boundary Instead, for each function
destined for an SPE, we synthesize a proxy function on the PPE that acts as a proxy
for the function on the SPE that does the actual work (_func_j and _func_h in
Figure[5.1). Each proxy translates between pthreads events on the PPE and mailbox
events from the SPE.

Passing arguments to an SPE task turns out to be awkward because of DMA-
imposed alignment constraints. Our solution requires two copies: a DMA transfer
from the PPE followed by word-by-word copying into local variables, which allows
the compiler to optimize their access. This is one of the few cases where compiling
into C is a disadvantage over generating assembly.

Channel communication is done through mailbox messages for synchroniza-
tion and DMA for data transfer (Figure 5.1)). It starts when the SPE task sends a
BLOCK message to the PPE for a particular channel. This prompts the PPE proxy to
signal it is blocked on that channel. When the event function on the PPE releases
the channel (i.e., when all connected tasks have rendezvoused), the PPE sends an
ACK message to the SPE, which prompts it to start a DMA transfer to copy the
data for the channel from the argument struct on the PPE to a matching struct on
the SPE. There is no danger of this data being overwritten because only the event
function on the PPE writes into the struct, and that will only happen after the task
is again blocked on the channel, which will not happen until the SPE task requests
it, which will only happen after the DMA is complete.

A task may become “poisoned” when it attempts a rendezvous and another
task in the same scope has thrown an exception. The event function in the PPE
code handles the logic for propagating exception poison; the PPE proxy code is
responsible for informing the SPE task it has been poisoned.

The SPE code may send two other messages. TERM is the simpler: the SPE
sends this when it has terminated, and the PPE proxy jumps to its own _terminate
handler, which informs its parent that it has terminated. The other message is
POISON, which the SPE code sends when it throws an exception. After this, it

'IBM’s “Example” library [63] does provide cross-processor mutexes, but blocking operations
never yield to the thread scheduler.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 48

sends another word that indicates the specific exception. Based on this word, the
proxy marks itself and all its callers in the scope of the exception as poisoned, then
jumps to the _poisoned label, which also handles the case where the task has been
poisoned by a channel.

5.3 Collecting Performance Data

While tuning our compiler and applications, we found we needed pictures of the
temporal behavior of our programs. While speeding up any part of a sequential pro-
gram is beneficial, improving a parallel program’s performance requires speeding
computation along a critical path—any other improvement is hidden.

To collect the data we wanted, we added a facility to our compiler that collects
the times at which communication events begin and end. For this, we use the
SPE’s “decrementer’—a high-speed (about 80 MHz) 32-bit software-controlled
countdown timer. Our compiler can add code that reads this timer and stores the
starting and stopping times of each communication action, i.e., periods when the
SPE is blocked waiting for synchronization. We fill a small buffer in the SPE’s
local store, then dump the event timestamps into a text file when the program
terminates. Our goal is to be as unintrusive; each sample event consists of testing
whether the buffer is full, reading the timer, writing into an array, and incrementing
a destination pointer.

To understand the interaction among SPEs, we wanted global time stamps,
so we include code to synchronize the decrementers. Although the SPEs’ decre-
menters run off a common clock, their absolute values are set by software and not
generally synchronized.

Our synchronization code measures round-trip communication time and uses
it to synchronize the clocks on the SPEs. We assign one SPE to be the master, then
synchronize all the other SPEs’ clocks to it. The master first establishes communi-
cation with the slave (i.e., waits for the slave to start), then sends a message to the
slave through its mailbox, which immediately sends it back. The master measures
the time this took—the round-trip time. Finally, the master sends the current value
of its clock plus half the round-trip time to the slave, which sets its clock to that
value.

Figures [5.3] and [5.4] shows data we obtained with this mechanism. Time runs
from left to right, and each line segment denotes the time that one SPE is either
blocked or communicating; empty spaces between horizontal lines indicate time
an SPE is doing useful work. The vertical position of each line indicates the SPE
number.

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 49

o o U oy

6 SPEs B o B H
MO M MO
FH FH HH H
5 SPES AN " ST " I o .
FH HH HH H
H H FH FH
4 SPEs |, " o " M o M "
H H -+ H
3 SPES H " B B '
2 SPES o T o o
1 SPE H H il

400 402 404 406 408 410 412 414 416 418
Time (ms)
Comm. started” \egomm. completed

Figure 5.3: Temporal behavior of the FFT for various SPES

6 SPES —;

5 SPEs

4 SPES

3SPES —————— "

2 SPES & — | — ! - i —

1 SPE —— —— —— — — —H

+

400 402 404 406 408 410 412 414 416 418

Time (ms)

Figure 5.4: Temporal behavior of the JPEG decoder

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 50

5.4 Experimental Results

To evaluate our compiler, we used it to compile a pair of applications and ran them
on a Sony Playstation 3 running Fedora Core 7 with Linux kernel 2.6.23 and the
IBM SDK version 3.0.

The Sony Playstation 3 is a Cell-based machine with 256 MB of memory, a
single Cell with one SPE disabled to improve yield, and peripherals including an
Ethernet interface and a hard drive. While the PS3 platform is open enough to boot
an operating system such as Linux, it does not allow full access to the hardware.
Instead, guest operating systems run under a hypervisor that limits access to the
hardware such as the disk, only part of which is visible to Linux. The hypervisor
on the PS3 also reserves one of the SPEs for security tasks, leaving six available to
our programs.

We compiled the generated C code with GCC 4.1.2 for the PPE and 4.1.1 for the
SPE code, both optimized with -O.

) . g Observed X

s o 5 Ideal -

=] 3 -

5 5. K

- I S

L . S %
O | | I | T | 1

PPU only 1 2 °) 5 6
Number of SPE tasks

Figure 5.5: Running time for the FFT on varying SPEs
(Run on a 20 MB audio file, 1024-point FFTs)

Figure shows execution times for an FFT that takes an audio file, divides
it into 1024-sample blocks, performs a fixed-point (4.28) FFT on each block, fol-
lows it by an inverse FFT, and writes it out to a file. A PPE-based reader tasks
distributes 8 1024-sample blocks to the SPE tasks in a round-robin order; a writer
task collects them in order and writes them out to a file. We communicate 8 blocks
instead of the 16 we used earlier [51] to accommodate the SPEs’ local store. We
ran this on a 20 MB stereo audio file with 16-bit samples. The “PPE only” code is
from our earlier compiler [511.

Figure [3.3] illustrates why we observe a near-ideal speedup for the FFT on
six SPEs. Roughly half the time all six are doing useful work; otherwise one is

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 51

blocked communicating, giving a speed-up of about 11/2 = 5.5, close to the 5.3
we observed (Figure[3.3)).

Each horizontal line in Figure [5.3] represents two events: an FFT task on an
SPE reads a block, processes it, sends it, and then repeats the process; the read
immediately follow the write. The figure also shows that the processes spend
more time blocking waiting to write than they do to read, suggesting the task that
reassembles data from the FFT tasks is slower than the one that parcels it out.

We also compiled and ran a JPEG decoder, similar to our earlier work [51].
Figure shows the execution times we observed, which do not exhibit the same
speedup as the FFT and are much more varied. Figure 5.4l explains why: for these
runs, the SPEs are spending most of their time waiting for data. For this sample,
only at one point the 3-SPE case is more than one SPE active at any time.

Figure[5.4ltells us the SPEs are usually waiting for data to arrive. Each line seg-
ment is actually two parts: sending processed data (left), and receiving unprocessed
data. This is not surprising; while JPEG data is composed of independent blocks,
the data itself is Huffman encoded, meaning it requires the data to be uncompressed
before block boundaries can be identified.

The performance figures we report are for carefully chosen problem sizes.
Start-up overhead is larger for smaller problems sizes, leading to poorer results; the
data for larger problem sizes does not fit into the PS3’s 256 MB of main memory,
necessitating disk access that quickly becomes the bottleneck. For large data sets,
our performance degrades to just disk I/O bandwidth, suggesting the PS3 is not
ideally suited to large scientific computing tasks.

Observed X

. " Ideal -

) 2

: .SV R SR T S

=]

o 1 -

[0)

e T e

£ e
0 I I | T T T 1
PPU only 1 2 3 4 > °

Number of SPE tasks

Figure 5.6: Running time for the JPEG decoder on varying SPES
(Run on a 1.7 MB image that expands to a 29 MB raster file)

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 52

5.5 Related Work

Other groups that have produced compilers for the Cell start from models very
different from SHIM and address different problems.

Eichenberger et al.’s compiler [53; 54]] takes a traditional approach by start-
ing with C code with OpenMP annotations [95] and generates code for the Cell.
They consider low-level aspects of code generation: vectorizing scalar, array-based
code; hiding branch latency; and ensuring needed data alignment. They implement
the OpenMP model: programmers provide hints about parallelizable loops, then
the compiler breaks these into separate tasks and distributes them to the SPEs.
It presents a shared memory model, which their runtime system emulates with
explicit DMA transfers.

OpenMP is a much different programming model than SHIM: it assumes shared
memory and focuses on parallelizing loops with array access. SHIM, by contrast,
is a stream-based language with explicit communication. Adding OpenMP-like
constructs to improve SHIM’s array performance would be a nice complement.

Adopting a more SHIM-like message passing approach, Ohara et al.’s [91] pre-
processor takes C programs written using the standard message passing interface
(mp1) API [85], determines a static task graph, clusters and schedules this graph,
and finally regenerates the program to use Cell-specific API calls for communica-
tion.

Semantically, the MPI model is similar to SHIM but does not guarantee schedul-
ing independence. The big difference is that the preprocessor of Ohara et al.
does not enforce the programming style; it would be easy to write a misbehaving
program. The SHIM compiler catches a host of bugs including deadlock [122].

Fatahalian et al.’s Sequoia [55] is most closely related to our work. Like us,
they compile a high-level concurrent language to the Cell processor (and other
architectures) with the goal of simplifying the development process.

Their underlying computational model differs substantially from SHIM’s, how-
ever. While also explicitly parallel, it is based on stateless procedures that only
receive data when they start and only transmit it when they terminate. This model,
similar to the one in Cilk [19], is designed for divide-and-conquer algorithms that
partition large datasets (typically arrays) into pieces, work on each piece indepen-
dently, then merge the results. While our example applications also behave this
way, other SHIM programs do not.

While the low-level compilation challenges of the Cell are fairly conventional,
higher-level issues are less obvious. Because the processor is young and idiosyn-
cratic, there is still work to be done in choosing strategies for structuring large
programs. For example, Petrini et al. [97] observe a high performance implemen-
tation of a three-dimensional neutron transport algorithm requires a careful balance

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 53

among vector parallelism in the SPEs, the effect of their pipelines, balancing and
scheduling DMA operations, and coordinating multiple SPEs. Saidani et al. [103]]
change DMA transfer sizes to improve the performance of an image processing
algorithm. Gedik et al. [56] optimize distributed sorting algorithms on the Cell
by careful vectorization and communication. They note main memory bandwidth
becomes the bottleneck on large datasets since the inter-SPE bandwidth is so high.
Our compiler only provides higher-level data communication and synchronization
facilities.

Chow et al. [32] discuss coding a large FFT on the Cell. They suggest putting
the control of the application on the PPE, then offloading computationally intensive
code to the SPEs and adapting it to work with the SPEs’ vector capabilities. We
adopt a similar philosophy in the code generated by our compiler.

They target their application at a 128 MB dataset—too large to fit in on-chip
memory, so much of their design concentrates on orchestrating data movement
among off-chip memory, the PPE’s cache, and the SPEs’ local stores. They di-
vide the FFT into three stages and synchronize the SPEs using mailboxes on stage
boundaries.

5.6 Conclusions

We described a compiler for the SHIM concurrent language that generates code for
the Cell processor. While not an aggressive optimizing compiler, it removes much
of the drudgery in programming the Cell in C, which requires extensive library
calls for starting threads, careful memory alignment of data if it is to be transferred
between processors, and many other nuisances.

The SHIM language presents a scheduling-independent model to the program-
mer, i.e., relative task execution rates never affects the function computed by the
program. This, too, greatly simplifies the programming task because there is no
danger of introducing races or other nondeterministic behavior.

Unfortunately, our compiler does not solve a main challenge of parallel pro-
gramming: creating well-balanced parallel algorithms. For example, the sequential
portion of our FFT was able to keep six SPEs fed, leading to near-ideal speedups; the
sequential portion of the JPEG decoder was substantial and became the bottleneck.

Our compiler does help to identify bottlenecks: it provides a mechanism for
capturing precise timing traces using the Cell’s precision timers. This gives a
precise summary of when and how long each SPE is blocked waiting for com-
munication, which can illustrate poorly balanced computational loads.

The Cell processor is an intriguing architecture that is representative of archi-
tectures we expect to find in many future embedded systems. While it has many

CHAPTER 5. SHIM ON A HETEROGENEOUS ARCHITECTURE 54

idiosyncrasies, our work shows that it is possible to map a higher-level parallel
programming model onto it and obtain reasonable performance.

CHAPTER 6. SHIM AS A LIBRARY 55

Chapter 6

SHIM as a Library

5 In the previous chapters, we described the SHIM language and its code generation
techniques for different architectures. In this chapter, we wish to evaluate the
SHIM model as a library rather than a new programming language. We present a
deterministic concurrent communication library for an existing multithreaded lan-
guage. We implemented the SHIM communication model in the Haskell functional
language, which supports asynchronous communication and transactional memory.
The SHIM model uses multiway rendezvous to guarantee determinism.

Haskell actually supports several concurrency mechanisms, but does not guar-
antee functional determinism. We chose Haskell because it has a fairly mature
STM implementation, carefully controlled side effects, and lightweight user-mode
scheduled threads. We were also curious about whether our SHIM model, which
we proposed previously for an imperative setting, would translate well to a func-
tional language.

We implemented two versions of our library: one that uses mailboxes for
interthread communication and one that uses software transactional memory. Ex-
perimentally, we found that mailboxes are more efficient for implementing the
multiway rendezvous mechanism, especially for large numbers of processes. We
also found our library easier to code using mailboxes.

After reviewing some related work, and Haskell’s concurrency model, we de-
scribe our library and its implementation in Section and present a series of
experiments with our library on an eight-processor machine in Section

6.1 SHIM as a Library Versus a Language

The SHIM model provides functional determinacy irrespective of being imple-
mented as a language or a library, so an obvious question is which is preferred.

CHAPTER 6. SHIM AS A LIBRARY 56

We present the library approach in this thesis. A library can leverage existing
language facilities (editors, compilers, etc.) but does not provide guarantees about
its misuse. A program that uses our library is functionally deterministic if it only
uses our library for interthread communication, but there is nothing to prevent other
mechanisms from being used.

The SHIM language does not provide any other interthread communication
mechanism, guaranteeing determinism. However, the SHIM language and com-
piler are not as mature or feature rich as Haskell, the implementation vehicle for
our library.

6.2 Related Work

The advent of mainstream multicore processes has emphasized the challenges of
concurrent programming. Techniques ranging ranging from new concurrent lan-
guages to new concurrent libraries for existing languages are being investigated.
Co [18] is an example of a new research language, which provides join patterns
in the form of chords that synchronize the arrival of data on multiple channels
to atomically capture and bind values that are used by a handler function (such
chords are also easy to implement in an STM setting). This pattern can capture
many kinds of concurrency mechanisms, including rendezvous and actors, but it is
nondeterministic and suffers from all the debugging challenges the SHIM model
avoids.

Cilk [19] is another C-based language designed for multithreaded parallel pro-
gramming that exploits asynchronous parallelism. It provides deterministic con-
structs to the programmer, but it is the programmer’s responsibility to use them
properly; the compiler does not guarantee determinism. This is one of the major
differences between SHIM and Cilk. Cilk focuses on the runtime system, which
estimates the complexities of program parts.

We built our library in Haskell, a functional language with support for concur-
rency [68]. Its concurrency mechanisms are not deterministic; our library provides
a deterministic layer over them. Experimentally, we find such layering does not
impose a significant performance penalty.

Our library resembles that of Scholz [107]], which also provides an existing
concurrency model in Haskell. Unlike Scholz, however, we implement our mech-
anisms atop the existing concurrency facilities in Haskell [68] and insist on func-
tional determinism.

CHAPTER 6. SHIM AS A LIBRARY 57

6.3 Concurrency in Haskell

We built our deterministic communication library atop Haskell’s concurrency prim-
itives. The most basic is forklO, which creates an explicit thread and does not wait
for its evaluation to complete before proceeding.

We implemented two versions of our library: one using mailboxes [68] for in-
terthread communication, the other using software transactional memory [59; 46].
On a mailbox, takeMVar and readMVar perform destructive and non-destructive
reads; putMVar performs a blocking write. Similarly, within the scope of an arom-
ically statement, readTVar and writeTVar read and write transactional variables.
Other threads always perceive the actions within an atomically block as executing
atomically.

sampleMailbox

= do

m <- newEmptyMVar —— Create a new mailbox

n <- newEmptyMVar

forklO (putMVar m (5::Int)) —— thread writes 5 to m

forklO (do
¢ <- takeMVar m —— thread reads m
putMVar n (c+1)) —— writeton

result <- takeMVar n —— block for result

return result

Figure 6.1: Using mailboxes in Haskell. One thread writes to mailbox m, a second
reads m, adds one, and writes to mailbox n. The outer thread blocks on n to read
the result.

The Haskell code in Figure[6.1] creates a mailbox m and forks two threads. The
first thread puts the value 5 into m and the second thread takes the value from the
mailbox m, adds one to it, and puts it in mailbox n.

Haskell’s software transactional memory mechanisms [59;46]] are another way
to manage communication among concurrent threads. In STM, threads can com-
municate or manipulate shared variables by reading or writing transactional vari-
ables. Statements within an atomically block are guaranteed to run atomically with
respect to all other concurrent threads. A transaction can block on a refry statement.
The transaction is rerun when one of the transaction variables changes.

The code in Figure reads ¢ and updates it if its value is not —1. The
atomically guarantees the read and write appear atomic to other threads. The thread
blocks while ¢ is —1, meaning no other thread has written to it.

CHAPTER 6. SHIM AS A LIBRARY 58

sampleSTM ¢
= atomically (do
value <- readTVar c¢
if value == -1 then
retry —— not written yet
else writeTVar ¢ (value + 1))

Figure 6.2: A Haskell program using STM. This updates the shared (“transac-
tional”) variable ¢ when it is not —1, otherwise blocks on c.

6.4 Our Concurrency Library

In this section, we present our SHIM-like concurrency library and its implementa-
tion. Our goal is to provide an efficient high-level abstraction for coding parallel
algorithms that guarantees functional determinism. As described above, Haskell
already has a variety of concurrency primitives (mailboxes and STM), but none
guarantee determinism. Our hypothesis is that determinism can be provided in an
efficient, easy-to-code way.

produce [c]
= do
val <- produceData
dSend ¢ val
if val == -1 then —— End of data
return ()
else
produce [c]

consume [c]
= do
val <- dRecv ¢
if val == -1 then —— End of data
return ()
else
do consumeData val
consume [c]

producerConsumer
= do
¢ <- newChannel
(_,_) <- dPar produce |[c]
consume [c]
return ()

Figure 6.3: A simple producer-consumer system using our library

CHAPTER 6. SHIM AS A LIBRARY 59

6.4.1 Ouwur Library’s API

Our library provides channels with multi-way rendezvous and a facility for spawn-
ing concurrent threads that communicate among themselves through channels.

Figure[6.3]illustrates the use of our APIL. The producerConsumer function uses
newChannel to create a new channel ¢ and passes it to the produce and consume
functions, which dPar runs in parallel. The producer sends data to the consumer,
which consumes it while the producer is computing the next iteration. For commu-
nication costs not to dominate, evaluating produceData and consumeData should
be relatively costly. Depending on which runs first, either the dSend of the producer
waits for dRecv of the consumer or vice-versa, after which point both proceed with
their execution to the next iteration.

Such a mechanism is also convenient for pipelines, such as Figure[6.4l The four
functions run in parallel. The first feeds data to pipelineStagel, which receives it
as vall, processes it and sends the processed data val2 to pipelineStage2 through
channel c2. PipelineStage?2 acts similarly, sending its output to outputFromPipeline
through c3.

Figure 6.5l shows the formal interface to our library. newChannel creates a new
rendezvous channel. dPar takes four arguments: the first two are the first function
to run and the list of channels passed to it; the last two are the second function and
its channel connections. dSend takes two parameters: the channel and the value to
be communicated. dRecv takes the channel as argument and returns the value in
the channel.

6.4.2 Deadlocks and Other Problems

While our library guarantees functional determinism, it does not prevent deadlocks.
For example, our library deadlocks when multiple threads call dSend on the same
channel (a channel may only have one writer). While this could be detected, other
deadlocks are more difficult to detect. If no sender ever rendezvous, the readers
will block indefinitely.

Two threads that attempt to communicate on shared channels in different orders
will deadlock. For example,

dSend cl value dSend c2 value
dRecv c2 dRecv cl

will deadlock because the left thread is waiting for the right to rendezvous on c/,
while the right is waiting for the left to rendezvous on c¢2. Such a deadlock is
deterministic: the scheduler cannot make it disappear.

CHAPTER 6. SHIM AS A LIBRARY

inputToPipeline [cl]

= do
vall <- getVal
dSend cl vall
inputToPipeline [cl]

pipelineStagel [cl, c2]

= do
vall <- dRecv cl
val2 <- processl vall
dSend c2 val2
pipelineStagel [cl, c2]

pipelineStage2 [c2, c3]

= do
val2 <- dRecv c2
val3 <- process2 val2
dSend c¢3 val3
pipelineStage2 [c2, c31]

outputFromPipeline [c3]

= do
val3 <- dRecv c3
putStrLn (show val3)
outputFromPipeline [c3]

pipelineMain
= do
cl <- newChannel
c2 <- newChannel
¢3 <- newChannel
let dPar2 funl clistl fun2 clist2 clist
= dPar funl clist]l fun2 clist2
let forkFuncl = dPar2 inputToPipeline [cl]
pipelineStagel [cl, c2]
let forkFunc2 = dPar2 pipelineStage2 [c2,c3]
outputFromPipeline [c3]
dPar forkFuncl [cl, c2]
forkFunc2 [c2, c3]
return ()

Figure 6.4: A two-stage pipeline in our library

CHAPTER 6. SHIM AS A LIBRARY 61

newChannel :: I0 (Channel a)
dPar :: ([Channel a]l -> I0 b) ->
[Channel a] ->
([Channel al -> I0 c¢) ->
[Channel a]l -> 10 (b,c)
dSend :: Channel a -> a -> I0 ()
dRecv :: Channel a -> 10 a

Figure 6.5: The interface to our concurrency library. newChannel creates a new
channel; dPar forks two threads and waits for them to terminate; dSend rendezvous
on a channel and sends a value; and dRecv rendezvous and receives a value.

6.4.3 An STM Implementation

One implementation of our library uses Haskell’s facilities for Software Trans-
actional Memory (STM) [59]. Our goal was to see how difficult it would be to
code and how efficient it would be for multi-way rendezvous. We describe the
implementation below and defer experimental results to Section

data Channel a = Channel {

connections :: TVar Int,
waitingReaders :: TVar Int,
written :: TVar Bool,

allReadsDone :: TVar Bool,
val :: TVar (Maybe a)

Figure 6.6: The channel type (STM)

newChannel
= do

connectionsT <- atomically $ newTVar 1

waitingReadersT <- atomically $ newTVar 0

writtenT <- atomically $ newTVar False

allReadsDoneT <- atomically $ newTVar False

valT <- atomically $ newTVar Nothing

return (Channel connectionsT waitingReadersT
writtenT allReadsDoneT valT)

Figure 6.7: Creating a new channel (STM)

Figure shows the collection of transactional variables used to represent
a channel. The type variable a makes it polymorphic, connections tracks the
number of threads that must rendezvous to perform the communication (it is ad-
justed by threads starting and terminating), val holds the data being communicated,

CHAPTER 6. SHIM AS A LIBRARY 62

waitingReaders tracks the number of threads that have blocked trying to read
from the channel, written indicates whether the writer has written the data, and
allReadsDone indicates when the last blocked reader has unblocked itself.

6.4.4 Forking parallel threads

dPar funcl vl func2 v2 = do
done <- newEmptyMVar
let common =
intersectBy
(\ x y => (val x) == (val y)) vl v2
atomically (do
apply (\ ¢ -> do
nt <- readTVar (connections c)
writeTVar (connections c) (nt + 1)

) common)
forklO (do
res <- funcl vl —— Run funcl in child
putMVar done res) —— Save result
res2 <- func2 v2 —— Run func2 in parent
resl <- takeMVar done —— Get funcl result

atomically (do
apply (\ ¢ -> do
nt <- readTVar (connections c)
writeTVar (connections c¢) (nt - 1)
) common)
return (resl, res2)

apply func [1 = return ()
apply func (hd:tl) = do func hd ; apply func tl

Figure 6.8: Our implementation of dPar

Figure [6.8] shows our implementation of dPar for STM. It creates a new M Var
to hold the result from the child thread, then determines which channels are shared
(vI and v2 holds their names) and atomically increases their connections.

To evaluate the two functions, the parent forks a thread. The child thread
evaluates func2 and then writes the result into the mailbox. Meanwhile, the parent
evaluates funcl, waits for the child to report its result, atomically decreases the
connection count on shared channels, and finally returns the results from func/ and
Sfunc2.

Figure [6.9] illustrates how connections evolves as threads fork and terminate.
In Figure [6.9(a), FO has spawned F1 and F2, increasing connections to 2. In (b),
F2 has spawned F3 and F4, increasing connections to 3. Finally, in (c), F3 and F4

CHAPTER 6. SHIM AS A LIBRARY

63

connections=1

connections=2

F2
(@) (b) (©

Figure 6.9: The effects on connections when (a) main function FO calls dPar F1
[c] F2 [c], then (b) F2 calls dPar F3 [c] F4 [c], and (c¢) when F3 and F4 terminate.

have terminated, reducing connections to 2.

Note that this only happens when FO, ..., F4 are all connected to channel c. If a
thread was not connected, spawning it would not require the number of connections
to change. This is what the computation of common in Figure 6.8l accomplishes by
looking for channels passed to both threads being started.

6.4.5 Deterministic send and receive

Multi-way rendezvous is a three-phase process: wait for all peers to rendezvous,
transfer data, and wait for all peers to complete the communication. Our library
supports single-writer, multiple-reader channels, so if n. is the number of threads
connected to channel ¢, a writer waits for n. — 1 readers; a reader waits for one
writer and n,. — 2 other readers. We describe how to maintain #,. in the next section.

Figure illustrates a scenario with two readers and a writer. Threads T1
and T3, call dRecv and dSend respectively. T1 and T3 wait for thread T2 to
communicate. Once T2 calls dRecv, the three threads rendezvous and exchange
data and continue with their individual execution.

Figure shows our implementation of dSend using STM. It first waits for
n. — 1 readers to rendezvous, invoking retry to delay. Once they have, it atomically
writes the value to send in val and resets the number of waiting readers, the written
flag, and the allReadsDone flag. Finally, it waits for all the last receiver to set
allReadsDone.

Figure is the complementary process. It first increments waitingReaders,
then waits for the written flag to be set by dSend. Once it has, it reads val—the data
being communicated, increases waitingReaders, and sees if it was the last one. If
it was, it resets waitingReaders, allReadsDone, and written, thereby releasing all
the readers (including itself) and the writer. Otherwise, it waits for another reader

CHAPTER 6. SHIM AS A LIBRARY

T3
T1 dSen:d cv
dRecv ¢ T2 :
Time - Wait
Wait : :
o dRecvg---- ...
Rendezvous

Figure 6.10: A rendezvous among two readers and one writer

dSend ¢ value = do
atomically (do
wr <- readTVar (waitingReaders c)
connections <- readTVar (connections c)
if wr < connections - 1 then retry else (do
writeTVar (val c¢) (Just value)
writeTVar (waitingReaders c¢) 0
writeTVar (written c¢) True
writeTVar (allReadsDone c¢) False))
atomically (do
ard <- readTVar (allReadsDone c)
if ard == False then retry else return ())

Figure 6.11: dSend (STM)

64

CHAPTER 6. SHIM AS A LIBRARY 65

dRecv ¢ = do
atomically (do
wr <- readTVar (waitingReaders c)
writeTVar (waitingReaders c¢) (wr + 1)
return ())
v <- atomically (do
w <- readTVar (written c)
if w == False then retry else (do
Just v <- readTVar (val c)
wr <- readTVar (waitingReaders c)
writeTVar (waitingReaders c) (wr + 1)
nc <- readTVar (connections c)
—— If last reader to read
when (wr + 1 == nc - 1) (do
writeTVar (waitingReaders c¢) 0
writeTVar (allReadsDone c¢) True
writeTVar (written c¢) False)
return v))
atomically (do
ard <- readTVar (allReadsDone c)
if ard == False then retry else return ())
return v

Figure 6.12: dRecv (STM)

to set allReadsDone.

6.4.6 A Mailbox Implementation

For comparison, we also implemented our multiway rendezvous library using Haskell’s
mailboxes [68]l.

data Channel a = Channel {
mVal :: MVar a,
mVarCount :: MVar Int,
mVarBegin :: MVar (),
mVarEnd :: MVar ()
}

Figure 6.13: The channel type (Mailboxes)

Figure shows the Channel structure used to represent the channel. Field
mVal holds the data, mVarCount holds the number of connections to this channel,
and mVarBegin and mVarEnd are synchronization variables.

Figure shows the dRecv procedure. A receiver sends a signal to the sender
indicating it has arrived, then the receiver waits for the value from the sender. Once

CHAPTER 6. SHIM AS A LIBRARY

newChannel
= do

mVal <- newEmptyMVar

mVarCount <- newMVar 1

mVarBegin <- newEmptyMVar

mVarEnd <- newEmptyMVar

return (Channel mVal mVarCount
mVarBegin mVarEnd)

Figure 6.14: newChannel (Mailboxes)

dSend (Channel mVar mVarCount
mVarBegin mVarEnd) val = do
waitForRecvrsToArrive mVarCount mVarBegin 1
—— Wait for every receiver to send a sync.
n <- readMVar mVarCount
sendValueToRecvrs mVar val (n-1)
putMVar mVar val
takeMVar mVar
signalRecvrs mVarEnd (n-1)

sendValueToRecvrs mVar value count = do
if (count == 0) then
return ()
else do putMVar mVar value
sendValueToRecvrs mVar
value (count - 1)
return ()

waitForRecvrsToArrive mVarCount mVarBegin i

= do
count <- readMVar mVarCount
if (count == i) then return ()
else do

takeMVar mVarBegin
waitForRecvrsToArrive mVarCount
mVarBegin (i+1)

signalRecvrs mVarEnd count
= do if (count == 0)
then return ()
else do putMVar mVarEnd ()
signalRecvrs mVarEnd (count-1)

Figure 6.15: dSend (Mailboxes)

CHAPTER 6. SHIM AS A LIBRARY 67

all receivers have read the value, the sender signals an end, after which dRecv
returns with the value.

The dSend procedure (Figure waits for all receivers, then performs a
putMVar on the value once per receiver. To ensure the last receiver has read, it
does a redundant putMVar and takeM Var. Finally, once all receivers have read the
value, it signals the receivers to continue execution. WaitForRecvrsToArrive waits
for every receiver to send a sync indicating it has arrived. SignalRecvrs signals the
end by informing each receiver the rendezvous is complete.

dRecv (Channel mVar mVarCount
mVarBegin mVarEnd)

= do
putMVar mVarBegin () —— Inform sender
value <- takeMVar mVar —— Wait for sender

takeMVar mVarEnd —— Wait for sender end
return value

Figure 6.16: dRecv (Mailboxes)

6.5 Experimental Results

To test the practicality and efficiency of our library, we created a variety of pro-
grams that used it and timed them.

6.5.1 STM Versus Mailbox Rendezvous

As a basic test of efficiency, we had our library rendezvous 100 000 times among
various numbers of threads on a two-processor machine (a 500 MB, 1.6 GHz Intel
Core 2 Duo running Windows XP) and measured the time. Table lists the
results.

Mailboxes appear to be more efficient for our application, especially when
large numbers of threads rendezvous. We believe this may be fundamental to the
STM approach, in which threads continue to execute even if there is a conflict.
Only at the end of the transaction is conflict checked and rolled back if needed. In
the case of a multiway rendezvous, many threads will conflict and have to be rolled
back. Mailboxes are more efficient here because they check for conflicts earlier.

The STM method also requires more memory to hold the information for a
roll back. Again, mailboxes have less overhead because they do not need this
information.

CHAPTER 6. SHIM AS A LIBRARY 68

Threads Time to Rendezvous Speedup
STM Mailbox (STMMailbox)

2 0.1Tms 0.07 ms 1.6

3 0.14 0.08 1.8

4 0.17 0.14 1.2

5 0.21 0.16 1.3

6 0.28 0.17 1.6

7 0.31 0.21 1.5

8 0.37 0.23 1.6

9 0.42 0.27 1.6
10 0.47 0.28 1.7
100 6.4 1.8 3.5
200 35 6.7 5.2
400 110 14 7.9
800 300 34 8.9

Table 6.1: Time to rendezvous for STM and Mailbox implementations

The STM method is more complicated. Unlike mailboxes, which only require
a mutual exclusion object, a flag, and the data to be transferred, STM requires
managing information to identify conflicts and roll back transactions.

However, the ratio of communication to computation is the most critical aspect
of application performance. For a computationally intensive application, a 50%
increase in communication time hardly matters.

6.5.2 Examples Without Rendezvous

These examples only call dPar and do not use dSend or dRecv. Our goal here is to
compare our library with Haskell’s existing par-seq facility, which we feel presents
an awkward programming interface [103].

fibn | n<=1-=1
| otherwise =
par resl (pseq res2 (resl + res2 + 1))
where resl = fib (n - 1)
res2 = fib (n - 2)

Figure 6.17: Calculating Fibonacci numbers with Haskell’s par-seq

Haskell’s par-seq constructs can be used to emulate our dPar. The following

CHAPTER 6. SHIM AS A LIBRARY 69

are semantically equivalent
dpar M []1 N [] <> (par M (pseq N (M, N)))

but the par does not guarantee M and N are executed in parallel because Haskell
uses lazy evaluation. Nevertheless, we find the par-seq method can run faster than
our dPar.

Using par-seq is subtle, illustrated by Figure While both par and pseq
only return the value of their second argument, the meaning of m1 par m2 is “start
the calculation of m/ for speculative evaluation and then go onto evaluate m2.”
This is useful when m/ is a subexpression of m2 so mI may be evaluated in parallel
with the body of m2. Conversely, pseq makes sure its first argument is evaluated
before evaluating its second. In this example, the pseq guarantees that fib (n-2)
is evaluated before fib (n-1), which can use fib (n-2).

We find this mechanism subtle and difficult to control. It provides weak con-
trol over the scheduling of computation—a complex issue for a lazy language
like Haskell made all the more tricky by parallelism. We believe providing users
with easy-to-use mechanisms to control scheduling is necessary for achieving high
performance; expecting the compiler or runtime system to make the best choices
seems unrealistic.

We ran these and all later experiments on an 8-processor Intel machine con-
taining two 5300-series 1.6 GHz quad processors, 2 GB of RAM, and running
Windows NT Server.

6.5.3 Maximum element in a list

5 —
Sequential
4 - Par-Seq
DPar (STM ——
3 ideal ———

[\e]

Execution time (s)

—_—

=

[HH

Number of processors

Figure 6.18: Maximum Element in a List

CHAPTER 6. SHIM AS A LIBRARY 70

Split List
Sublist1 Sublist2
Find Max Find Max
Time in in
Sublist1 Sublist2

Ma& Aaﬂ

| Find Max of Max1 and Max2 |

Figure 6.19: Structure of Maximum Finder

Figure shows the execution times for a program that uses a linear search
to find the maximum element in a 400 000-element list. The program, whose
behavior is shown in Figure splits a list into pieces, one per thread, finds
the maximum of each piece, and finally finds the maximum of the pieces. We
compared a sequential implementation, one that uses Haskell’s par-seq constructs,
and one that uses our dPar to the ideal speedup of the sequential implementation.

Figure shows the par-seq implementation is slightly more efficient, al-
though both implementations fall short of the ideal 1/n speedup on more than two
Processors.

6.5.4 Boolean Satisfiability

Figure shows the execution times of a simple Boolean SAT solver imple-
mented sequentially, using par-seq, and with our dPar. We ran it on an unsatisfiable
problem with 600 variables and 2 500 clauses. Figure shows the structure of
our approach: we pick an unassigned variable and spawn two threads that check
whether the expression can be satisfied if the variable is true or false. Because of
our demand for determinism, we do not asynchronously terminate all the threads
when one finds the expression has been satisfied. Our algorithm is also primitive
in the sense that it does not do any online learning.

Again, we find our dPar has more overhead than Haskell’s par-seq. Also, this
algorithm does not appear to benefit from more than four processors, which we
attribute in part to Haskell’s single-threaded garbage collector.

CHAPTER 6. SHIM AS A LIBRARY

25 -

Sequential
2 20 - Par-Seq
Qé DPar (STM) ———
= 15 - ideal — — —
=
.2
= 10 i
Q
[}
>
" | FEHH
0 _
1 2 3 4 5 6 7 8
Number of processors
Figure 6.20: Boolean Satisfiability
Partial CNF CNF ‘ Partial CNF
| Pick an Unassigned Variable |
Assign / \ Assign
True False
to the to the
Variable Variable
Find Find
g Inferences Inferences g
~ ~
2 2
£ g
Evaluate Evaluate
CNF CNF
Resultl
OR
Resultl Result2| Result2

Figure 6.21: Structure of the SAT Solver

71

CHAPTER 6. SHIM AS A LIBRARY 72

6.5.5 Examples With Rendezvous

Here we consider algorithms that use rendezvous communication among threads.
The comparisons are to purely sequential implementations of the same algorithm.

100 - Sequential
2 DPar (STM)
80 - ' -
'“é ideal
= 60
2
E \
5 a0
] ~
=20 -
0 -
1 2 3 4 5 6 7 8
Number of processors
Figure 6.22: Times for Linear Search
Split List
Sublistl Sublist2
Sear.ch Communication Sear.ch
Time |Sublist] |<-ccoooooiveeaains >| Sublist2
Communication
Found1 Found2
| Found1 OR Found2 |

Figure 6.23: Linear Search Structure

6.5.6 Linear Search

Figure [6.22] shows the execution times of a linear search program that uses ren-
dezvous communication to find a key in a 420 000-element list (we put it in the

CHAPTER 6. SHIM AS A LIBRARY 73

390 000th position). Unlike the maximum element problem, linear search generally
does not need to scan the list completely, so the algorithm should have a way of
terminating early.

Requiring determinism precludes the obvious solution of scanning » list frag-
ments in parallel and terminating immediately when the key is found. This consti-
tutes a race if the key appears more than once, since the relative execution rates of
the threads affect which copy was reported.

Our implementation takes the approach shown in Figure the list is bro-
ken into n fragments and passed to parallel threads. However, rather than asyn-
chronously terminating all the threads when the key is found, instead all the threads
rendezvous at a prearranged interval to check whether any have found the key. All
threads proceed if the key is not found or terminate and negotiate which copy is
reported if one has been found.

This technique trades off communication frequency and the amount of extra
work likely to be done. Infrequent communication means less overhead, but it also
makes it more likely the threads will waste time after the key is found. Frequent
communication exchanges overhead for punctuality. We did not have time to
explore this trade-off.

16 - Sequential
2 l4- DPar (STM)
1.2 - ; —
g ideal
= 1 =
g 08
= \
g 0.6 N
0.2 — - 4 _
0
1 2 3 4 5 6 7 8

Number of processors

Figure 6.24: Systolic Filter

6.5.7 Systolic Filter and Histogram

Figure shows the execution times of a Systolic 1-D filter running on 50 000
samples. Each thread run by the filter can independently process a chunk of the
input in parallel with other threads following the structure in Figure Because
of determinism, jobs are distributed and collected from the worker threads in a

CHAPTER 6. SHIM AS A LIBRARY 74

25 - Sequential
20 _ DPar (STM)
ideal — — —

Execution time (s)

i

Number of processors

Figure 6.25: RGB Histogram

round-robin order.
Figure [6.25] shows the execution time of a similar algorithm: a histogram of
RGB values in an image. We ran it on a 565 KB raster file.

6.6 Conclusions

While we found it was reasonable and fairly efficient to implement a deterministic
concurrency library based on multi-way rendezvous, our efforts did raise a few
issues.

We found that the performance of our library was slightly lower than that of
Haskell’s built-in par-seq mechanism. We suspect this is from additional layers of
abstraction between our library calls and the par-seq mechanism. Despite this, we
believe our library provides a nicer abstraction because it makes communication
and synchronization explicit and therefore makes an easier optimization target, but
this is difficult to quantify.

While we were successful at implementing the library using both Mailboxes
and software transactional memory (STM), we are happier with the mailbox-based
implementation because it is both faster and easier to program and understand.
While it is clearly possible to wait to synchronize with peers in STM, coding it
seems needlessly awkward. We also observed STM increased synchronization
overhead by at least 50%, although this is not prohibitive.

Our experiences do provide insight for the library vs. language debate. While
the library approach has the advantage of leveraging features of the host language,
we encountered a number of problems that made the library difficult to implement
and use.

CHAPTER 6. SHIM AS A LIBRARY

Input Stream

Inputl

Server 1 |

Server 3

Input2

Server 2 [«=—m—

nputj

Time

Outputl

Output2

Output3

Send
Data
To
Servers

Wait
For
Results

Combine
the
results

Output Stream

75

Figure 6.26: Server Programming Style used by Histogram and Systolic Filter

CHAPTER 6. SHIM AS A LIBRARY 76

Unlike C, Haskell does not allow its type system to be circumvented. This
avoids more runtime errors but makes building really polymorphic things harder.
We would like a dPar that spawns an arbitrary number of threads, each of which is
connected to an arbitrary number and type of channels. Such flexibility is difficult
to express in a library. We settled on spawning only two threads at a time (n-
way forks can be recovered by nesting) and not checking the number of channels,
thus deferring certain errors to runtime. Haskell probably allows a more flexible
interface, but the code can become very obscure.

The type system in C is easy to circumvent and C allows functions with a
variable number of parameters, so a C implementation of our library might have
a cleaner API. However, going around the type system opens the door to runtime
type errors, e.g., trying to pass a string through a channel intended for floating-point
numbers.

We believe our library presents an easier, less error-prone programming model
than either mailboxes or STM, but this is hard to prove. Anecdotally, we found
it easier to debug, especially deadlocks, which were reproducible. Furthermore,
it seems easier to reason about explicit synchronization instead of explicitly using
retry in the STM setting.

Part 111

Deadlock-freedom

77

78

Outline

Although we achieved determinism in Part [T we still suffer from the deadlock
problem. SHIM is not immune to deadlocks, but they are simpler to manage
because of SHIM’s scheduling independence. Deadlocks in SHIM cannot occur
because of race conditions. For example, because SHIM does not have races, there
are no race-induced deadlocks, such as the “grab locks in opposite order” deadlock
race present in many other languages. A key hypothesis of the SHIM model has
been that scheduling independence should be a property of any practical concurrent
language because it greatly simplifies reasoning about a program, both by the
programmer and by automated tools. This part on deadlock detection reinforces
this key point.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 79

Chapter 7

Deadlock Detection for SHIM
using a Synchronous Model
Checker

As discussed in Chapter 3] the SHIM concurrent language guarantees the absence
of data races by eschewing shared memory, but a SHIM program may still deadlock
if a program violates the communication protocol.

void main () {
chan int a, b;
{
// Task 1
next a

= 5; // Deadlocks here
next b = 1

0;
} par {

// Task 2
next b; // Deadlocks here
next a;
}
}

Figure 7.1: A SHIM program that deadlocks

In Figure the two tasks also attempt to communicate, but task 1 attempts to
synchronize on « first, then b, while task 2 expects to synchronize on b first. This
is a deadlock—each task will wait indefinitely for the other.

In this chapter, we present a model-checking based static deadlock detection

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 80

technique for the SHIM language. Although SHIM is asynchronous, its semantics
allow us to model it synchronously without losing precision, greatly reducing the
state space that must be explored. This plus the obvious division between control
and data in SHIM programs makes it easy to construct concise abstractions.

A central goal of our work was to confirm that a careful choice of concurrent
semantics simplifies the verification problem. In particular, while SHIM’s seman-
tics are asynchronous, they are constructed so that checking a (much simpler)
synchronous abstraction remains sound. In particular, we do not need the power of
a model checker such as Holtzmann’s SPIN [63], which is designed to analyze an
interleaving concurrency model.

The synchronous abstraction we use to check for deadlock is sound because of
SHIM’s scheduling independence: the choice of scheduling policy cannot affect
the function of the program. In particular, a program either always or never dead-
locks for a particular input—a scheduling choice cannot affect this. This means
we are free to choose a particular scheduling policy without fear of missing or
introducing deadlocks. Here, we choose a scheduling policy that amounts to a
synchronous execution of a SHIM program. This greatly reduces the number of
distinct states our model checker must consider, simplifying its job.

In this chapter, we propose a technique that builds a synchronous abstraction
of a SHIM program and uses the NuSMV symbolic model checker to determine
whether the model can deadlock. Because of SHIM’s semantics, if the model
does not deadlock, the program is guaranteed not to deadlock, but because we
abstract the data values in the program, the converse is not true: a program may
not deadlock when we report it does.

By design, SHIM is a finite-state language provided it has no unbounded re-
cursion (Edwards and Zeng [52]] show how to remove bounded recursion), which
makes the deadlock problem decidable. Unfortunately, exact analysis of SHIM
programs can be impossible in practice because of state space explosion; we build
sound abstractions instead.

Our main contribution is an illustration of how efficient, synchronous model-
checking techniques can be used to analyze an asynchronous system. The result is
a practical static deadlock detector for a particular asynchronous language. While
the theoretical equivalence of synchronous and asynchronous models has long been
known, we know of few other tools that exploit it.

This work confirms that having designed SHIM’s semantics to be scheduling
independent makes the language much easier to analyze with automated tools
(elsewhere, we have argued that scheduling independence helps designers under-
stand programs [47]). Few other concurrent languages were designed with formal
verification in mind.

After reviewing related work, we show how we abstract SHIM programs to

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 81

make their deadlock properties easy to analyze. After that, we detail the generation
of a NuSMV model and present experimental results that show our method is
practical enough to run as part of a normal compilation flow. Overall, this suggests
that careful language design can simplify the challenge of concurrent programming
by making it easy to automatically check for certain problems.

7.1 Related Work

Avoiding deadlocks and data races in concurrent programs has been studied in-
tensively; both static and dynamic techniques have been proposed. Detecting
deadlocks in a running system is easy if global information is available. Distributed
algorithms, such as Lee and Kim’s [75]], are more complicated, but computationally
inexpensive. In this chapter, we focus on the harder, more interesting problem of
detecting potential deadlocks before a system runs since this is when we want to
correct them.

As we propose in this chapter, model checking is often used for static deadlock.
Corbett [40]] reviews a variety of static deadlock detection methods for concurrent
Ada programs. He observes the main challenge is dealing with the state explo-
sion from Ada’s interleaved concurrency model. SHIM’s scheduling-independent
semantics sidesteps this problem. Taking a very different approach, Boyapati and
Rinard [21] propose a static type system for an extended Java language based on
programmer-declared ownership of each object. Their system guarantees objects
are only accessed in a synchronized manner. SHIM guarantees unique ownership
by simply prohibiting shared objects.

The interleaved concurrency model in most concurrent software environments
is a challenge for model checkers. Many, such as SPIN [63], Improvsio [77], and
Java PathFinder [133] use partial order reduction to reduce the number of states
they much consider. While SHIM is asynchronous, its communication semantics
do not require all possible interleavings to be considered, making the model check-
ing problem much easier because we can check a synchronous model with far fewer
states.

SHIM does not provide locks (although some of its implementations employ
them) so it presents no danger of deadlock from bad locking policies. Hence lock-
focused analysis, such as Bensalem et al. [13, which examines a single (non-
deadlocking) trace for potential deadlock situations, is not applicable to SHIM.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 82

7.2 Abstracting SHIM Programs

A sound abstraction is the central idea behind our deadlock detector for SHIM. A
SHIM task alternates between computation and communication. Because tasks
only interact when they communicate and never deadlock when they are com-
puting, we abstract away the computation and assume a task always either com-
municates again or terminates, i.e., will never enter an infinite loop that never
communicates. This is tantamount to assuming a schedule that perfectly balances
the computation time of each process.

This assumption is optimistic in the sense that our tool may report a program
is deadlock-free even if one of its tasks enters an infinite loop where it computes
forever. However, checking for process termination can be done independently and
can likely consider tasks in isolation. Answering the task termination question is
outside the scope of this chapter.

We also abstract away the details of data manipulation and assume all branches
of any conditional statement can always be taken at any time. This is a conservative
assumption that may increase the number of states we must consider. As usual, by
ignoring data, we leave open the possibility that two tasks may appear to deadlock
but in fact stay synchronized because of the data they exchange, but we believe this
abstraction is a reasonable one and furthermore believe that system that depend on
such behavior are probably needlessly difficult for the programmer to understand.
In Section we show an example of working code for which our tool reports a
deadlock and how to restructure it to avoid the deadlock report.

void main () {
int i;
chan int a, b;

Figure 7.2: A deadlock-free SHIM program with a loop, conditionals, and a task
that terminates

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 83

main_I (chan int32 &a, chan int32 &b)
local int32 i

local int32 tmp0

local int32 tmpl

i =0
goto continue

while :]]
tmpl =1 % 10

ifnot tmpl goto else | waita 6 | | waita 10 |

a =1 -
send a //6 M
goto endif
else: -
a = O exit
send a // 10 |:|—

endif:
b =10
send b // 13
i =1+ 1
continue :

tmp0 = i < 100
if tmp0 goto while

main_2 (chan int32 a, - .
chan int32 b) |e“TrY|—>|Wa1ia0|

recv a //0 : :
recv b // 1 [exit]« wait b 1 |

main ()

channel int32 a

channel int32 b .
main_I (a, b) : main_2(a, b);

Figure 7.3: The IR and automata for the example in Figure[Z.2l The compiler broke
the main function into three tasks.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 84

1

)
S
=
!

parent at our par

channel c is ready to synchronize

all children at exit
¥
exit
all siblings at exit

Figure 7.4: The four types of automaton states. Each has one entry and exit, but
may have many wait and par states.

7.2.1 An Example

Consider the SHIM program in Figure[Z.2l The main function starts two tasks that
communicate through channels a and b. The first task communicates on channels a
and b 100 times; the second task synchronizes on channels a and b, then terminates.
This program does not deadlock because the communication patterns of the two
tasks mesh properly. Note that SHIM semantics say that once a task terminates, it
is no longer compelled to synchronize on the channels to which it is connected. So
here, after the second task synchronizes on b and terminates, the first task talks to
itself.

To abstract this program, our compiler begins by dismantling the SHIM pro-
gram into a traditional, three-address-code-style IR (Figure [Z.3)). The main differ-
ence is that par constructs are dismantled into separate functions, here main_1I and
main_2, to ensure each function is sequential.

We assume the overall SHIM program is not recursive and remove statically
bounded recursion using Edwards and Zeng [52]. We do not attempt to analyze
recursive programs where the recursion cannot be bounded.

Next, we duplicate code to force each function to have a unique call site. While
this has the potential for an exponential increase in code size, we did not observe
it.

We remove trivial functions—those that do not attempt to synchronize. A
function is trivial if it does not contain a next and all its children are trivial. Pro-
vided they terminate (an assumption we make), the behavior of such functions
does not affect whether a SHIM program deadlocks. Fortunately, it appears that

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 85

functions called in many places rarely contain communication (I/O functions are
an exception), so the potential expansion from copying functions to ensure each
has a unique call site rarely occurs in practice.

This preprocessing turns the call structure of the program into a tree, allowing
us to statically enumerate all the tasks, the channels and their connections, and
identify a unique parent and call site for each task (aside from the root).

Next, our tool creates an automaton that models the control and communication
behavior for each dismantled function. Figure [Z.3] shows automata and the code
they model.

Each automaton consists of four kinds of states, shown in Figure [Z.4 An
automaton in its entry state waits for its parent to reach the par state at the au-
tomaton’s call state. An automaton in its exit state waits for all its siblings to also
be in their exit states. Each automaton (except the topmost one) starts in its entry
state.

When an automaton enters a par state, it starts its children and waits for each
of them to reach exit states. This is not a race because each child will advance
from its entry state a cycle after the parent reaches the par. An automaton has one
par state for each of its call sites. We label each with an integer that encodes the
program counter.

Finally, wait states handle blocking communication. For an automaton to leave
a wait state, all the running tasks that are connected to the channel (each wait
corresponds to a unique channel) must also be at a wait for the channel. Note
that an automaton may have more than one wait for the same channel; we label
each with both the name of the channel and the program counter value at the
corresponding next. The numbers 0, 1, 6, 10, and 13 in Figure [Z3] correspond
to program counter values.

When we abstract a SHIM program, we ignore sequences of arithmetic opera-
tions; only conditionals, communication, and parallel function calls are preserved.
Conditional branches, such as the test of tmpl in main_I, are modeled as nonde-
terministic choices.

We treat our automata as running synchronously, which amounts to imposing
a particular
scheduling policy on the program. SHIM’s scheduling independence guarantees
that we do not affect the functional behavior of the program by doing this. And
in particular, the program can deadlock under any schedule if and only if it can
deadlock under this schedule. This is what makes our abstraction of the program
sound.

We do not explicitly model the environment in which the program is running;
instead, we assume it is part of the program being tested. A sensor or actuator could
be modeled as an independent SHIM process that is always willing to communi-

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 86

cate: a source or a sink. More complicated restrictions on environmental behavior
would have to be modeled by more SHIM processes.

While we could build an explicit synchronous product automaton from the
automata we build for each function, doing so would subject us to the state space
explosion problem. Instead, we use a symbolic model checker that analyzes the
product of these automata more efficiently.

MODULE main
DEFINE ready a :=
(main in {entry, exit} |
main in {par_0} & (main_l '= exit & main_1 '= entry |
main_2 '= exit & main_2 = entry)) &
main_1 in {entry, exit, wait_a_I0, wait_a_6} &
main_2 in {entry, exit, wait_a_0};

DEFINE ready b :=
(main in {entry, exit} |
main in {par_0} & (main_l != exit & main_l !'= entry |
main_2 = exit & main_2 = entry)) &
main_1 in {entry, exit, wait_b_I3} &
main_2 in {entry, exit, wait_b_I};

VAR main: {entry, exit, par_0};

ASSIGN init (main) := par_0;
next (main) := case
main = par_0 & main_2 = exit & main_l = exit: exit;
1: main;

esac;

VAR changed_main: boolean ;

ASSIGN init (changed_main) := 1;

next (changed_main) := case
main = par_0 & main_2 = exit & main_l = exit: 1;
1: 0;

esac;

VAR main_2: {entry, exit, wait_a_0, wait_b_I};
ASSIGN init (main_2) := entry;
next (main_2) := case
main_2 = entry & main = par_0: wait_a_0;
main_2 = wait_a_0 & ready_a: wait_b_lI;

main_2 = wait_b_l & ready_b: exit;
main_l = exit & main_2 = exit: entry;
1: main_2;

esac;

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER

VAR changed_main_2: boolean ;
ASSIGN init (changed_main_2) := 1;
next (changed_main_2) := case

main_2 = entry & main = par_0: 1;

main_2 = wait_a_0 & ready_a: 1;
main_2 = wait_b_l & ready_b: 1;
main_1 = exit & main_2 = exit: 1;
1: 0;

esac;

VAR main_I: {entry, exit, wait_a_I0, wait_a_6, wait_b_I13};
ASSIGN init (main_1) := entry;
next (main_1) := case

main_l = entry & main = par_0: {wait_a_l0, wait_a_6, exit};

main_l = wait_a_6 & ready_a: wait_b_I3;
main_l = wait_a_Il0 & ready_a: wait_b_I3;
main_l = wait_b_I3 & ready_b: {wait_a_I0, wait_a_6, exit};

main_l = exit & main_2 = exit: entry;
1: main_I;
esac;

VAR changed_main_1: boolean ;

ASSIGN init (changed_main_I) := 1;
next (changed_main_I) := case
main_l = entry & main = par_0: 1;

main_l = wait_a_6 & ready_a: 1

main_l = wait_a_l0 & ready_a: 1;
main_l = wait_b_I3 & ready_b: 1;
main_1l = exit & main_2 = exit: 1;
1: no;

esac;

SPEC AG (main '= exit ->

changed_main | changed_main_2 | changed_main_I)
SPEC EG (main = exit —>

changed_main | changed_main_2 | changed_main_I)

Figure 7.5: NuSMYV code for the program in Figure

87

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 88

7.3 Modeling Our Automata in NuSMV

To check whether our abstracted program (concurrently-running automata) dead-
locks, we use the NuSMV [34] BDD- and SAT-based symbolic model checker.
While it can analyze both synchronous and asynchronous finite-state systems, we
only consider synchronous systems. The specifications to check can be expressed
in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).

Using NuSMYV involves supplying it with a model and a property of the model
to be checked. We model each of our automata with two variables: one that
represents the control state of the automaton and one that helps us determine when
a deadlock has occurred. Figure shows the code we generate for the three
automata in Figure

Translating a nondeterministic automaton into NuSMYV is straightforward. We
use the following template:

VAR state : {sl, s2, ... };
ASSIGN
init (state) := sl;
next (state) := case
state = sl & ... : {s2, s3, ...};
state = 52 & {sl, s3, ...};
state = sn & ... : {sl, s2, ...};
1 : state;
esac;
For this automaton, state is a variable that can take on the symbolic values s/,
52, Each rule in the case statement is of the form predicate:values; and the

predicates are prioritized by the order in which they appear.

Predicates are Boolean expressions over the state variables; values are sets of
new values among which the model checker chooses nondeterministically. We
model conditional branches in a SHIM program with nondeterministic choice. We
generate one predicate/value pair for each state and start each predicate with a test
for whether the machine is in that state. The final predicate/value pair is a default
that holds the machine in its current state if it was not able to advance.

The NuSMV language has a rich expression syntax, but we only use Boolean
connectives (& and |), comparison (=), and set inclusion (in).

For an automaton to leave its entry state, its parent must be in the par state for
the automaton. By construction, both the parent automaton and the par state for a
task is unique. For example, in Figure the parent of main_2 is main, and main
calls main_2 in the par_0 state, so the rule for main_2 to leave its entry state is

main_2 = entry & main = par_0: wait_a_0;
since in main_2, the successor to the entry state is wait_a_0.
For an automaton to leave a par state, all the children at the call site must be

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER &9

in their exit states. In Figure main_1 and main_2 are invoked by main in the

par_0 state, so the complete rule for main to leave its par_0 state is
main = par_0 & main_2 = exit & main_l = exit: exit;
since the successor of par_0 in main is exit.

A state labeled wait_c_p represents a task waiting to synchronize on channel
c¢. Since a task may wait on the same channel in many places, we also label it with
a program counter value p. An automaton transitions from a wait state when all
other automata that are compelled to rendezvous have also reached matching wait
states.

The rules for when rendezvous can occur on a channel are complicated because
tasks do not always run. When a task connected to channel c is running children
(i.e., the task is blocked on par and its children are running), it passes its connection
to its children. However, if all its children connected to ¢ terminate (i.e., reach their
exit states) the parent resumes responsibility for synchronization and effectively
blocks communication on ¢ until it reaches a waif on c.

For each channel ¢, we define a variable ready_c that is true when a rendezvous
is possible on the channel. We form it by taking the logical and of the rendezvous
condition for each task that can connect to the channel (we know statically which
tasks may connect to a particular channel).

For each task on a channel ¢, the rendezvous condition is true if the task is
in the entry state (when it has not been started), in the exit state (when it ran and
terminated, but its siblings have not terminated), in a wait state for the channel,
or in a par state when at least one of its children connected to c is still running
(i.e., when the parent has not recovered its responsibility for the channel ¢ from its
children).

Figure[7.6illustrates the rendezvous condition for a fairly complex set of tasks.
Tasks 1, 2, 4, 5, 6, and 7 are leaves—they do not call other tasks. For each, the
condition is that it be terminated or at a wait state for the channel.

Task 3 both synchronizes directly on a and invokes tasks 1 and 2. Its condition
is that it be terminated, at its wair state for a, or that it be at its par state and at least
one of task 1 or 2 be running.

Task 8 is the most complex. It synchronizes on a in two states (wait_a_0 and
wait_a_2) and has two par calls. At either of the par calls, at least one of its four
children (tasks 3, 4, 6, and 7) must be running.

Note that since task 5 is not connected to channel a, its state is not considered.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 90

{ //task 8
next a;
{ //task 3
next a;
next a; //task 1
par
next a; //task?2
} par { //task4

next a;
next b;
} par /l task 5
next b;
}
next a;
next a; //task 6
par
next a; //task7
}
(1.8 in {enter, exit, wait_a_2, wait_a_0} |
t 8 in {par_3, par_1} & (1.7 '= exit & t.7 != enter |
16 = exit & t 6 '= enter |
t4 '= exit & t4 = enter |
t 3 != exit & t.3 != enter)) &
(t_3 in {enter, exit, wait_a_0} |
t3in {par_1} & (12 '= exit & t_2 != enter |
t 1 '= exit & t_ 1 '= enter)) &

t_ 7 in {enter, exit, wait_a_0}
t 6 in {enter, exit, wait_a_0}
t 4 in {enter, exit, wait_a_0}
t 2
t_1

R R R R

in {enter, exit, wait_a_0}
in {enter, exit, wait_a_0}

Figure 7.6: A SHIM code fragment and the conditions for rendezvous on the a

channel
Example Lines Channels Tasks Result Runtime Memory States
Source-Sink 35 2 11 No Deadlock 02s 3.9 MB 97
Pipeline 30 7 13 No Deadlock 0.1 2.0 95
Prime Number Sieve 35 51 45 No Deadlock 1.7 25.4 3.2 % 10°
Berkeley 40 3 11 No Deadlock 0.2 7.2 139
FIR Filter 100 28 28 No Deadlock 0.4 13.4 4134
Bitonic Sort 130 65 167 No Deadlock 8.5 63.8 25
Framebuffer 220 11 12 No Deadlock 1.7 11.6 9593
JPEG Decoder 1020 7 15 May Deadlock 0.9 85.6 571
JPEG Decoder Modified 1025 7 15 No Deadlock 0.9 85.6 303

Table 7.1: Experimental results with NuSMV

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 91

7.4 Finding Deadlocks

We define a deadlock as a state in which at least one task is running yet no task
can advance because they are all waiting on other tasks. In particular, we do not
consider it a deadlock when a small group of tasks continue to communicate with
each other but not the rest of the system, which remains blocked.

For each automaton, we generate an additional state bit (changed) that tracks
whether it will proceed in this cycle or is blocked waiting for communication.
Using additional state bits is unnecessary; in our first attempt we performed the
check combinationally (i.e., in each state checked whether there was at least one
task that could advance). However, introducing additional state bits improved the
running time, so we adopted that style.

The rules we use for setting the changed bit for each automaton are similar to
those for the automaton. The predicates are exactly the same, but instead of setting
the state, the values set the changed bit to 1.

Once we have an changed bit for each automaton, the test for the absence of
deadlock is simple: either at least one task was able to advance or the topmost task

has terminated. This is easy to express in temporal logic for NuSMV:
AG (root = exit -> changed_tl | changed 12 | ...)

where root is the state of the topmost task and advanced_tx indicates that task x
was able to make progress. In words, this says that in each state if the topmost task
has not terminated then at least one task was able to make progress.

We also check whether a program will inevitably deadlock: if all possible paths
lead to a deadlock state irrespective of the conditional predicates, then the program
absolutely will deadlock. The temporal logic expression for its absence in NuSMV
is
EG (root '= exit -> changed_tl | changed_12 | ...)

Le., in each state, if the topmost task is running, there is some path where at least
one task was able to advance.

7.5 Results

We ran our deadlock detector on various SHIM programs on a 3 GHz Pentium 4
machine with 1 GB RAM. Table [7] lists our results. The Lines column shows
for each example the number of lines of code including comments. The Channels
and Tasks columns list the number of channels and concurrently running tasks we
find after expanding the tasks into a tree and removing nontrivial tasks. Runtimes
include the time taken for compilation, abstraction, generating the NuSMV model,
and running the NuSMV model checker. We check for both the possibility and
inevitability of a deadlock. As expected, the model checking time dominates on

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 92

the larger examples. The Memory column reports the total resident set size used
by the verifier. The States column reports the number of reachable states NuSMV
found.

Source-Sink is a simple example centered around a pair of processes that pass
data through a channel and print the results through an output channel. The large
number of tasks arise from I/O functions used to print the output of this test case.
Most of the examples here include many extra tasks for this reason.

Pipeline and the Prime Number Sieve are examples from Edwards and Zeng [52]
that use bounded recursion. As mentioned earlier, we use their technique to remove
the recursion before running NuSMV. The Sieve has many states because most of
its tasks perform data-dependent communication and our model ends up consid-
ering all apparent possibilities, even though the system enters far fewer states in
practice. Nevertheless, this illustrates the power of symbolic simulation: analyzing
these three billion states takes NuSMYV less than two seconds.

The Berkeley example contains a pair of tasks that communicate packets through
a channel using a data-based protocol. After ignoring data, however, the tasks
behave like simple sources and sinks, making it easy to prove the absence of
deadlock.

The FIR filter is a parallel five-tap filter with twenty-eight tasks and channels
(the core consists of seventeen tasks). Each task’s automaton consists of a single
loop (the filter is actually a synchronous dataflow model [76]) so the analysis is
fairly easy.

Bitonic Sort is one of our most parallel examples: it uses twenty-four com-
parison tasks to order eight integers. All the additional tasks are sources, sinks,
and (repeated calls to I/O routines). The communication behavior of the tasks is
straightforward, but the tool has many tasks to consider.

Framebuffer is a 640 x 480 video framebuffer driven by a line-drawing task.
Its communication is complicated.

The JPEG decoder is one of our largest applications to date, and illustrates
some of the challenges in coding SHIM to avoid deadlocks. Our tool reported the
possibility of a deadlock on the initial version (which actually works correctly)
because of the code in Figure [7.7]

This code attempts to run three IDCT processors in parallel on an array of n
macroblocks. For all but the last iteration of the loop, the dispatcher communicates
on channels 7/, I2, and I3, then receives data from O, O2, and O3. However,
since n may not be a multiple of three, this code is careful not to overrun the array
bounds and may only perform one or two IDCT operations in the last iteration.

While this program works (provided the predicates on the if statements are
written properly), our tool does not understand, say, the second and fourth condi-
tionals are correlated and reports a potential deadlock.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 93

Figure[Z.8illustrates how to avoid this problem by duplicating code and factor-
ing it differently. Although our tool still treats the conditional branches as nonde-
terministic, it does not perceive a deadlock because, e.g., the synchronizations on
I3 and O3 remain matched.

Figure [L.7] however, will not report an unavoidable deadlock because it has a
non-deadlocking path.

Overall, our tool is able to quickly check these programs (in seconds) while
using a reasonable amount of memory. While larger programs will be harder to
verify, our technique is clearly practical for modestly sized programs.

{
/...
for (int j =
next Il =
if (j+1 < n
next 12 = iblock[j+1];
if (j+2 < n)
next 13 = iblock[j+2];
}
oblock[j1 = next OI;
if (j+1 < n) {
oblock[j+1] = next O2;
if (j+2 < n)
oblock[j+2] = next O3;
}
}
...
} par {
Jor (;;)
next Ol = IDCT (next 1) ;
} par {
Jor (;;:)
next O2 = IDCT (next 12) ;
} par {
Jor (;;)
next O3 = IDCT (next 13) ;
}

Figure 7.7: Fragment of the JPEG Decoder that causes our tool to report a
deadlock; it ignores the correlation among if statements

;o J < n o j+=3) {

—
~

7.6 Conclusions

We presented a static deadlock detection technique for the SHIM concurrent lan-
guage. SHIM programs behave identically regardless of scheduling policy because

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 94

Jor(int j = 0 ; j<n ; j+=3) {
next 11 = iblock[j] ;
if (j+2 < n) {
next 12 iblock [j+11 ;
next I3 iblock [j+2] ;
oblock[jl = next OI;
oblock [j+1] next 02;
oblock [j+2] next 0O3;
} else if (j+1 < n) {
next 12 = iblock[j+1];
oblock[j]l = next OI;
oblock[j+1] = next O2;
} else {
oblock[j]l = next OI;
}
}

Figure 7.8: An equivalent version of the first task in Figure [Z.7] for which our tool
does not report a deadlock

they are based on Kahn networks [[70]. This allows us to check for deadlock on syn-
chronous models of SHIM programs and know the result holds for asynchronous
implementations.

We expand each SHIM program into a tree of tasks, abstract each task as an
automaton that performs communication and invokes and waits for its children,
then express these automata in a form suitable for the NuSMV symbolic model
checker. This is a mechanical process.

We abstract away data-dependent decisions when building each task’s automa-
ton. This both greatly simplifies their structure and can lead to false positives: our
technique can report a program will deadlock even though it cannot. However, we
believe this is not a serious limitation because there is often an alternative way to
code a particular protocol that makes it insensitive to data and more robust to small
modifications, i.e., less likely to be buggy.

Experimentally, we find NuSMV is able to detect or prove the absence of
deadlock in seconds for modestly sized examples. We believe this is fast enough
to make deadlock checking a standard part of the compilation process (i.e., instead
of something too costly to run more than occasionally), which we believe is a first
for concurrent languages.

We currently ignore exceptions in SHIM, which is safe but as a result, we may
report as erroneous programs that throw exceptions to avoid a deadlock situation.
While we do not know of any such programs, we plan to consider this issue in the
future.

CHAPTER 7. DEADLOCK DETECTION WITH A MODEL CHECKER 95

Although we were able to analyze programs efficiently, we further improved
our technique by compositionally building the state space of SHIM programs. We
discuss this algorithm in detail in the next chapter.

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 96

Chapter 8

Compositional Deadlock
Detection for SHIM

Our previous chapter used NuSMYV, a symbolic model checker, to detect deadlock
in a SHIM program, but it did not scale well with the size of the problem. In
this chapter, we take an incremental, divide-and-conquer approach to deadlock
detection. We present a compositional deadlock detection technique for SHIM,
in which tasks run asynchronously and communicate using synchronous CSP-
style rendezvous. Although SHIM guarantees the absence of data races, a SHIM
program may still deadlock if the communication protocol is violated.

SHIM’s scheduling independence makes other properties easier to check be-
cause they do not have to be tested across all schedules; one is enough. Deadlock
is one such property: for a particular input, a program will either always or never
deadlock; scheduling choices cannot cause or prevent a deadlock. We exploited
this property in the previous chapter, where we transformed asynchronous SHIM
models into synchronous state machines and used the symbolic model checker
NuSMV [34] to verify the absence of deadlock. This is unlike traditional tech-
niques, such as Holzmann’s SPIN model checker [63], in which all possible inter-
leavings must be considered. While our technique was fairly effective because it
could ignore interleavings, we improve upon it here.

In this chapter, we use explicit model checking with a form of assume-guarantee
reasoning [100]] to quickly detect the possibility of a deadlock in a SHIM program.
Step by step, we build up a complete model of the program by forming the product
machine of an automaton we are accumulating with another process from the
program, each time checking the accumulated model for deadlock.

Our key trick: we simplify the accumulated automaton after each step, which
often avoids exponential state growth. Specifically, we abstract away internal

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 97

channels—those that do not appear in any other processes.

Figure [8.1] shows our technique in action. Starting from the (contrived) pro-
gram, we first abstract the behavior of the first two tasks into simple automata. The
first task communicates on channel a, then on channel b, then repeats; the second
task does the same on channels b and c. We compose these automata by allowing
either to take a step on unshared channels but insisting on a rendezvous when a
channel is shared. Then, since channel b is local to these two tasks, we abstract
away its behavior by merging two states. This produces a simplified automaton
that we then compose with the automaton for the third task. This time, channel c is
local, so again we simplify the automaton and compose it with the automaton for
the fourth task.

The automaton we obtained for the first three tasks insists on communicating
first on a then d; the fourth tasks communicates on d then a. This is a deadlock,
which manifests itself as a state with no outgoing arcs.

For programs that follow such a pipeline pattern, the number of states grows
exponentially with the number of pipeline stages (precisely, n stages produce 2"
states), yet our analysis only builds machines with 2n states before simplifying
them to n+ 1 states at each step. Although we still have to step through and analyze
each of the n stages (leading to quadratic complexity), this is still a substantial
improvement.

Of course, our technique cannot always reduce an exponential state space to a
polynomial one, but we find it often did on the example programs we tried.

In the rest of this chapter, we show how we check SHIM programs for dead-
locks (Section[8.2) following our compose-and-abstract procedure described above.
We present experimental results in Section [8.3]that shows our technique is superior
to our earlier work using a symbolic model checking, review related work in
Section[8.4] and conclude in Section

8.1 An Example

Consider the SHIM program in Figure The main function starts three tasks
that communicate through channels a, b and c. The first task has a conditional
statement, which we model as a nondeterministic choice. One of its branches
synchronizes on channel a. The other branch synchronizes on both a and b. The
second task synchronizes on channels a and c; the third task synchronizes on
channels a and ¢, and then on b. The ownership is as follows: channel a is shared
by all three tasks, channel b is shared by task 1 and task 3, and channel c is shared
by tasks 2 and 3. This program does not deadlock. First all three tasks synchronize
on channel a exhibiting multiway rendezvous. Next, tasks 2 and 3 rendezvous on

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 98

void main ()

{

chan int a, b, c, d;

for(; ;) |

recv a; b = a + 1; send b;
} par for(;;) |

recv b; ¢ = b + 1; send c;
Y par for(;;) {

recv ¢c; d = ¢ + 1; send d;
Y par for(;;) {

recv d; a = d + 1; send a;
}

al |d

al e
al |d

al Jc
al |d

)
(®) ©))

(12)

Figure 8.1: Analyzing a four-task SHIM program. Composing the automata for
the first (1) and second (2) tasks gives a product automaton (3). Channel b only
appears in the first two tasks, so we abstract away its effect by identifying (4) and
merging (5) equivalent states. Next, we compose this simplified automaton (5) with
that for the third task (6) to produce another (7). Now, channel ¢ will not appear
again, so again we identify (8) and merge (9) states. Finally, we compose this (9)
with the automaton for the fourth task (10) to produce a single, deadlocked state
(11) because the fourth task insists on communicating first on d but the other three
communicate first on a. The direct composition of the first three tasks without
removing channels (12) is larger—eight states.

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM

void main ()
{
int i;
chan int a, b;

¥
Y

Y

{ // Task 1
if (i % 10) {
a = 1;
send a;
} else {
a = 0;
send a;
recy b . Task 1

}

v

Y par { // Task 2 a

recv a; a

c = 1;

send c;

® c

Y par { // Task 3

recv a; Task 2 b

a

©-

recv c;
b = 10;
send b;

} Task 3

}
Figure 8.2: A SHIM program and the automata for its tasks

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 100

channel c. Task 3 then synchronizes with task 1 on channel b if the branch is not
taken. Otherwise, it waits for task 1 to terminate and then does a dummy send on
channel b. This is because task 3 is no longer compelled to wait for a terminated
process (task 1).

We make the same assumptions as in the previous chapter. We assume the over-
all SHIM program is not recursive. We remove statically bounded recursion using
Edwards and Zeng [52] and do not attempt to analyze programs with unbounded
recursion.

Next, we duplicate code to force each function to have a unique call site. While
this has the potential for an exponential increase in code size, we did not observe
it.

We remove trivial functions—those that do not attempt to synchronize. A
function is trivial if it does not attempt to send or receive and all its children (the
spawned tasks) are trivial. Provided they terminate (an assumption we make), the
behavior of such functions does not affect whether a SHIM program deadlocks.
Fortunately, it appears that functions called in many places rarely contain commu-
nication (I/O functions are an exception), so the potential explosion from copying
functions to ensure each has a unique call site rarely occurs in practice.

This preprocessing turns the call structure of the program into a tree, allowing
us to statically enumerate all the tasks, the channels and their connections, and
identify a unique parent and call site for each task (aside from the root).

(b)

Figure 8.3: Composing (a) the automata for tasks 1 and 2 from Figure and (b)
composing this with task 3.

After preprocessing, we build a SHIM automaton for each task from the com-
piler’s intermediate representation. A SHIM automaton has two kinds of arcs:
channel and y. A transition labeled with a channel name represents communication

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 101

on that channel; a Y transition models conditionals (nondeterministic choices).

Figure shows the three SHIM automata we construct for the program. The
if-else in task 1 is modeled as state 1 with two outgoing 7y transitions. On the other
hand, we use arcs labeled by channels to represent communication.

Figure [8.3(a) shows the composition of tasks 1 and 2 from Figure First,
we compose task 1’s state 1 with task 2’s state 1. We create the (1,1) state with two
outgoing v transitions, and we then compose each of state 1’s successor in task 1
with state 1 of task 2, generating states (2,1) and (3,1). At state (2,1), we can say
that task 1 is at state 2 and task 2 is at state 1. We then add a transition from (2,1)
to (5,2) labeled a because both tasks are ready to communicate on « in state (2,1).
Similarly, we create state (4,2).

Then, at state (4,2), task 1 can fire » (in the absence of task 3) and task 2 can
fire ¢. Since task 1 shares channel b but not ¢ and task 2 shares channel ¢ but not b,
either transition is possible so we have two scheduling choices at state (4,2), which
is represented by two transitions b and ¢ from (4,2). By similar rules, we compose
other states and finally we end up with Figure [8.3[a) as the result. The composed
automaton owns channels a, b, and c.

Following the same procedure, we compose the automaton in Figure [8.3(a)
with task 3 in Figure to produce the automaton in Figure [8.3(b). We compose
states in a similar fashion. However, when composing state (4,2) of Figure [8.3(a)
with state 2 of task 3 in Figure state (4,2)’s transition on channel b is not
enabled because task 3 does not have a transition on b from its state 2. On the other
hand, state (4,2)’s transition on channel ¢ does not conflict with task 3, allowing us
to transit from state (4,2,2) to state (4,3,3) on channel ¢ in Figure 8.3(b).

8.2 Compositional Deadlock Detection

8.2.1 Notation

Below, we formalize our abstraction of SHIM programs. We wanted something
like a finite automaton that could model the external behavior of a SHIM process
(i.e., communication patterns).

We found we had to distinguish two types of choices: a nondeterministic choice
induced by concurrency that can be made by the scheduler (i.e., selecting one
of many enabled tasks) and control-flow choices made by the tasks themselves.
Although a running task is deterministic (it makes decisions based purely on its
state, which can be supplied in part by the [deterministic] series of data that arrive
on its channels), we chose to abstract data computations to simplify the verification
problem at the expense of rejecting some programs that would avoid deadlock in

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 102

practice. Thus, we treat choices made by a task (e.g., at an if-else construct) as
nondeterministic.

These two types of nondeterministic choices must be handled differently when
looking for deadlocks: while it is acceptable for an environment to restrict choices
that arise from concurrency, an environment cannot restrict choices made by the
tasks themselves.

Our solution is an automaton with two types of edges: those labeled with chan-
nels representing communication, which need not all be followed when composing
automata; and those labeled with y, which we use to represent an internal choice
made by a task and must be preserved when composing automata.

Definition 1 A SHIM automaton a 6-tuple (Q,%,7,8,q,) where Q is the set of
states, X is the set of channels, Yy ¢ Z, q € Q is the initial state, f € Q is the final
state, and § = Q x (ZU{y}) — 29 the transition function, where |8(s,c)| =0 or 1

forc#y.

The 6 transition function is key. For each state s € Q and channel ¢ € X, either
0(s,c) = 0 and the automaton is not ready to rendezvous on channel ¢ in state s, or
O(s,c) is a singleton set consisting of the unique next state to which the automaton
will transition if the environment rendezvous on c.

The special “channel” y denotes computation internal to the system. If & (s, y) #
0, the automaton may transition to any of the states in d(s,y) from state s with no
rendezvous requirement on the environment.

A state s € Q such that 6(s,c) = 0 for all ¢ € XU {y} corresponds to the system
terminating normally if s = f and is a deadlock state otherwise.

Next, we define how to run two SHIM automata in parallel. The main thing is
that we require both automata to rendezvous on any shared channel.

Definition 2 The composition T - T of two SHIM automata Ty = (Q1,%1, 7, 61,91, f1)
and T = (02,22,7, 62,92, f2) is (Q1 X 02,21 UX2,7,0,(q1,92), (f1, f2)), where

S({p1,p2),) = (81(p1,7) x {p2}) U ({P1} X &2(p2, 7)),

and forc € £ UZ,,

(81(p1,¢) X 82(pa,c) when ¢ € 2y NZy;

01(p1,¢) x {p2} whenc € | —Z; or

8((p1,p2),c) = p2= fo; and

{p1} x &(p2,c) when c € £y — %) or
p1 =/

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 103

Table 8.1: Comparison between compositional analysis (CA) and NuSMV

Program Lines Channels Tasks Deadlock? Runtime (s) Memory (MB)
CA NuSMV CA NuSMV

Source Sink 35 2 11 No 0.004 0.004 1.31 6.28
Berkeley 49 3 11 No 0.01 0.01 2.6 5.96
Bitonic Sort 74 56 24 No 1.83 4.01 7.82 53.20
31-tap FIR Filter 218 150 120 No 0.2 21.10 21.06 63.33
Pipeline (1000 pipes) 1003 1000 1000 Yes 397.8 607.8 24.7 813
FFT (50 FFT tasks) 978 100 52 No 34.73 327 16.7 719
Frame Buffer 220 11 12 No 1.81 4.90 5.50 7.5
JPEG Decoder (30 IDCT processes) 2120 180 31 No 51.9 1177 16.06 203.44

Here, we defined two cases for the composed transition function. On Y (corre-
sponding to an internal choice), either the first automaton or the second may take
any of its y transitions independently, hence the set union. Note that @ x {p,} = 0.

For normal channels, there are two cases. For a shared channel (c € X} N X)),
both automata proceed simultaneously if each has a transition on that channel, i.e.,
have rendezvoused. For non-shared channels or if one of the tasks has terminated,
the automaton connected to the channel may take a step independently (and im-
plicitly assumes the environment is willing to rendezvous on the channel).

There should be no difference between running 77 in parallel with 75, and
running 75 in parallel with 77, yet this is not obvious from the above definition.
Below, we formalize this intuition by defining what it means for two automata to be
equivalent, then showing the composition operator produces equivalent automata.

Definition 3 Two SHIM automata Ty = (Q1,%1,7, 01,491, f1) and T» = (02, 22,7, 62,92, f>)
are

equivalent (written Ty = 1) if and only if X1 = X, and there exists a bijective
function b : Q1 — Qy such that g = b(q1), f» = b(f1), and for every s € Qy and

¢ € X U{7h, B:(b(5),¢) = b(81(5.0).

Lemma 1 Composition is commutative: T\ - T» = T> - T}.

PROOF Follows from Definition 2] and Definition [3 by choosing b({pi,p2)) =
(P2, p1).- O

Lemma 2 Composition is associative: (Ty-T) - T3 =T, - (T - T3).

PROOF Follows from Definition 2l Lemmal[ll and Definition[Blby choosing b(((P1,D2), p3)) =
(p1,{P2,P3)). O

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 104

Algorithm 1 compose(automata list L)
1: T1,...,T, =reorder(L)
2. T=T
3: fori=2tondo

4. T =T-T; {Compose using Definition 2I}

5: g = initial state of T

6: for all channels ¢ in T that are not in T;{,..., T, do
7: for all 6(p,c) = {q} do

8: Set 6(p,c) to O {p is the parent of q}

9: Add g to 0(p,€)
10: Add p to 6(q,¢)
11: end for

12: end for

13: T = subset-construction(7") {Remove & transitions}
14: end for

15: if T has a deadlock state then

16: return deadlock

17: else

18: return no-deadlock

19: end if

8.2.2 Our Algorithm

We are finally in a position to describe our algorithm for compositional deadlock
detection. Algorithm [l takes a list of SHIM automata as input and returns either a
composed SHIM automaton or failure when there is a deadlock. Since the order in
which the tasks are composed does affect which automata are built along the way
and hence memory requirements and runtime (but not the final result), the reorder
function (called in Line [I}) orders the automata based on a heuristic that groups
tasks with identical channels. Once we compose tasks, we abstract away channels
that are not used by other tasks, simplifying the composed automaton at each step.

We then compose tasks one by one. At each step we check if the composed
automaton is deadlock free. We remove (Line [@ through Line [[3]) any channels
that are local to the composed tasks (i.e., not connected to any other tasks). For
every channel ¢, we find all the transitions on that channel (i.e., 6(p,c) = {¢})
and add ¢ transitions between states p and g. Then, we use the standard subset
construction algorithm [3] to merge such states.

We do not abstract away channels connected to other tasks because the other
tasks may impose constraints on the communication on these channels that lead to

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 105

a deadlock. In general, adding another connected task often imposes order. For
example, when task 1 and task 2 are composed, communications on b and ¢ may
occur in either order. This manifests itself as the scheduling choice at state (4,2) in
Figure[8.3(a). However when task 3 is added, the communication on ¢ occurs first.

The automata we produce along the way often have more behavior (interleav-
ings) than the real system because at each point we have implicitly assumed that
the environment will be responsive to whatever the automaton does. However,
we never omit behavior, making our technique safe (i.e., we never miss a pos-
sible deadlock). Extra behavior generally goes away as we consider more tasks
(our abstraction of data means that our automata are always over approximations,
however). For example, when we compose Figure [8.3[a) with task 3, we get
Figure[8.3(b). We get rid of the impossible case where communication on b appears
before ¢ generated in Figure[8.3(a).

We can only guarantee the absence of deadlock. Since we are ignoring data,
we check for all branches in a conditional for deadlock freedom; even if one path
fails, at best we can only report the possibility of a deadlock. It may be that the
program does not in fact deadlock due to correlations among its conditionals.

8.3 Experimental Results

We ran our compositional deadlock detector on the programs listed in Table
using a 3.2 GHz Pentium 4 machine with 1 GB memory. The Lines column lists
the number of lines in the program; Channels is the number of channels declared
in the program; Tasks is the number of non-trivial tasks after transforming the
callgraph into a tree. Deadlock? indicates the outcome.

The Runtime columns list the number of seconds taken by both our new com-
positional tool and our previous work, which relies on NuSMV to model check the
automaton. Similarly, the Memory columns compare the peak memory consump-
tion of each.

We have used similar examples in the previous chapter. Source-Sink is a simple
example centered around a pair of tasks that pass data through a channel and print
the results through an output channel. The Berkeley example contains a pair of
tasks that communicate packets through a channel using a data-based protocol.
After ignoring data, the tasks behave like simple sources and sinks, so it is easy to
prove the absence of deadlock. The verification time and memory consumption are
trivial for both tools in these examples because they have simple communication
patterns.

The Bitonic Sort example uses twenty-four comparison tasks that communicate

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 106

on fifty-six channels to order eight integers. Although bitonic sort has twenty-
four tasks, every channel is owned at most by 2 tasks, which gives our tool an
opportunity to abstract away channels when it is not used by the rest of the tasks
during composition. This helps to reduce the size of the automaton.

%\ .

g 10 E_

3 i

£

» ¢ NuSMV ——+—

8 - Compositional analysis

S <

2 01~

S | | | | | |
5 10 15 20 25 30

Number of FIR taps

(a) Verification time

=)

=S

=

=

g" 10 -

2 :

g S NuSMV —+—

@) B} Compositional analysis

>

=

S} 1 =

é | | | | |
5 10 15 20 25 30

Number of FIR taps

(b) Memory Consumption
Figure 8.4: n-tap FIR

The FIR filter is a parallel 31-tap filter with 120 tasks and 150 channels. Each
task consists of a single loop. Figure [8.4] compares our approach and NuSMV
model checker for filters of sizes ranging from 3 to 31. The time taken by our
tool grows quartically with the number of taps and exponentially with NuSMV.
Figure 8.4(b) shows the memory consumption.

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 107

g :
§ 100 E_
= 10 =
> :
§ 1 =
= - NuSMV ——
8 0.1 3 Compositional analysis
kS "
9::’ 0.01 ¥
§ 0001 = ! | | | | | | | | |
100 200 300 400 500 600 700 800 900 1000
Number of processes
(a) Verification time
2 1000 =
) :
= z
g
g 100 =
£ :
2 z
g 10 F
O £
> £ NuSMV ——+—
g 1 [Compositional analysis
) % | | | | | | | | | |
=

100 200 300 400 500 600 700 800 900 1000
Number of processes

(b) Memory Consumption

Figure 8.5: Pipeline

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 108

2]
g 100 -
2 :
> 10 -
g :
= 1 _
£ : NuSMV —+—
= 01 = Compositional analysis
s s
c; 001 L [[[[[| | [
10 15 20 25 30 35 40 45 50
Number of FFT processes
(a) Verification time
2 1000 £
=) :
= :
8)
a. 100 =
= :
2 Z
g -
O 10 =
P z NuSMV ——+—
g : Compositional analysis
§ 1L | | | | | | | |
10 15 20 25 30 35 40 45 50

Number of FFT processes

(b) Memory Consumption

Figure 8.6: Fast Fourier Transform

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 109

1000
100

—
o

[S—

NuSMV ——+—
Compositional analysis

Verification Time (seconds)

0.0] = | | | | | |
5 10 15 20 25 30
Number of IDCT processes
(a) Verification time
100

10 -

NuSMV —+—
Compositional analysis

| | | | | |

5 10 15 20 25 30
Number of IDCT processes

Memory Consumption (MB)

(b) Memory Consumption

Figure 8.7: JPEG Decoder

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 110

“Pipeline” is the example from Figure 8.1 Like the FIR, we tested our tool on
a varying number of tasks. Although both tools seem to achieve O(n*) asymptotic
time behavior, ours remains faster and uses less memory. Figure B.8lillustrates how
our tool performs exponentially on this example if we omit the channel abstraction
step.

The FFT example is similar to the pipeline: most of the tasks’ SHIM automata
consist of a single loop. However, there is a master task that divides and communi-
cates data to its slaves. The slaves and the master run in parallel. The master then
waits for the processed data from each of the slaves. Figure shows we perform
much better as the size of the FFT increases.

The Framebuffer and JPEG examples are the only programs we tested with
conditionals. Framebuffer is a 640 x 480 video framebuffer driven by a line-
drawing task. It has a complicated, nondeterministic communication pattern, but
is fairly small and not parametric. Our technique is still superior, but not by a wide
margin.

The JPEG decoder is one of the largest applications we have written and is
parametric. JPEG decoder has a number of parallel tasks, among which is a
producer task that nondeterministically communicates with rest of the IDCT tasks.
Figure [8.7(a) shows our tool exhibiting better asymptotic behavior than NuSMV.

Although our tool worked well on the examples we tried, it has some limita-
tions. Our tool is sensitive to the order in which it composes automata. Although
we use a heuristic to order the automata, it hardly guarantees optimality.

By design, our tool is not a general-purpose model checker; it cannot verify
any properties other than the absence of deadlock. Furthermore, it can only provide
abstract counter-examples because we remove channels during composition. We
have not examined how best to present this information to a user.

Our compositional approach is forced to build the entire system for certain pro-
gram structures. Consider the call graph shown in Figure The main function
forks two parallel tasks, f and g. Both f and g share channels ay,...,a,. We
first compose the children of f and then inline the composed children in f before
composing f with g. If f is a pipeline program with a structure similar to the
one described in Figure 8.1, when we compose f’s children, we cannot abstract
away any channel because g also owns all the channels. This leads to exponential
behavior, but we find SHIM programs are not written like this in practice.

8.4 Related work

Many have tried to detect deadlocks in models with rendezvous communication.
For example, Corbett [40] proposes static methods for detecting deadlocks in Ada

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 111

% 100 =

§ _ with abstraction ——+—

Q 10 = without

g)

s s

£ -

= 0.1 =

S -

:LE -

E 0.01 C [[[[[| | |
5 10 15 20 25 30 35 40 45 50

Number of processes

Figure 8.8: The importance of abstracting internal channels: verification times for
the n-task pipeline with vs. without.

par main() »
f(alaa27"'7an) 8(01,6127“'aan)
pay par
pilai,a2) palan,ar)

Figure 8.9: A SHIM program’s call graph

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 112

programs. He uses partial order reduction, symbolic model checking, and in-
equality necessary conditions to combat state space explosion. However, these
techniques do build the entire state space with some optimizations. These may be
necessary for Ada, which does not have SHIM’s scheduling independence. By
contrast, we avoid building the complete state space by abstracting the system
along the way. Masticola et al. [81]] also propose a way to find deadlocks in Ada
programs. Their technique is less precise because they use approximation analysis
that runs in polynomial time. Secondly, their method only applies to a subset of
Ada programs. By contrast, our technique can be applied to any SHIM program,
but can run in exponential time on some.

Compositional verification is a common approach for alleviating the state ex-
plosion problem. It decomposes a system into several components, verifies each
component separately, and infers the system’s correctness. This approach verifies
the properties of a component in the absence of the whole system. Two variants
of the method have been developed: assume-guarantee [100] and compositional
minimization [33].

In the assume-guarantee paradigm, assumptions are first made about a compo-
nent, then the component’s properties are verified under these assumptions. How-
ever, it is difficult to automatically generate reasonable assumptions, often requir-
ing human intervention. Although there has been significant work on this [10}
265 [39; 1605 901, Cobleigh et al. [38] report that, on average, assume-guarantee
reasoning does not show significant advantage over monolithic verification either
in speed or in scalability. Compared to assume-guarantee reasoning, which verifies
a system top down with assumptions, our work incrementally verifies the system
bottom up. In addition, the assumptions we make along the way are somehow
trivial: the environment is assumed to be merely responsive to our tasks’ desire to
rendezvous.

Instead of assuming an environment, compositional minimization models the
environment of a component using another component called the interface and
reasons about the whole system’s correctness through inference rules. Krimm et
al. [99] implemented this algorithm to generate state space from Lotos programs,
then extended their work [73]] to detect deadlocks in CSP programs with partial
order reduction. Our work is similar in that we iteratively compose an interface
with a component and later simplify the new interface by removing channels and
merging equivalent states. However, they provide little experimental evidence
about how their algorithm scales or compares with traditional model checkers.

Zheng et al. [135] apply the compositional minimization paradigm to hard-
ware verification. They propose a failure-preserving interface abstraction for asyn-
chronous design verification. To reduce complexity, they use a fully automated
interface refinement approach before composition. Our channel abstraction tech-

CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIM 113

nique is analogous to their interface refinement, but we apply it to asynchronous
software instead of synchronous hardware.

There are many other compositional techniques for formal analysis. Berezin et
al. [14] survey several compositional model checking techniques used in practice
and discuss their merits. For example, Chaki et al. [24;25]] and Bensalem et al. [12]
combine compositional verification with abstraction-refinement methodology. In
other words, they iteratively abstract, compose and refine the system’s components,
once a counter example is obtained. By contrast, we do not apply any refinement
techniques but build the system incrementally to even find a counter example.

Compared to the previous chapter on deadlock detection in SHIM, what we
present here uses explicit model checking, incremental model building, and on-
the-fly abstraction instead of throwing a large model at a state-of-the art symbolic
model checker (we used NuSMV [34]). Experimentally, we find the approach we
present here is better for all but the smallest examples.

8.5 Conclusions

We presented a static deadlock detection technique for the SHIM concurrent lan-
guage. The semantics of SHIM allow us to check for deadlock in programs com-
positionally without loss of precision.

We expand a SHIM program into a tree of tasks, abstract each as a commu-
nicating automaton, then compose the tasks incrementally, abstracting away local
channels after each step.

We have compared our compositional technique with the previous chapter (which
used the NuSMYV general-purpose model checker) on different examples with vary-
ing problem sizes. Experimentally, we find our compositional algorithm is able to
detect or prove the absence of deadlock faster: on the order of seconds for large-
sized examples. We believe this is fast enough to make deadlock checking a regular
part of the compilation process.

In both the methods, we abstract away data-dependent decisions when building
each task’s automaton. This both greatly simplifies their structure and can lead to
false positives: our technique can report a program will deadlock even though it
cannot. However, we believe this is not a serious limitation because there is often
an alternative way to code a particular protocol that makes it insensitive to data and
more robust to small modifications. A more robust, but less efficient solution is to
implement a runtime deadlock detection algorithm which we discuss in the next
chapter.

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM 114

Chapter 9

Runtime Deadlock Detection for
SHIM

Our deadlock detection techniques for SHIM in the previous chapters may give
false positives, because they operate at compile time and abstract away data. To
avoid this problem, we designed a runtime deadlock detection technique. If the
static technique reports that a program is deadlock free, the program is indeed
deadlock free. However, if it reports a program erroneous, the program may
actually not deadlock. In the latter case, we would like to switch on the runtime
deadlock detection technique; i.e., use the runtime deadlock detection technique
(which adds extra overhead) only when necessary.

In this chapter, we design a runtime technique for detecting deadlocks in SHIM.
We also provide a mechanism for deterministically breaking deadlocks and resum-
ing execution in SHIM programs. We discuss the algorithm in detail in the next
section.

9.1 The Algorithm

SHIM is deterministic but not deadlock free. However, the deadlocks are repro-
ducible [122]]; a deadlock that occurs with one schedule will always occur under
another schedule for a given input.

To remove deadlocks, we maintain a dependency graph during runtime. The
vertices of the graph are task numbers. SHIM’s runtime system runs the deadlock
detection algorithm. Whenever a task p calls send on a channel, it waits for a peer
task ¢ to do its counterpart operation recv on the same channel. If task ¢ is also
ready to communicate, then the two tasks rendezvous and the communication is
successful. On the other hand if task g is not ready and doing some other work, then

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM 115

(a) A possible SHIM network (b) An impossible

SHIM network. p has
two outgoing edges

Figure 9.1: Possible and impossible configurations of tasks in the SHIM model

task p indicates that it is waiting, by adding an edge from p to ¢ in the dependency
graph. Then, p checks if there is a path from ¢ leading back to itself. If there
is a cycle, then the program has a deadlock. This cycle-finding algorithm is not
expensive because of the following reason. By SHIM semantics, at any instant, a
task can at most block on one channel. Therefore, there is at most one outgoing
edge from any task p. See Figure Consequently, our cycle finding algorithm
takes time linear in the number of tasks.

Since every task updates edges originating from its vertex in the shared-dependency
graph, the addition of edges by two tasks to the shared dependency graph can be
done concurrently. This is because no two tasks are going to add the same edge
(i.e., an edge with the same end vertices).

Two or more tasks can check for a cycle concurrently and at least one task in
the deadlock will detect a cycle. This is because every task adds the edge first and
then checks for a cycle. If a cycle is found, the deadlock-breaking mechanism is
initiated. The first task to detect a cycle, clears the cycle by removing the edges in
the dependency graph and signals all other blocked processes in the cycle to revive.

All revived tasks (including the task that signalled) now complete their commu-
nication by not waiting for their counterpart operations. A revived recv operation
receives the last value seen on the channel. A revived send value puts the new
value on the channel by performing a dummy write.

We will now run our technique on a simple example shown in Figure
There are four tasks running simultaneously. Task f’s send a waits for g’s recv
a. Task g’s send b waits for h’s recv b. Task h’s send c waits for f’s recv c. In
the absence of a deadlock breaker, the three tasks wait for each other causing a
deadlock.

If we break the deadlocks in the program, the program will terminate. The
deadlock-breaking technique for Figure is shown in Figure 0.3l Suppose f
calls send a first (Figure 0.3(a)), it realizes that g is not ready to receive a and
therefore f adds an edge from vertex f (itself) to vertex g in the dependency graph.

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM

void f(chan int &a, chan int c)
{
send a = 1; /xDeadlocking action */
/* Writes 1 to channel ‘a’ after the deadlock is broken x*/
recv c; /+ Another deadlocking action x*/
/* Receives 3 after the deadlock is broken x/

}

void g(chan int &b, chan int a)
{
send b = 2; /x Deadlocking action s/
/x Writes 2 to channel ‘b’ after the deadlock is broken x/
recv a; /x Another deadlocking action */
/% Receives 1 after the deadlock is broken */

}

void h (chan int &c, chan int b, chan int &d)
{
send ¢ = 3; /+Deadlocking action x/
/* Writes 3 to channel ‘c’ after the deadlock is broken */
recv b; /x Another deadlocking action */
/* Receives 2 after the deadlock is broken =/
send d = 4;
}

void i (chan int d)
{
recv d; /+ Receives 4 */

}

main () {
/% Create 4 channels and initializes them with O %/
chan int a = 0, b = 0, ¢ =0, d = 0;
/x Run f, g, h and i in parallel */
fla, c) par g(b, a) par h(c, b, d) par i(d);
/*Here:a=1,b=2,c=3,d=4 %/
}

116

Figure 9.2: Another example of a deadlock and the effect of our deadlock-breaking

algorithm

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM 117

f—¢

i h
(a) f blocks at send a

f T
i¥
(d) Next, g blocks at
send b

f—28

i—h

(g) g blocks on recv a

f g

1 h
G) h does send d,
communication

successful because i
is already waiting

f—8

AN

(b) next, i blocks at send
c

i—h

(e) g detects a cycle, re-
vives f and A, and breaks
the cycle

f—

i—h

(h) f blocks on recv ¢

f—8

o,

(c) Next, i blocks at recv
d

i—h

(f) h blocks on recv b

i—h

(i) f detects a cycle, re-
vives g and h, and breaks
the cycle

Figure 9.3: Building the Dependency Graph for Figure[9.2]

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM 118

It then checks if there is a cycle. Since the cycle has not yet formed, f suspends
itself. Next, if & calls send ¢ (Figure [0.3(b)), it finds that f is not ready to receive
¢ and therefore /# adds an edge from vertex # (itself) to vertex f, sees that there is
no cycle and suspends itself. Next, if i calls recv d (Figure 0.3(c)), it realizes that &
is not yet ready to send d. Therefore i adds an edge from vertex i to vertex A, sees
that there is no cycle and suspends itself. Next, g calls send b (Figure and
it adds an edge from vertex g (itself) to A.

After g adds an edge from itself to 4, g runs the deadlock detection algorithm
and detects a cycle. It (Figure now removes the edges in the cycle, revives
all the tasks in the deadlock. Now the revived tasks go ahead with their operations
(without waiting for the counterparts). f writes 1 to channel a, g writes 2 to channel
b and & writes 3 to channel ¢ This modifies main’s copy of a, b and c. The three
tasks then move to their next statements.

Next, the tasks f, g and /& deadlock again on their recv’s forming a cycle
(Figures 9.3(F)] 0.3(g)| and 9.3(h)). The deadlock is broken by one of the tasks
(task f in Figure[9.3(1)). f receives whatever was last put on the channel ¢ which
is 3. Similarly, g receives 1, & receives 2. Then tasks f and g terminate. Now task
h calls send d (Figure and finds that i is ready to receive on channel d. The
two tasks & and i rendezvous to communicate, and they finally terminate.

The advantages of our method are that the deadlock detection technique can
run concurrently and in linear time. However, two or more tasks may detect a cycle
simultaneously; therefore we need only one of the tasks to take the responsibility
of reviving other tasks. We therefore require some sort of synchronization to break
the deadlock but not to detect a deadlock.

9.2 Conclusions

The runtime deadlock detector is the contribution of this chapter. Before any
deadlock, the execution of the SHIM program will be deterministic because of
the property of the SHIM model. The deadlock-breaking step is deterministic
because it just advances all the deadlocked tasks. The program is deterministic after
the deadlock is broken, because the remaining statements are executed normally
following SHIM’s principle. Therefore, we still maintain determinism even after
introducing a runtime deadlock breaker to the basic SHIM model.

Deadlock detection algorithms cost time on general graphs. SHIM’s constraint
of never waiting on two channels sidesteps this problem, rendering the cycle-
finding algorithm linear time.

There are a number of runtime distributed deadlock detecting algorithms. Chandy,
Misra, and Haas [28] is among the best known. According to their technique,

CHAPTER 9. RUNTIME DEADLOCK DETECTION FOR SHIM 119

whenever a process, say i, is waiting on a process, say j, i sends a probe message
to j. j sends the same message to all the processes it is waiting on and so on. If the
probe message comes back to i, then i reports a deadlock.

Like others, Chandy et al. concentrate on the multiple-path problem where
multiple edges may leave a single vertex. Probe messages must be duplicated at
these nodes. We can apply the same algorithm to our setting, but since we have at
most one outgoing edge per vertex, we do not have to duplicate messages.

In summary, our technique efficiently addresses the two major pitfalls of con-
current programming — nondeterminism and deadlocks. SHIM provides deter-
minism. The static and runtime deadlock-detection techniques provide deadlock
freedom. We do not claim that our methods are the best; we believe that this
chapter and the preceding ones will provide insight on achieving both determinism
and deadlock freedom, and the ideas here can be used while programmers think of
designing concurrent models and languages.

CHAPTER 10. D*C: A DETERMINISTIC DEADLOCK-FREE MODEL 120

Chapter 10

D?C: A Deterministic
Deadlock-free Concurrent
Programming Model

The SHIM programming model is interesting but does not guarantee deadlock
freedom by semantics. We need explicit deadlock detection techniques to catch
deadlocks in programs. In this chapter, we provide an extension of SHIM —
a concurrent model that is both deterministic and deadlock free. Any program
that uses this model is guaranteed to produce the same output for a given input.
Additionally, the program will never deadlock: the program will either terminate
or run for ever.

10.1 Approach

Nondeterminism arises primarily due to read-write and write-write conflicts. In the
D?C model, we allow multiple tasks to write to a shared variable concurrently, but
we define a commutative, associative reduction operator that will operate on these
writes.

The program in Figure [[0.1] creates three tasks in parallel f, g and h. f and
g are modifying x. Even though f and g are modifying x concurrently, f sees
the effect of g only when it executes next. Similarly g sees the effect of f only
when it executes next. When a task executes next, it waits for all tasks that share
variables with it, to also execute next. The next statement is like a barrier. At this
statement, the shared variables are reduced using the reduction operator. In the
example in Figure the reduction operator is + because x is declared with a
reduction operator + in line Therefore after the next statement, the value of x

CHAPTER 10. D*C: A DETERMINISTIC DEADLOCK-FREE MODEL 121

void f(shared int &a) {
/xais 0 */
a = 3;
/xais 3, xis still 0 %/
next; /+ The reduction operator is applied */
/* ais now 8, X 1S 8 */

}

void g (shared int &b) {
/% bis 0 %/
b = 5;
/% bis 5, x is still O */
next; /+ The reduction operator is applied */
/* bis now 8, x 1s 8 %/

}

void h (shared int &c) {
/¥ cis 0, xis still O */
next;

/* ¢ 1S now 8, X 1S 8 */

}

void main () {
shared int (+) x = 0;
/[« If there are multiple writers, reduce
using the + reduction operator */
f(x); par g(x); par h(x);
/% x 18 8 */

}

Figure 10.1: A D*C program

is 3 + 5 which is 8 and it is reflected everywhere. Function /4 also rendezvous with
f and g by executing next and thus it obtains the new value 8.

The next synchronization statement is deadlock free. We do not give a formal
proof here, but it follows from the fact that the next statement is a conjunctive
barrier on all shared variables. On contrast, SHIM is not deadlock free. Also,
they do not allow multiple tasks to write to a shared variable because they provide
ownership to variables.

10.2 Implementation

We implemented our model in the X10 programming language [29]. As described
in Chapter [[2] X10 is a parallel, distributed object-oriented language. To a Java-
like sequential core it adds constructs for concurrency and distribution through the

CHAPTER 10. D*C: A DETERMINISTIC DEADLOCK-FREE MODEL 122

concepts of activities and places. An activity is a unit of work, like a thread in Java;
a place is a logical entity that contains both activities and data objects. X10 uses
the Cilk model of task parallelism and a task scheduler similar to that of Cilk.

Our preliminary implementation is as follows. We did a very conservative
analysis to check if a particular shared variable is being used by multiple tasks. If
yes, we force the variable to be shared with a reduction operator. This forces race
freedom. Otherwise, the compiler throws an error.

Each thread maintains a copy of the shared variable. A thread always reads
from or writes to its local copy. Whenever the next statement is called, all threads
sharing the variable synchronize. The last thread to synchronize does a linear
reduction of the local copies using the commutative, associative operator in the
variable declaration. It then updates the local copies with the new value.

10.3 Results

To test the performance of our model, we ran a number of benchmarks ona 1.6 GHz
Quad-Core Intel Xeon (E5310) server running Linux kernel 2.6.20 with SMP (Fe-
dora Core 6). The processor “chip” actually consists of two dice, each containing a
pair of processor cores. Each core has a 32 KB L1 instruction and a 32 KB L1 data
cache, and each die has a 4 MB of shared L2 cache shared between the two cores.
Figure shows the results. We measured the deterministic implementation
of the applications with the original implementation. A bar with value below 1
indicates that the deterministic version ran slower than the original version.

The AllReduce Example is a parallel tree based implementation of reduction.
The Pipeline example passes data through a number of intermediate stages; at
each stage the data is processed and passed on to the next stage. Convolve is
an application of the Pipeline program.

The N-Queens Problem finds the number of ways in which N queens can be
placed on an N*N chessboard such that none of them attack each other. The
MontiPi application finds the value of 7 using Monte-Carlo simulation. The K-
Means program partitions n data points into k clusters concurrently.

The Histogram program sorts an array into buckets based on the elements
of the array. The Merge Sort program sorts an array of integers. The Prefix
example operates on an array and the resulting array is obtained from the sum
of the elements in the original array up to its index.

The SOR, IDEA, RayTrace, LUFact, SparseMatMul and Series programs are
JGF benchmarks. The RayTrace r benchmarks renders an image of sixty spheres.
It has data dependent array access.

The SOR example performs Jacobi successive relaxation on a grid; it continu-

CHAPTER 10. D*C: A DETERMINISTIC DEADLOCK-FREE MODEL 123

3 -
Determinized n———
Original -

? 24

(]

Q.

)

(0]

=2

©

[0

o
L e T ‘ ""
0 ‘ 1 1 1
T QO F5T FEEEEXNLCOTT 88 BS
222823 E5E585P2552¢288 83
S99 sf85%e5y"0nga fug

L c N O o R wn
53388235 PTET3
o ©O 32 gTs= o o
> g 2 0 ©
3 Zz 52 a
4)
o« =
<
Application

Figure 10.2: Experimental Results

ously updates a location of the grid based on the location’s neighbors. The Stencil
program is the 1-D version of the SOR.

The LUFact application transforms an N*N matrix into upper triangular form.
The Series benchmark computes the first N coefficients of the function f(x) =
(x+1)*. The IDEA benchmark performs International Data Encryption algorithm
(IDEA) encryption and decryption on an array of bytes. The SparseMatMul pro-
gram performs multiplication of two sparse matrices.

The UTS benchmark [92]] performing an exhaustive search on an unbalanced
tree. It counts the number of nodes in the implicitly constructed tree that is param-
eterized in shape, depth, size, and imbalance.

For most of the examples, the deterministic version had a performance degrada-

CHAPTER 10. D*C: A DETERMINISTIC DEADLOCK-FREE MODEL 124

tion of 1% - 25% as expected. However, for some examples like SOR and Stencil,
the deterministic version performed better. The original version of these examples
had explicit 2-phased barriers to differentiate between reads and writes, while the
deterministic version requires just a single phase, because we maintain a local copy
in each thread to eliminate read-write conflicts. Hence, the deterministic version
performed better.

10.4 Conclusions

We have presented a deterministic, deadlock free model. We have a proof (not
shown here) that formulates this hypothesis. We have added these features as
constructs to the X10 programming language. We also plan implement it as a
library. A number of examples fit into this model: Histogram, Convolution, UTS,
Sparse Matrix Multiplication etc.

As future work, we plan to allow user defined reduction operators in our lan-
guage. We therefore require a mechanism to check for associativity and commuta-
tivity of these operators. Secondly, we would like to use static analysis to improve
the runtime efficiency of these constructs. Thirdly, we would like to implement this
as a library, and check the program to see if it does not override the deterministic
library. Next, we would like to build a determinizing tool [123] like Kendo [93]
and [42]] based on D*C.

The D*>C model is advantageous that it does not introduce deadlocks by seman-
tics. However, the next statement, being conjunctive, enforces more centralized
synchronization than SHIM. This may be disadvantageous in terms of efficiency
for some programs, but we do not see this kind of behavior in our benchmarks.

Our ultimate goal is efficient concurrency with determinism and deadlock free-
dom. D*C will introduce a way of bug-free parallel programming that will enable
programmers to shift easily from sequential to parallel worlds and this will be a
necessary step along the way to pervasive parallelism in programming.

125

Part IV

Improving Efficiency

126

Outline

Part [T provides efficient techniques to generate code from SHIM programs. Our
goal is to reduce synchronization overhead as much as possible. In this part, we
further improve the efficiency of SHIM constructs and related deterministic
constructs in other languages. We show both compile-time and runtime
techniques to optimize these constructs and their lower level implementations.

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 127

Chapter 11

Reducing Memory in SHIM
programs

In this chapter, we present a static analysis technique for improving memory effi-
ciency in SHIM programs. We focus on reducing memory consumption by sharing
buffers among tasks, which use them to communicate using CSP-style rendezvous.
We determine pairs of buffers that can never be in use simultaneously and use a
shared region of memory for each pair.

We need to optimize space because embedded systems generally have limited
memory. Overlays, which amount to time multiplexing the use of memory regions,
is one way to reduce a program’s memory consumption. In this chapter, we propose
a technique that automatically finds opportunities to safely overlay communication
buffer memory in SHIM.

Our technique produces a static abstraction of a SHIM program’s dynamic
behavior, which we then analyze to find buffers that can share memory. Experi-
mentally, we find our technique runs quickly on modest-sized programs and can
sometimes reduce memory requirements by half.

SHIM processes communicate through channels. The sequence of symbols
transmitted over each channel is deterministic but the relative order of symbols
between channels is generally undefined. If the sequences of symbols transmitted
over two channels do not interfere, we can safely share buffers. Our technique
establishes ordering between pairs of channels. If we cannot find such an ordering,
we conclude that the pair cannot share memory.

Our analysis is conservative: if we establish two channels can share buffers,
they can do so safely, but we may miss opportunities to share certain buffers
because we do not model data and may treat the program as separate pieces to avoid
an exponential explosion in analysis cost. Specifically, we build sound abstractions

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 128

void main ()

{

chan int a, b, c;
{

// Task 1
next a = 6; //Send a (synchronize with task 2)

} par {

// Task 2
next a; // Receive a (synchronize with task 1)
next b = a + 1; //Send 7 onb (synchronize with task 3)

} par {

/] Task 3
next b; // Receive b (synchronize with task 2)
next ¢ = b + 1; //Send 8 on c (synchronize with task 4)

} par {

/] Task 4
next c; // Receive c (synchronize with task 3}
/I ¢ = 8 here
}
}

Figure 11.1: A SHIM program that illustrates the need for buffer sharing

to avoid state space explosions, effectively enumerating all possible schedules with
a product machine.

One application of our technique is to minimize buffer memory used by code
generated by the SHIM compiler for the Cell Broadband engine in Chapter[3l The
heterogeneous Cell processor [69] consists of a power processor element (PPE) and
eight synergistic processor elements (SPEs). The SHIM compiler maps tasks onto
each of the SPEs. Each SPE has its own local memory and shares data through the
PPE. The PPE synchronizes communication and holds all the channel buffers in its
local memory. The SPE communicates with the PPE using mailboxes [72].

We wish to reduce memory used by the PPE by overlapping buffers of differ-
ent channels. Our static analyzer does live range analysis on the communication
channels and determines pairs of buffers that are never live at the same time.
We demonstrate in Section that the PPE’s memory usage can be reduced
drastically for practical examples such as a JPEG decoder and an FFT.

In this chapter, we address an optimizing technique for SHIM: buffer sharing.

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 129

In the program in Figure [[1.1] the main task starts four tasks in parallel. Tasks 1
and 2 communicate on a. Then, tasks 2 and 3 communicate on b and finally tasks 3
and 4 on c. The value of c received by task 4 is 8. Communication on a cannot
occur simultaneously with that of b because task 2 forces them to occur sequen-
tially them. Similarly communications on b and c are forced to be sequential by
task 3. Communications on a and ¢ cannot occur together because they are forced
to be sequential by the communication on . Our tool understands this pattern
and reports that a, b, and ¢ can share buffers because their communications never
overlap, thereby reducing the total buffer requirements by 66% for this program.

Below, we model a SHIM program’s behavior to analyze buffer usage (Sec-
tion[T1.1)), and describe how we compose models of SHIM tasks to build a product
machine for the whole program (Section [I1.2)), how we avoid state explosion
(Section [T1.3)), and how we use these results to reduce buffer memory usage (Sec-
tion [[1.4). We present experimental results in Section and related work in
Section

11.1 Abstracting SHIM Programs

First, we assume that a SHIM program has no recursion. We use the techniques of
Edwards and Zeng [52]] to remove bounded recursion, which makes the program
finite and renders the buffer minimization problem decidable. We do not attempt
to analyze programs with unbounded recursion.

Although the recursion-free subset of SHIM is finite state and therefore tractable
in theory, in practice the full state space of even a small program is usually too
large to analyze exactly; a sound abstraction is necessary. A SHIM task has both
computation and communication, but because buffers are used only when tasks
communicate, we abstract away the computation.

Since we abstract away computation, we must assume that all branches of
any conditional statement can be taken. This leaves open the possibility that two
channels may appear to be used simultaneously but in fact never are, but we believe
our abstraction is reasonable. In particular it is safe: we overlap buffers only when
we are sure that two channels can never be used at the same time regardless of the
details of the computation.

11.1.1 An Example

In Figure [11.2] the main function consists of two tasks that communicate through
channels a, b, and c.
The first task communicates on channels a and b in a loop; the second task

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 130

void main () {
chan int a, b, c;

{

// Task 1
Jor (int i = 0; i < 15; i++) { //statel
if (i 2 ==20)
next a = 5;
else
next b = 7;
// state 2
next b = 10;

}
// state 3

} par {

/] Task 2

// state 1

next ¢ = 13;
// state 2

next b;

/] states 3 & 4

Figure 11.2: A SHIM program

synchronizes on channels ¢ and b, then terminates. Once a task terminates, it is no
longer compelled to synchronize on the channels to which it is connected. Thus
after the second task terminates, the first task just talks to itself; i.e., it is the only
process that participates in a rendezvous on its channels. Terminated processes do
not cause other processes to deadlock.

At compilation time, the compiler dismantles the main function of Figure [I1.2]
into tasks 77 and 7. T is connected to channels @ and b since a and b appear in the
code section of 77. Similarly 75 is connected to channels » and c¢. During the first
iteration of the loop in Ty, T; talks to itself on a; since no other task is connected
to a. Meanwhile, 75 talks to itself on ¢. Then the two tasks rendezvous on b,
communicating the value 10, then 7, terminates. During subsequent iterations of
Ti, T, talks to itself on either b twice or a and b once each.

In the program in Figure communication on b cannot occur simultane-
ously with that on ¢ because T forces the two communications to be sequential
and therefore b and ¢ can share buffers. On the other hand, there is no ordering
between channels a and c; a and ¢ can rendezvous at the same time and therefore

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 131

i1

2
(1| 12)

(a) M (a,b,C,ﬂ:ml) (b) Tl (a,b,Tl) (C) TZ (bsCsTZ)

Figure 11.3: The main task and its subtasks

a and c cannot share buffers. By overlapping the buffers of b and ¢, we can save
33% of the total buffer space.

Our analysis performs the same preprocessing as our static deadlock detector
in Chapter[7l It begins by removing bounded recursion using Edwards and Zeng’s
technique [52]. Next, we duplicate functions to force every call site to be unique.
This has the potential of producing an exponential blow up, but we have not ob-
served it in practice.

At this point, the call graph of the program is a tree, enabling us to statically
determine all the tasks and the channels to which each is connected.

Next we disregard all functions that do not affect the communication behavior
of the program. Because we are ignoring data, their behavior cannot affect whether
we consider a buffer to be sharable. We implicitly assume every such function can
terminate—again, a safe approximation.

Next, we create an automaton that models the control and communication
behavior for each function. Figure shows automata for the three tasks (main,
Ti, and T3) of Figure [1.21 For each task, we build a deterministic finite state
automaton whose edges represent choices, typically to communicate. The states
are labeled by program counter values and the transitions by channel names. Each
automaton has a unique final state, which we draw as a double box. There is a
transition from every terminating state to this final state labeled with a dummy
channel that indicates such a transition. An automaton has only one final state
but can have multiple terminating states. In the 77 of Figure state 1 is the
terminating state, state 3 is the final state, and they are connected by 7, which is
like a classical € transition. However, a true € transition would make the automaton
nondeterministic, so we instead create the dummy channel 7; that is unique to 73
and allow 7; to freely move from state 1 to state 3 without having to synchronize

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 132

¥
B

} Tn1

a 1.1 T a |21 ™

2,[2,1] 2,[3,1]
c\7_‘ ¢ _Y':
a T

22 2.01.2] 2.03.2]
b b b
a a (%)
1.3 2,[1,3] 12,1231 |~ 21241
a,b lb
g b . w2 214] | P
(%)

EEE] —

(a) Tl ‘ T2 (avaC9Tl ,12) (b) M- Tl) Tz(a,b,C,Tl T2,])
Figure 11.4: Composing tasks in Figure [[1.3} [(2)) Merging 7 and 75. [(b)| Inlining
T,-T in M.

with any other another task.

The main function has a dummy 7, transition from its start to the entry of
state 2 (T1]|T2), which represents the par statement in main. In general, we create
a dummy channel for every par in the program.

Figure shows the product of 77 and T>—an automaton that represents
the combined behavior of 77 and 7>. We constructed Figure as follows. We
start with state (program counter) values (1,1). At this point, 7} can communicate
on a and move to state 2. Therefore we have an arc from (1,1) to (2,1) labeled
a. Similarly, 7> can communicate on ¢ and move to its state 2. From state (1,1) it
is not possible to communicate on b because only 77 is ready to communicate, not
T, (T, is also connected to b). Also at state (1,1), 7T} can terminate by taking the
transition 7; and moving to (3,1).

From state (3,1), T can transition first to state (3,2) by communicating on
channel ¢ and then to state (3,3) by communicating on b; these transitions do not
change the state of 77 because it has already terminated.

From (2, 1), T, can communicate on ¢ and change the state to (2,2). Similarly
from (1,2), 71 can communicate on a and move to (2,2). In state (1,2) it is also
possible to communicate on b since both tasks are ready. Therefore, we have an
arc b from (1,2) to (2,3). Since 7} may also choose to terminate in state (1,2),
there is an arc from (1,2) to (3,2) on 7;. Other states follow similar rules.

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 133

To determine which channels may share buffers, we consider all states that
have two or more outgoing edges. For example, in Figure state (1,1) has
outgoing transitions on a and c. Either of them can fire, so this is a case where the
program may choose to communicate on either a or c. This means the contents of
both of these buffers are needed at this point, so we conclude buffers for a and ¢
may not share memory. We prove this formally later in the chapter.

From Figure it is evident that a and b can never occur together because 71
forces them to be sequential. However, since state (1,2) has outgoing transitions
on a and b, our algorithm concludes that a and b can occur together. However, they
actually can not. We draw this erroneous conclusion because our algorithm does
not differentiate between scheduling choices and control flow choices (i.e., due to
conditionals such as if and while). By doing this we are only adding extra behavior
to the system and disregarding pairs of channels whose buffers actually could be
shared. This is not a big disadvantage because our analysis remains safe. For this
example, our algorithm only allows b and c to share buffers.

Figure is obtained by inlining the automaton for 7; - T,—Figure
within M. This represents the entire program in Figure Since the par call is
blocking, inlining 7} - 7> within M is safe. We replaced state 2 of Figure

with Figure to obtain Figure The conclusions are the same as that
of Figure only b and ¢ can share buffers.

11.2 Merging Tasks

In this subsection, we use notation from automata theory to formalize the merging
of two tasks. We show our algorithm does not generate any false negatives and is
therefore safe.

Definition 4 A deterministic finite automaton 7 is a S-tuple (Q,%,8,q,) where
Q is the set of states, X is the set of channels, q € Q1 is the initial state, f € Q is
the final state, and 6 C Q X X — Q is the partial transition function.

Definition 5 If Ty and T, are automata, then the composed automaton 7y -1, =
(01 X 02,21 UXy,012,(q1,492),(f1, f2)), where, for (p1,p2) € Q1 x Q> and a €

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 134

21U,

(81(p1,a), ifa€yanda€ 3y;
02 (p2,a))
(61(p1,a),p2) ifa€y, and
S12({p1, p2),a) = (a3, or pr=fo);
(p1,02(p2,a)) ifa€y,and
(a g%y orpi=fi)

undefined otherwise;

is the transition rule for composition.

In general, if 77 has m states and 75 has n, then the product 77 - 7, can have at
most mn states. The states are labeled by a tuple composed of the program counter
values of the individual tasks. Each state can have at most k outgoing edges, where
k is the total number of channels. Consequently, the total number of edges in the
graph can at most be mnk (k accounts for the extra T and 7w channels—one extra
channel per task and one per par).

Below, we demonstrate that the order in which automata are composed does
not matter. Although the state labels will be different, the states are isomorphic.
First, we define exactly what we mean for two automata to be equivalent.

Definition 6 Two automata Ty = (Q1,%1,01,41, /1) and T» = (02,X2, 62,92, f>)
are equivalent

(written Ty = Tp) if and only if X1 = X, and there exists a bijective function b :
Q1 — Qs such that g = b(qy), f> = b(f1), and for every p € Q1 and a € Xy, either
both 61(p,a) and 6,(b(p),a) are defined and &, (b(p),a) = b(8(p,a)) or both are
undefined.

Lemma 3 Composition is commutative: Ty - T, =T> - Tj.
PROOF By definition,

', = (Q1x02,Z1UX,012,(q1,92),(f1,f2)) and
L-Ti = (02x0Q1,%UZ,01,(q2,91),(f2, f1))-

We claim b((pi,p2)) = (p2,p1) is a suitable bijective function. First, note X; U
I =3 UZy, (q2,q1) = b({q1,42)), and {f2, f1) = b((f1, f2))-

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 135

Next,
621(b({p1,p2)),a)
= &1((p2,p1),q)
(5 (p2,a),01(p1,a)) ifacY,andacy;
(62(p2,a),p1) ifae), and
_ (ag X orpr=fi)
) (p2,81(p1,a)) ifaey, and
(ag Xy orpr=fa);
undefined otherwise;
(81(p1,a),8(p2,a)) ifaeY,anda€ Y,;
(p1,02(p2;a)) ifa € Y, and
—b (a g ¥ orpr=fi);
(61(p1,a),p2) ifaey,; and
(ag ¥y 0rpr=f);
undefined otherwise;
= b(812({p1,p2),a))
Thus, T1 - H =T, -Th. O

Lemma 4 Composition is associative: (Ty -T) - T3 =T, - (T - T3).
PROOF By definition,

(') Ts = ((Q1%xQ2)xQ03,(Z1UX)UZ3, 0123,
<<¢]h¢]2>ﬂ3>7<<f1,f2,>7f3>)
(T T3) = (Q1x(Q2x03),Z1U(Z2UZ3),6(23),
<QI7<Q27q3>>7<f17<f27f3>>)'
We claim b({{p1,p2),p3)) = (p1, (P2, p3)) is a suitable bijective function. First,

note that (£, UZ,)UZ3 = 21U (Z2UZ3), (q1,(q2,43)) = b({{q1,42),43)), and
(f1,{f2, f3)) = b({{f1, 2), f3))-

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS

Next,

Thus, (7 -

Lemmas T;-

01(23)(b({{p1,P2),P3)).a)
= 61

23)((P1,(P2,P3)),a
(61(p1,a),(62(p2,4),
(p3,a)))

&
(81(p1,a),(62(p2,a), p3))

(81(p1,a),{p2,63(p3,a)))

(01(p1,a),{p2,p3))

(P1,{(02(p2,4a),63(p3,a)))

(p1,{(02(p2,a), p3))

(p1,(p2,03(p3.a)))

undefined

((1(p1,a), 82(p2,a)),

% (ps3,a))
((61(p1,a),02(p2,a)), p3)
((01(p1,a), p2),83(p3,a))

((61(p1,a),p2),p3)

((p1,82(p2,a)), 83(p3,a))

((p1,02(p2,0)), p3)

((p1,p2),83(p3,a))

undefined

(8(12)3(<<P17P2>7P3>7a))
B=T-(1 Tz).

ifaeyanda€ Y, and
ae€ys;
ifaeY;anda € Y, and
(a g X3 o0rp3=f3);
ifae)anda € Y3 and
(a & %sorpr=fr);
ifaey,; and

(a & %porpy=fr) and
(a g X3 o0rp3=f3);
ifae,anda € Y3 and
(ag Xy orpi=f)
ifae,and
(agZyorp=fi)and
(a g X3 o0rp3=f3);
ifacy;and

(ag Xy orpr=fi)and
(a & %sorpr = fr);

otherwise;

ifaey;anda €, and
aeys;
ifaey,anda € Y, and
(a ¢ 3501 p3 = f3);
ifae)anda €3 and
(a g% orpr=f);
ifaey, and

(a &3, or pp= fr) and
(ag%50rp3=f3);
ifae,anda € Y3 and
(ag Xy orpr=fi);
ifae, and

(ag X orpr=fi)and
(a g %5 o0rp3=f3);
ifaeYsand

(ag ¥, or p1 = fi)and
(a g% orpr=f);

otherwise;

T, = (T D) T3)) T,

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 137

PROOF Since the composition is commutative and associative, we can build the
entire system incrementally by composing two tasks at a time. O

Lemma 6 The outgoing transitions from a given state represent every possible
rendezvous that can occur at that particular state.

PROOF According to the definition of 0, we add an outgoing edge to a state for
every rendezvous that can happen immediately after that state.

Multiple outgoing arcs from a state may represent choices due to control state-
ments (such as if or while). 6(pi,a) = q» and 8(p1,b) = q2, then we have two
outgoing choices due to control flow.

On the other hand, a scheduling choice may occur when composing two tasks.
A scheduling choice occurs when the ordering between two rendezvous is un-
known. This happens when two different pairs of tasks can rendezvous on two
different channels at the same time.

Suppose a € £; and a € X, and 0i(p1,a) = q1, and if b € X, and b ¢ X
and 8(p2,b) = ¢, then 812({p1,p2),a) = (g1, p2) and 612((p1, p2),b) = (p1,42).
Thus, for every possible scheduling choice, we have an outgoing edge from the
given state.

The absence of any choice due to control or scheduling will leave it with either
one or zero outgoing arcs. Consequently, the outgoing transitions from a given
state represent all possible rendezvous that can occur at that particular state. They
represent both control flow and scheduling choices. O

A scheduling choice imposes no ordering among rendezvous, thus allowing the
possibility of two or more rendezvous to happen at the same time.

Theorem 1 Two channels a and b can share buffers if, ¥ p, at most one of 6(p,a)
and 8(p,b) is defined, but not both.

PROOF Suppose a and b can rendezvous at the same time and if p; represents the
state of the program counter just before the rendezvous, then by Lemma |6 we have
two outgoing arcs from p;: 8(py,a) = q; and 6(p1,b) = q»

Consequently, for some p, both 8(p,a) and 6(p,b) exists. Conversely, if for
all p at most one of §(p,a) and 8(p,b) exist, then we can safely say that a and b
can share buffers. O

Our algorithm does not differentiate between control flow choices (e.g., due to
if or while) and scheduling choices (due to partial ordering of rendezvous). Both
kinds of choices produce states having multiple outgoing arcs. We conclude that
arcs going out from the same state cannot share buffers. The multiplicity can be
contributed only by control choices leading to false positives, but our system is
safe; whenever we are unsure, we do not allow sharing.

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 138

11.3 Tackling State Space Explosion

If two tasks communicate infrequently, there is a possibility that the number of
states in the product machine will grow too large to deal with. We address this
by introducing a threshold, which limits the stack depth of our recursive product
machine composition procedure and corresponds to the longest simple path in the
product machine. If we reach the threshold, we stop and treat the two tasks being
composed as being separate (i.e., unable to share buffers between them).

This heuristic, which we chose because our implementation was running out
of stack space on certain complex examples, has the advantage of applying exactly
when we are unlikely to find opportunities to share buffer memory. Tightly coupled
tasks tend to have small state spaces—these are exactly those that allow buffer
memory to be shared. Loosely coupled tasks by definition run nearly independently
and thus the communication pattern of most pairs of channels are uncontrolled,
eliminating the chance to share buffers between them.

Algorithm [2]is the composition algorithm. It recursively composes two states
p1 and pp. The depth variable is initialized to 0 and incremented whenever suc-
cessor states are composed. Whenever depth exceeds the threshold, we declare
failure.

Algorithm 2 compose(p, p2, 1, X0, depth, threshold)
if depth > threshold then
print “Threshold exceeded”
else
foralla e 2, UX, do
(q1,92) = 6((p1,p2),a)
if (q1,92) & hash then
Add (q1,q2) to hash
compose(q1, g2, X1, 22, depth+ 1, threshold)
end if
end for
end if

We draw conclusions about local channels (whose scope has been completely
explored) and we remain silent about the others. We make safe conclusions even
when other channels have not been completely explored.

Theorem 2 If our algorithm concludes that two channels a and b can share buffers
after abstracting away channel c, then a and b can still share buffers in the presence

of c.

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 139

Example Lines Channels Tasks Bytes Saved Buffer Reduction Runtime States
Source-Sink 35 2 11 4 50 % 0.1s 394
Pipeline 35 5 9 16388 25 0.1 68
Bitonic Sort 35 5 13 12 60 0.1 135
Prime Number Sieve 40 5 16 12 60 0.5 122
Berkeley 40 3 11 4 33.33 0.6 285
FIR Filter 110 28 28 52 46.43 13.8 74646
Framebuffer 185 11 16 28 0.002 1.3 15761
FFT 230 14 15 344068 50 0.6 3750
JPEG Decoder 1020 7 15 772 50.13 1.8 517

Table 11.1: Experimental results with the threshold set to 8000

PROOF If a and b can share buffers, then there is a sequential ordering between
them. By SHIM semantics [49], introduction of a new channel can create ordering
between two channels that are not ordered, but can never disrupt an existing se-
quential ordering. Therefore, if our algorithm concludes that two buffers can share
channels, introducing a new channel does not affect the conclusion. a

We conclude that two channels can share buffers only if two conditions hold:
the two channels have been explored completely and every state has at most one of
the two channels in its outgoing edge set.

We take a bottom-up approach while merging groups of tasks. Tasks in a
(preprocessed) SHIM program have a tree structure that arises from nesting of
par constructs. We merge the leaf tasks of this tree before merging their parents.
We stop merging when all tasks have exceeded the threshold or if the complete
program has been merged. This approach allows us to stop whenever we run out
of time or space without violating safety.

11.4 Buffer Allocation

Our static analysis algorithm produces a set S that contains pairs of channels that
can share buffers. Let S’ be the complement of this set. We represent it as a
graph: channels represent vertices and for every pair (c;,¢;) € §', we draw an edge
between ¢; and c¢j. Two adjacent vertices cannot share buffers. Every node has a
weight, which corresponds to the size of the channel.

Minimizing buffer memory consumption, therefore, reduces to the weighted
vertex covering problem [80; [79]]: a graph G is colored with p colors such that no
two adjacent vertices are of the same color. We denote the maximum weight of
a vertex colored with color i as max (i), and we need to find a coloring such that

P, max(i) is minimum. The problem is NP-hard.
We use a greedy first-fit algorithm to get an approximate solution. Let G be a

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 140

Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0% 0.6s 10024
3000 0 0 1.5 23530
4000 0 0 34 51086
5000 52 46.43 12.4 70929
6000 52 46.43 12.8 72101
7000 52 46.43 13.5 73433
8000 52 46.43 13.8 74646

Table 11.2: Effect of threshold on the FIR filter example

list of groups. Initially G is empty. We order the channels in nonincreasing order
of buffer sizes, then add the channels one by one to the first nonconflicting group
in G. If there is no such group, we create a new group in G and add the channel to
this newly created group. A group is defined to be nonconflicting if the channel to
be added can share its buffer with every channel already in the group. Channels in
the same group can share buffers. This algorithm runs in polynomial time but does
not guarantee an optimal solution.

11.5 Experimental Results

We implemented our algorithm and ran it on various SHIM programs. Table
lists the results of running the experiments on a 3 GHz Pentium 4 Linux machine
with 1 GB RAM. For each example, the columns list the number of lines of code in
the program, the total number of channels it uses, the number of tasks that take part
in communication (i.e., excluding any functions that perform no communication),
the number of bytes of buffer memory saved by applying our algorithm, what
percentage this is of overall buffer memory, the time taken for analysis (including
compilation, abstraction, verification, and grouping buffers), and the number of
states our algorithm explored. For these experiments, we set the threshold to 8000.
We use the same benchmarks from the previous chapters.

Specifically, it takes about thirteen seconds to analyze the FIR program and the
number of states explored is about eighty thousand. Since this was one of the more
challenging examples for our algorithm, we tried varying the threshold. Table[1TT.2]
summarizes our results. As expected, the number of visited states increases as we
increase the threshold. With a threshold of 1000, we hardly explore the program,
but higher thresholds let us explore more. When the threshold reaches 5000, we
have explored enough of the system to begin to find opportunities for sharing buffer

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 141

memory, even though we have not explored the system completely.

Experimentally, we find that the analysis takes less than a minute for modestly
large programs and that we can reduce buffer space by 60% and therefore consid-
erable amount of PPE memory on the Cell processor for examples like the bitonic
sort and the prime number sieve.

11.6 Related Work

Many memory reduction techniques exist for embedded systems. Greef et al. [41]]
reduce array storage in a sequential program by reusing memory. Their approach
has two phases: they internally reduce storage for each array, then globally try to
share arrays. By contrast, our approach looks for sharing opportunities globally on
communication buffers in a concurrent setting.

Streamlt [120] is a deterministic language like SHIM. Sermulins et al. [108]
present cache aware optimizations that exploit communication patterns in Streamlt
programs. They aim to improve instruction and data locality at the cost of data
buffer size. Instead, we try to reduce buffer sizes.

Chrobak et al. [33] schedule tasks in a multiprocessor environment to minimize
maximum buffer size. Our algorithm does not add scheduling constraints to the
problem: it reduces the total buffer size without affecting the schedule, and thereby
not affecting the overall speed.

The techniques of Murthy et al. [86}; 8788589, Teich et al. [118]], and Geilen et
al. [57] are closest to ours. They describe several algorithms for merging buffers in
signal processing systems that use synchronous data flow models [76]. Govindara-
jan et al. [58] minimize buffer space while executing at the optimal computation
rate in dataflow networks. They cast this as a linear programming problem. Sofro-
nis et al. [112] propose an optimal buffer scheme with a synchronous task model as
basis. These papers revolve around minimizing buffers in a synchronous setting;
our work solves similar problems in an asynchronous setting. Our approach finds if
there is an ordering between rendezvous of different channels based on the product
machine. We believe that our algorithm works on a richer set of programs.

Lin [78] talks about an efficient compilation process of programs that have
communication constructs similar to SHIM. He uses Petri nets to model the pro-
gram and uses loop unrolling techniques. We did not attempt this approach because
loop unrolling would cause the state space to explode even for small SHIM pro-
grams.

Static verification methods already exist for SHIM. In Chapter [7, we built a
synchronous system to find deadlocks in a SHIM program. We make use of the
fact that for a particular input sequence, if a SHIM program deadlocks under one

CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 142

schedule it will deadlock under any other. By contrast, the property we check
in this chapter is not schedule independent: two channels may rendezvous at the
same time under one schedule but may not under another schedule. This makes
our problem more challenging.

There is a partial evaluation method [48] for SHIM that combines multiple
concurrent processes to produce sequential code. Again, the work makes use of
the scheduling independence property by expanding one task at a time until it
terminates or blocks on a channel. On the other hand, in this chapter, we expand
all possible communications from a given state forcing us to consider all tasks that
can communicate from that state, rather than a single task.

11.7 Conclusions

We presented a static buffer memory minimization technique for the SHIM con-
current language. We obtain the partial order between communication events on
channels by forming the product machine representing the behavior of all tasks in
a program. To avoid state space explosion, we can treat the program as consisting
of separate pieces.

We remove bounded recursion and expand each SHIM program into a tree
of tasks and use sound abstractions to construct for each task an automaton that
performs communication. Then we use the merging rules to combine tasks.

We abstract away data and computation from the program and only main-
tain parallel, communication and branch structures. We abstract away the data-
dependent decisions formed by conditionals and loops and do not differentiate
between scheduling choices and conditional branches. This may lead to false
positives: our technique can discard pairs even though they can share buffers.
However, our experimental results suggest this is not a big disadvantage and in
any case our technique remains safe.

Our algorithm can be practically applied to the SHIM compiler that generates
code for the Cell Broadband Engine. We found we could save 344KB of the PPE’s
memory for an FFT example.

We reduce memory without affecting the runtime schedule or performance. By
sharing, two or more buffer pointers point to the same memory location. This can
be done at compile time during the code-generation phase.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 143

Chapter 12

Optimizing Barrier
Synchronization

The SHIM model uses channels for communication. Channels generally carry data,
but dataless channels are also interesting because they act as barriers. Dataless
channels are used merely for synchronization and are popularly known as clocks
in many programming languages.

In this chapter, we improve the runtime efficiency of clocks that are restricted
versions of SHIM’s channels. Like SHIM’s channels, clocks are usually imple-
mented using primitive communication mechanisms and thus spare the program-
mer from reasoning about low-level implementation details such as remote proce-
dure calls and error conditions.

We statically analyze the use of these clocks—a form of synchronization barriers—
in the Java-derived X10 concurrent programming language [29; [106] and use the
results to safely substitute more specialized implementations of these standard
library elements. X10’s clocks were motivated from SHIM’s channels and we
believe that this analysis can also be applied in the SHIM setting.

A clock in X10 is a structured form of synchronization barrier useful for ex-
pressing patterns such as wavefront computations and software pipelines. Concur-
rent tasks registered on the same clock advance in lockstep. This is analogous to
concurrent tasks in SHIM registered with the same channel.

Clocks provide flexibility, but programs often use them in specific ways that do
not require their full implementation. In this chapter, we describe a tool that miti-
gates the overhead of general-purpose clocks by statically analyzing how programs
use them and choosing optimized implementations when available.

Our static analysis technique models an X10 program as a finite automaton;
we ignore data but consider the possibility of clocks being aliased. We pass this

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 144

automaton to the NuSMV model checker [34], which reports erroneous usage of a
clock and whether a particular clock follows certain idioms. If the clocks are used
properly, we use the idiom information to restructure the program to use a more
efficient implementation of each clock. The result is a faster program that behaves
like one that uses the general-purpose library.

Our analysis flow has been designed to be flexible and amenable to supporting a
growing variety of patterns. In the sequel, we focus on inexpensive queries that can
be answered by treating programs as sequential. While analysis time is negligible,
speedup is considerable and varies across benchmarks from a few percent to a 3x
improvement in total execution time.

The techniques we present can be applied to a large class of concurrent lan-
guages, not just X10 or SHIM. These kind of optimizations are very useful when a
bunch of programs follow a certain pattern and can be specialized.

In summary, our contributions are

¢ a methodology for the analysis and specialization of clocked programs;
e a set of cost-effective clock transformations;

e a prototype implementation: a plug-in for the X10 v1.5 tool chain; and
e experimental results on some modest-size benchmarks.

After a brief overview of the X10 language in Section [12.1] and the clock
library in Section [12.2] we describe our static analysis technique in Section
and how we use its results to optimize programs in Section [[2.4l We present
experimental evidence that our technique can improve the performance of X10
programs in Section We discuss related work in Section and conclude
in Section 12,71

12.1 The X10 Programming Language

X10 [29; [106] is a parallel, distributed object-oriented language. To a Java-like
sequential core it adds constructs for concurrency and distribution through the
concepts of activities and places. An activity is a unit of work, like a thread in
Java; a place is a logical entity that contains both activities and data objects.

The X10 language is more flexible than SHIM. It allows races and does not
impose hard restrictions on how activities should be created. The async construct
creates activities; parent and child execute concurrently. The X10 program in Fig-
ure [[2.T] uses clocks to recursively compute the first ten rows of Pascal’s Triangle.
The call of the method row on line 40 creates a new stream object, spawns an

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 145

public class IntStream {
public final clock clk = clock.factory.clock(); // stream clock
private final int[] buf = new int[2]; // current and next stream values

public IntStream (final int v) {
buf(0]1 = v; // set initial stream value

}

public void put (final int v) {
clk.next(); // enter new clock phase
buf [(clk.phase () +1)%2] = v; // set next stream value
clk .resume () ; // complete clock phase

}

public int get() {
clk.next(); // enter new clock phase
final int v = buf(clk.phase()%2]1; // get current stream value
clk.resume () ; // complete clock phase
return v;

33

public class PascalsTriangle {
static IntStream row (final int n) {
final IntStream r = new IntStream (1) ; // start row with I
async clocked (r.clk) { // spawn clocked task to compute row'’s values
if (n > 0) { // recursively compute previous row
final IntStream previous = row (n-1) ;
int v; int w = previous.get() ;
while (w '= 0) {

V= w; w previous . get () ; | N)
r.put(v+w) ; // emit row’s values s 3
} 1 4 6 4 1
} 15 10 10 5 1
r.put(0); // end row with 0 I 6 15 20 15 6
} 17 21 35 35 21 7
return r; 1 § 28 56 70 56 28
} I 9 36 84 126 126 84 36

public static void main (String []1 args) {
final IntStream r = row (10) ;

int w = r.get(); // print row excluding final O
while (w !'= 0) { System.out.println(w); w = r.get(); }
} ol

Figure 12.1: A program to compute Pascal’s Triangle in X10 using clocks

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 146

IntStream constructor IntStream get

| |
@ : I 2: clock.factory.clock I :
| |

| A N 1

I U

25: async clocked I

end

IntStream put

Figure 12.2: The automaton model for the clock in the Pascal’s Triangle example

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 147

activity to produce the stream values, and finally returns the stream object to main.
The rest of main executes in parallel with the spawned activity, printing the stream
values as they are produced.

Spawned activities may only access final variables of enclosing activities, e.g.,
final int a = 3; int b = 4;
async { int x = a; // OK: a is a final
int y b; } // ERROR: b is not final
An X10 program runs in a fixed, platform-dependent set of places. The main
method always runs in place. FIRST_PLACE; the programmer may specify where

other activities run. Activities cannot migrate between places.
final IntStream s = new IntStream (4) ;
async (place .LAST_PLACE) { // spawn activity at place.LAST _PLACE
// cannot call methods of s if LAST_PLACE '= FIRST PLACE
final int i = 3;
async (s) s.put(i); // spawn activity at the place of s; s is local => ok to deref

Activities that share a place share a common heap. While activities may hold
references to remote objects, they can only access the fields and methods of a
remote object by spawning an activity at the object’s place.

X10 also introduces value classes, whose fields are all final. The fields and
methods of an instance of a value class may be accessed remotely, unlike normal
classes. Clocks are implemented as value classes.

X10 provides two primitive constructs for synchronization: finish and when.
finish p q delays the execution of statement g until after statement p and all activi-

ties recursively spawned by p have completed. For example,
finish { async { async { System.out.print(*‘Hello''); } } }
System . out . println (** world’ ') ;

prints “Hello world.” The statement when(e) p suspends until the Boolean condi-
tion e becomes true, then executes p atomically, i.e., as if in one step during which
all other activities in the same place are suspended

X10 also permits unconditional atomic blocks and methods, which are speci-

fied with the atomic keyword. For example,
atomic { int tmp = x; x = y; y = tmp; }

12.2 Clocks in X10

Clocks in X10 are a generalization of barriers. Unlike X10’s finish construct, clocks
permit activities to synchronize repeatedly. By contrast to when constructs, they
provide a structured, distributed, and determinate form of coordination. While
a complete discussion of X10’s clocks is beyond the scope of this chapter, the

IX10 does not guarantee that p will execute if e holds only intermittently.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 148

following subsections will demonstrate that clocks are amenable to efficient and
effective static analysis.

Figure [12.3] lists the main elements of the clock API. An activity must be
registered with a clock to interact with it. Activities are registered in one of two
ways: creating a clock with the clock.factory.clock() static method automatically
registers the calling activity with the new clock. Also, an activity can register

activities it spawns with the async clocked construct.

final clock clk = clock.factory.clock () ;

async clocked (clk) { Al; clk.next(); A2; clk.next(); A3 }
async clocked (clk) { Bl; clk.next(); B2; }

async { C; }

MI; clk.resume(); MI_2; clk.next(); M2;

A clock synchronizes the execution of activities through phases. A registered
activity can request the clock to enter a new phase with a call to next, which blocks
the activity until all other registered activities are done with the current phase, i.e.,
have called next or resume. For instance, in the program above, action A1 must
complete before action B2 can start. In other words, Al and B1 belong to phase 1
of clock clk; A2 and B2 belong to phase 2. C, however, does not belong to an
activity registered with clk; it may execute at any time.

The resume method provides slack to the scheduler? An activity calls resume
when it is done with the current clock phase but does not yet need to enter the next.
Unlike next, resume does not block the activity, and the activity must still call next
to enter the next phase. In the example above, while M1 must terminate before A2
can start and Al must terminate before M2 can start, M1_2 may start before Al
completes and continue after A2 starts because of resume.

In Figure[12.1] the value at the pth column and nth row of this triangle (0 < p <
n) is the number of possible unordered choices of p items among n. One task per
row produces the stream of values for the row by summing the two entries from the
row immediately above. Each stream uses a clock to enforce single-write-single-
read interleaving, so each task registers with two clocks: its own and the clock for
the row immediately above. The clocks ensure proper inter-row coordination.

The phase method returns the current phase index (counting from 1). Fig-
ure demonstrates this and also how activities can register with multiple clocks
(using recursion in this example).

Finally, activities can explicitly unregister from a clock by calling drop. Activ-
ities are implicitly unregistered from their clocks when they terminate.

The operations of an activity on a clock modify the state of this activity w.r.t.
that clock. Figure [12.4] shows the behavior. The activity may be in one of four
states: Active, Resumed, Inactive, or Exception. Transitions are labeled with clock-

2The resume method is typically used in activities registered with multiple clocks.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 149

related operations: async clocked, resume, next, phase, and drop. For example, an
activity moves from the Active state to Resumed if it calls resume on the clock. If
it calls resume again, it moves to the Exception state. Any operation that leads to
the Exception state throws the ClockUseException exception.

/* Create a new clock. Register the calling activity with this clock. ~*/
final clock clk = clock.factory.clock () ;

/* Spawn an activity registered with clocks clk_I, ..., clk_n with body p. */
async clocked (clk_1, ..., clk_n) p

public interface clock {
/* Notify this clock that the calling activity is done with whatever it intended
x to do during this phase of the clock. Does not block. =/
void resume () ;

/* Block until all activities registered with this clock are ready to enter the next
x clock phase. Imply that calling activity is done with this phase of the clock.
void next () ;

/* Return the phase index. Calling activity cannot be resumed on the clock. x/
int phase () ;

/* Unregister the caller from this clock; release it from having to participate x/

void drop () ;

Figure 12.3: The clock API

12.2.1 Clock Patterns

We now describe the four clock patterns we currently identify. We believe that our
techniques can also be applied to find other patterns.

Our first pattern is concerned with exceptions: can an activity reach the ex-
ception state for a particular clock? The default clock implementation looks for
transitions to this state and throws ClockUseException if they occur. Aside from
the annoyance of runtime errors, runtime checks slow down the implementation.
We want to avoid them if possible.

Our algorithm finds that the clocks are used properly in the program of Fig-
ure [[2.1k e.g., no task erroneously attempts to use a clock it is not registered
with. Therefore, it substitutes the default implementation with one that avoids
the overhead of runtime checks for these error conditions.

We also want to know whether resume is ever called on a clock. This fea-
ture’s implementation requires additional data structures and slows down all clock

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 150

register with ¢

~

c.next

c.next, c.phase, or — c.resume async clocked(c)
Active | Resumed

async clocked(c)

c.resume or c.phase

Inactive any Exception

Figure 12.4: The state of one activity with respect to clock ¢

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 151

operations. We discuss this and other optimizations in Section [12.4]

Activities often use clocks to wait for subactivities to terminate. Consider
final clock clk = clock.factory.clock () ;
async clocked (clk) Al;
async A2;
async clocked (clk) A3;
clk.next () ;
A4;

Here, if A1 and A2 do not interact with clock clk, clk.next() requires activities Al
and A3 to terminate before A4 starts executing and nothing else. In particular, A2
and A4 may execute in parallel. We want to detect subactivities that are registered
with the clock yet never request to enter a new clock phase.

Finally, the default clock implementation enables distributed activities to syn-
chronize. If it turn out that all registered activities belong to the same place, a much
faster clock implementation is possible. Our Pascal’s Triangle program is a trivial
example of this since all activities are spawned in the default place.

12.3 The Static Analyzer

In this subsection, we describe how we detect clock idioms. We start from the
program’s abstract syntax tree, compute its call graph, and run aliasing analysis on
clocks. We then abstract data by replacing conditional statements with nondeter-
ministic choice. From the control flow graph of this abstract program, we extract
one automaton per clock. This gives a conservative approximation of the sequences
of operations that the program may apply to the clock.

To a model checker, we feed the automaton for the control-flow of the program
along with an automaton model of the clock API and a series of temporal logic
properties, one for each idiom of interest. For each property and each clock, the
model checker either proves the property or returns a counterexample in the form
of a path in the automaton that violates the property.

We use the T.J. Watson Libraries for Analysis (WALA) [66] for parsing, call-
and control-flow-graph construction, and aliasing analysis. We have extended the
Java frontend of WALA to accommodate X10 and extract from the AST the required
automata in the form of input files for the NuSMV model checker [34].

We now describe the key technical steps in detail. We start with the construc-
tion of the automaton, then discuss the encoding of the clock API, the temporal
properties, and finally aliasing.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 152

stmtl ; stmtl
async clocked (c) {
stmt3; lasync clocked(c)| Figure 12.5: Modeling async
} calls
stmi2 ; stmt3

12.3.1 Constructing the Automaton

Figure [[2.2] shows the automaton we build for the clock clk in Figure 12,1l Each
operation on clk in the text of the program becomes one state, which we label with
the type of operation and its line number. Transitions arise from our abstraction
of the program’s control flow. We highlighted the fragments corresponding to the
constructor and methods of the IntStream class.

methods Each method body becomes a fragment of the automaton. Each call of a
method adds a transition to and from its entry and exit nodes. For example,
since get may be called twice in a row (lines 28 and 30), we added the edge
from its exit node “18: resume” to its entry node “16: next.” It may also be
called after put, looping from line 31 back to line 30, so we added an edge
from node “12: resume” to node “16: next.”

conditionals We ignore guards on conditionals and add arcs for both branches.
For example, the if on line 26 runs immediately after the async clocked on
line 25. The “then” branch of this if runs line 27, which starts with a call
to row that starts by constructing an IntStream (line 24) whose constructor
calls clock.factory.clock() (line 2). This gives the arc from node “25: async
clocked” to “2: clock.factory.clock.” The “else” branch is line 34, which
calls put, which starts with a call to next (line 10). This gives the arc to
“10: next.”

async Because we are not checking properties that depend on interactions among
tasks, we can treat a spawned activity as just another path in the program.
When execution reaches an async construct, we model it as either jumping
directly to the task being spawned or skipping the child and continuing to
execute the parent. This is illustrated in Figure

In our Pascal’s Triangle example, this means control may flow from the
IntStream constructor exit point “2: clock.factory.clock” to the async con-
struct “25: async clocked” or ignore the async and flow back via the return
statement to the subsequent get method call in either main or row, i.e., node
“16: next.”

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 153

We build one automaton for each call of clock.factory.clock in the source code,
meaning our algorithm does not distinguish clocks instantiated from the same
allocation site. So we construct only one automaton for our example, even though
the program uses ten (very similar) clocks when it executes.

We have taken a concurrent program and transformed it into a sequential pro-
gram with multiple paths. Thanks to this abstraction, we avoid state space explo-
sion both in the automaton construction and in the model checker.

async clocked(c)| |Active

async clocked(c)

async| | Inactive Exception ||any async
;async clocked(c)

Figure 12.6: Additional transitions in the clock state for modeling async operations

12.3.2 Handling Async Constructs with the Clock Model

Our model of clock state transitions—Figure[I2.4—only considers a single activity,
but X10 programs may have many. As explained in Section we model
async constructs with nondeterministic branches, so we have to extend the typestate
automaton (described later) for the clock to do the same.

Figure shows the additional transitions necessary for handling async ac-
tions. We consider two cases: when analyzing clock ¢ and we encounter async
clocked(c), the new activity stays either Active or Resumed. By contrast, if we
encounter an async not clocked on ¢, the new activity starts in the Inactive state
(arcs labeled just async).

12.3.3 Specifying Clock Idioms

Once we have the automata modeling the program and clock state, it becomes easy
to specify patterns for NuSMV as temporal logic formulas.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 154

Three patterns are CTL reachability properties of the form
SPEC AG (! (target))

where target is either the Exception state, a resume operation, or an async clocked(c)
node annotated with a place expression, that is, a remote activity creation.

We check for the fourth pattern—whether spawned activities ever call next
on the clock—by looking for control-flow paths that contain an async clocked(c)

operation followed by a c.next operation. The LTL specification is
LTLSPEC G (c_next -> H (!async_clocked_c))

12.3.4 Combining Clock Analysis with Aliasing Analysis

Clocks can be aliased just like any objects. Figure [[2.7 shows an example of
aliasing of clocks in X10. We create two clocks c/ and c2. The variable x can take
the value of either c/ or ¢2 depending on the value of n.

We could abstract the program into two control paths, one that assumes x =
¢l and one that assumes x = c2. However, this would produce a number of paths
exponential in the number of aliases that have to be considered simultaneously.

Instead, we chose to bound the size of our program abstraction (at the expense
of precision) as shown in the bottom three diagrams of Figure We consider
each clock operation on x in isolation and apply it nondeterministically to any of
the possible targets of x as returned by WALA’s aliasing engine.

Figure[I2.8shows how we extend this idea to async constructs. Our tool reports
that operations on clock c/ cannot throw ClockUseException. However, it fails to
establish the same for c¢2 because our abstraction creates a false path—next c2
following async clocked(cl,cl).

12.4 The Code Optimizer

Results from our static analyzer drive a code optimizer that substitutes each in-
stance of the clock class for a specialized version. We manually wrote an optimized
version of the clock class for each clock pattern we encountered in our test cases; a
complete tool would include more. Our specialized versions include a clock class
that does not check for protocol violations (transitions to the exception state) and
one that does not support resume.

There is one abstract clock base class that contains empty methods for all clock
functions; each specialized implementation has different versions of these methods
that uses X10 primitives to perform the actual synchronization. Our optimizer
changes the code (actually the AST) to use the appropriate derived class for each
clock, e.g., ¢ = clock.factory.clock() would be replaced with ¢ = clock.factory.clockef()
if clock ¢ is known to be exception free.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 155

create cl
create c2
final clock cl = clock.factory.clock () ;
final clock c2 = clock.factory.clock () ; I
final clock x = (n > 1)? cl: c2; [next x]
x.resume () ;

x.next () ; Py
cl.next() ; :’:l
create cl create cl
create c2

[resume c1] [resume c2]

create c2

next cl @'@

Figure 12.7: Top Left: Aliasing clocks in X10, Top Right: the corresponding
control flow graph, Bottom Left: our abstraction, Bottom Center: automaton for
cl, Bottom Right: automaton for c2

X

[next ¢l [next 2]

5
=™\

The top of Figure shows the general-purpose implementation of next.
The clock value class contains the public clock methods; the internal ClockState
maintains the state and synchronization variables of the clock. The next method
first verifies that the activity is registered with the clock (and throws an exception
otherwise), then calls the select function to wait on a latch: a data structure that
indicates the phase. The latch is either null if next() was called from an active()
state or holds a value if next() was called from a resumed() state. The wait func-
tion blocks and actually waits for the clock to change phase. The check method
decrements the number of activities not yet resumed on the clock and advances the
clock phase when all activities registered on the clock are resumed.

A basic optimization: when we know the clock is used properly, we can elim-

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 156

create cl

create c2
[next c1] [async clocked(x, c1)|
[nextx]
next cl
create cl
final clock cl = [ereate c2
clock . factory . clock () ;
final clock c2 = [next ¢l [async clocked(cl, c1)| |async clocked(c2, c1)|

clock . factory . clock () ;

final clock x = (n > 1)? cl: ¢2;
async clocked (x, cl) {
x.next () ;
cl.next() ;
}
cl .next () ;

Figure 12.8: Asyncs and Aliases

inate the registration check in next and elsewhere. Figure shows such an
exception-free implementation.

Accommodating resume carries significant overhead, but if we know the re-
sume functionality is never used, we can simplify the body of select as shown in
Figure [12.91 We removed the now-unneeded latch object and can do something
similar in other methods (not shown).

Figure[12.9]also shows a third optimization. Because clocked activities may be
distributed among places, synchronization variables have to be updated by remote
activities. When we know a clock is only used in a single place, we dispense with
the async and finish constructs.

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 157

// The default implementation
class ClockState {

atomic int check () {
int resumedPhase = currentPhase;
if (remainingActivities—— ==0) {
// set the number of activities
// expected to resume
remainingActivities =
registeredActivities ;
// advance to the next phase
currentPhase++;

}
return resumedPhase;
}
void wait (final int resumedPhase) {
when (resumedPhase ‘= currentPhase) ;
} ol

value class clock {
final ClockState state = new ClockState () ;

void select (nullable<future<int>> latch) {

if (latch == null) {

async (state) state.wait (state .check ()) ;

} else {
final int phase = latch.force () ;
async (state) state.wait (phase) ;
}
}

public void next() {
if (!registered())
throw new ClockUseException () ;

finish select (ClockPhases . put (this, null)) ;

Pl

// An exception-free implementation

public void next() {
finish
select (ClockPhases . put (this, null)) ;

// For when resume () is never used

void select () {
async (state) state.wait (state .check ()) ;

}

public void next() {
if (!registered())
throw new ClockUseException () ;
finish select () ;
}

// A clock is only in a single place

void select (nullable<future<int>> latch) {
if (latch == null)
state . wait (state . check ()) ;
else
state . wait (latch . force ()) ;

3

public void next() {
if (!registered())
throw new ClockUseException () ;
select (ClockPhases . put (this, null)) ;
}

Figure 12.9: Various implementations of next and related methods

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 158

Table 12.1: Experimental Results of our clock specialization

Example Clocks Lines Result Speed Analysis Time
Up Base NuSMV
Linear Search 1 35 EF, NR, L 35.2% 33.5s 0.4s
Relaxation 1 55 EF, NR, L 87.6 6.7 0.3
All Reduction Barrier 1 65 EF, NR 1.5 27.2 0.1
Pascal’s Triangle 1 60 EF, L 20.5 25.8 0.4
Prime Number Sieve 1 95 NR, L 213.9 34.7 0.4
N-Queens 1 155 EF, NR, ON, L 1.3 24.3 0.5
LU Factorization 1 210 EF, NR 5.7 20.6 0.9
MolDyn JGF Bench. 1 930 NR 2.3 35.1 0.5
Pipeline 2 55 Clock 1: EF, NR, L 314 7.5 0.5
Clock 2: EF,NR, L
Edmiston 2 205 Clock 1: NR, L 14.2 29.9 0.5
Clock 2: NR, L

EF: No ClockUseException, NR: No Resume, ON: Only the activity that created
the clock calls next on it, L: Clocked used locally (in a single place)

12.5 Results

We applied our static analyzer to various programs, running it on a 3 GHz Pen-
tium 4 machine with 1 GB RAM. Since we want to measure the overhead of
the clock library, we purposely run our benchmarks on a single-core processor.
Table [[2.1] shows the results. For each example, we list its name, the number of
clock definitions in the source code, its size (number of lines of code, including
comments), what our analysis discovered about the clock(s), how much faster the
executable for each example ran after we applied our optimizations, and finally the
time required to analyze the example. (The Base column includes the time to read
the source, build the IR, perform pointer analysis, build the automata, etc.; NuSMV
indicates the time spent running the NuSMV model checker. Total time is their
sum.)

The first example is a paced linear search algorithm. It consists of two tasks
that search an array in parallel and use a clock to synchronize after every compar-
ison. The Relaxation example, for each cell in an array, spawns one activity that
repeatedly updates the cell value using the neighboring values. It uses a clock to
force these activities to advance in lockstep. The All Reduction Barrier example is
a variant on Relaxation that distributes the array across multiple places. Pascal’s

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 159

Triangle is the example of Figure 2.1l Our prime number sieve uses the Sieve of
Eratosthenes. N-Queens is a brute-force tree search algorithm that uses a clock to
mimic a join operation. LU Factorization decomposes a matrix in parallel using
clocks. We also ported the MolDyn Java Grande Forum Benchmark [111]] in X10
with clocks, the largest application on which we ran our tool. Pipeline has three
stages; its buffers use two clocks for synchronization. Edmiston aligns substrings
in parallel and uses two clocks for synchronization.

The Result column lists the properties satisfied by each example’s clocks. For
example, the N-Queens example cannot throw ClockUseException, does not call
resume, and uses only locally created clocks. Our tool reports the JGF benchmark
may throw exceptions and pass clocks around, although it also does not call resume.
In truth, it does not throw exceptions, but our tool failed to establish this because of
the approximations it uses. This reduced the speedup we could achieve, but does
not affect correctness.

The Linear Search, Relaxation, Prime Number Sieve, and Pipeline examples
use clocks frequently and locally, providing a substantial speedup opportunity.
Although our analysis found N-Queens satisfies the same properties as these, we
could improve it up only slightly because its clock is used rarely and only in one
part of the computation. Switching to the local clock implementation provided
the majority of the speedup we observed, but our 5% improvement on the already
heavily optimized distributed LU Factorization example is significant.

Our tool analyzed each example in under a minute and the model checker took
less than a second in each case. Most of the construction time is spent in call- and
control-flow graph constructions and aliasing analysis, which are already done for
other reasons, so the added cost of our tool is on the order of seconds, making it
reasonable to include as part of normal compilation.

12.6 Related Work

Typestate analysis [114] tracks the states that an object goes through during the
execution of a program. Standard typestate analysis and concurrency analysis
are disjoint. Our analysis can be viewed as a typestate analysis for concurrent
programs. Clocks are shared, stateful objects. We therefore have to track the state
of each clock from the point of view of each activity.

Model checking concurrent programs [36} [34] is usually demanding because
of the potential for exponentially large state spaces often due to having to con-
sider different interleavings of concurrent operations. By contrast, our technique
analyzes concurrent programs as if they were sequential—we consider spawned
tasks to be additional execution paths in a sequential program—hence avoiding the

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 160

explosion.

Concurrency models come in many varieties. We showed in Chapter[7]that the
state space explosion can also be avoided by carefully choosing the primitives of
the concurrent programming language. Unfortunately, this restricts the flexibility
of the language. Our work focuses on concurrency constructs similar to those
advocated by us in Chapter[7] but features like resume and aliased clocks are absent
from their proposal. We trade a more flexible concurrency model against the need
for further approximation in modeling the programs.

Static analysis of concurrency depends greatly on the underlying model. Al-
though X10 supports both message-passing-style and shared-memory-style con-
currency (in the case of co-located activities), we focus exclusively on its message-
passing aspects, as have others. Mercouroff [84] approximates the number of
messages between tasks in CSP [62] programs. Reppy and Xiao [102] analyze
communication patterns in CML. Like ours, their work aims at identifying patterns
amenable to more efficient implementations. They attempt to approximate the
number of pending send and receive operations on a channel. Our work is both
more specific—it focuses on clocks—and more general: our tool can cope with
any CTL or LTL formula about clock operations.

Reppy and Xiao use modular techniques; we consider an X10 program as a
whole. A modular approach may improve out tool’s scaling, but we have not
explored this yet.

Analysis of X10 programs has also been considered. Agarwal et al. [2] de-
scribe a novel algorithm for may-happen-in-parallel analysis in X10 that focuses
on atomic subsections. Chandra et al. [27] introduce a dependent type system for
the specification and inference of object locations. We could use the latter to decide
whether activities and clocks belong to the same place.

12.7 Conclusions and Future Work

We presented a static analysis technique for clocks in the X10 programming lan-
guage. The result allows us to specialize the implementation of each clock, which
we found resulted in substantial speed improvements on certain benchmark pro-
grams. Our technique has the advantage of being able to analyze a concurrent
language using techniques for sequential code.

We treat each clock separately and model subtasks as extra paths in the pro-
gram, much like conditionals. We abstract away conditional predicates, which
simplifies the structure at the cost of introducing false positives. However, our
technique is safe: we revert to the unoptimized, general purpose clock implementa-
tion when we are unsure a particular property is satisfied. Adding counter-example

CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 161

guided abstraction refinement [37] could help.

We produce two automata for each clock: one models the X10 program; the
other encodes the protocol (typestate) for the clock. We express the automata in a
form suitable for the NuSMV model checker. Experimentally, we find NuSMYV is
able to check properties for modestly sized examples in seconds, which we believe
makes it fast enough to be part of the usual compilation process.

Finally, we plan to extend these ideas to SHIM — provide verification based
specialization of the generated code and see how the efficiency improves.

CHAPTER 13. OPTIMIZING LOCKS 162

Chapter 13
Optimizing Locks

In the previous chapters, we optimized deterministic constructs at the language
level. Most of these constructs are implemented using low-level constructs such as
locks. In this chapter, we improve the efficiency of locks, especially when there is
biased behavior. We do not directly solve the nondeterminism problem here, but a
general concurrency problem that can be applied to any system that uses locks.

Locks are used to ensure exclusive access to shared memory locations. Unfor-
tunately, lock operations are expensive, so work has been done on optimizing their
performance for common access patterns. One such pattern is found in networking
applications, where there is a single thread dominating lock accesses. An important
special case arises when a single-threaded program calls a thread-safe library that
uses locks.

Another instance occurs when a channel is used dominantly by a single thread
in the D?C model (Chapter [I0) that allows multiple writes but in a deterministic
way. Shared variables and communication are implemented using locks. In such
cases, we want the dominant thread to access the channel in an efficient way and
thus we would like to optimize locks that constitute a major component in the
implementation of a channel.

An effective way to optimize the dominant-thread pattern is to “bias” the lock
implementation so that accesses by the dominant thread have negligible overhead.
We take this approach in this work: we simplify and generalize existing techniques
for biased locks, producing a large design space with many trade-offs. For ex-
ample, if we assume the dominant process acquires the lock infinitely often (a
reasonable assumption for packet processing), it is possible to make the dominant
process perform a lock operation without expensive fence or compare-and-swap
instructions. This gives a very low overhead solution; we confirm its efficacy by
experiments. We show how these constructions can be extended for lock reserva-

CHAPTER 13. OPTIMIZING LOCKS 163

tion, re-reservation, and to reader-writer situations.

13.1 Introduction

Programmers typically use locks to control access to shared memory and to
achieve determinism. While using locks correctly is often the biggest challenge,
programmers are also concerned with their efficiency. We are too: this work
improves the performance of locking mechanisms by using knowledge of their
access patterns to speed the common case.

Figure [I3.1] shows the standard way of implementing a spin-lock using an
atomic compare-and-swap (CAS) operation. To acquire the lock, a thread first
waits (“spins”) until the lock variable Ick is O (indicating no other thread holds
the lock), then attempts to change the lock value from O to 1. Since other threads
may also be attempting to acquire the lock at the same time, the change is done
atomically to guarantee only one thread changes the value. Although other threads’
while loops would see the lock variable become 0, their compare-and-swap would
fail because the winning thread would have changed the lock to 1.

void lock (int =*Ick) {
bool success;
do {
while (*Ick !'= 0) {3} /% waitx/
success = compare_and_swap (Ick, 0, 1);
} while (!success) ;
}

void unlock (int =Ick) { =Ick = 0; }

atomic /x function is one atomic machine instruction */
bool compare_and_swap (int =Ick, int old, int new) {
if (*Ick == old) {
xlck = new; return 1;
} else
return O;

Figure 13.1: A spin lock using atomic compare-and-swap

We found, on an unloaded 1.66 GHz Intel Core Duo, the compare-and-swap
instruction took seven times longer than “counter++,” a comparable nonatomic
read-modify-write operation. The cost when there is contention among multiple
processors can be substantially higher, especially if a cache miss is involved. This
overhead can be prohibitive for a performance-critical application such as packet
processing, which may have to sustain line rates of over 1 Gbps and thus has a very

CHAPTER 13. OPTIMIZING LOCKS 164

limited cycle budget for actual processing. Reducing locking overhead, therefore,
can be very useful.

Bacon et al.’s thin locks for Java [8]] are an influential example of lock opti-
mization. Their technique was motivated by the observation that sequential Java
programs often needlessly use locks indirectly by calling thread-safe libraries. To
reduce this overhead, thin locks overlay a compare-and-swap-based lock on top
of Java’s more costly monitor mechanism. Thus a single-threaded program avoids
all monitor accesses yet would operate correctly (i.e., use monitors) if additional
threads were introduced. Thin locks considerably reduce overhead but still require
one atomic operation per lock acquisition.

A refinement of this technique [71} 945 [7] further improves performance by
allowing a single thread to reserve a lock. Acquisitions of the lock by the reserving
thread do not require an atomic operation but do require the part-word technique
that achieves the same functionality as fences with almost the same cost.

Lamport [74] also optimizes for the low contention access pattern by avoid-
ing atomic operations. This algorithm uses a bakery-style algorithm to resolve
contention, which has been found to be less efficient than algorithms that do use
atomic operations, such as the MCS lock [83].

Lopsided lock-access patterns in network packet-processing applications mo-
tivated our work. In a typical architecture, a packet is read off a network card by
a dedicated core and then dispatched to one of several processing cores. In the
commercial network-traffic analyzer with which we are familiar, the packets are
partitioned among cores by source address; i.e., all packets with the same source
address are sent to the same core. Each processing core maintains data structures
for its group of source addresses. Nearly all access to a group is from the owner
core. Occasionally, however, a core might update information for a group held
by a different core; thus, it is necessary to maintain atomicity of updates using
locks. Such an arrangement of data and processing results in a highly biased access
pattern for a data item: the owner is responsible for a large (90% or more) fraction
of the accesses to its data, the rest originate from other cores.

This work looks at the question of optimizing lock performance under such
lopsided access patterns. It makes four contributions. First, we provide a generic
method for building biased locks. In a nutshell, we implement biased locks with a
two-process mutual exclusion algorithm between the dominant thread and a single
representative of all of the other threads, chosen with a generic N-process mutual
exclusion algorithm. This construction simplifies and generalizes the algorithm of
Kawachiya et al. [94], which is a specific combination of this type that intertwines
a Dekker-lock for two threads and a CAS-based lock for an N-thread mutex. Our
experiments show that different choices for the N-process mutex algorithm can
improve overall performance.

CHAPTER 13. OPTIMIZING LOCKS 165

Our second contribution is a simple scheme for changing the primary owner
of a lock (“re-reservation”). The scheme given by Kawachiya et al. [71]] is heavy-
weight: it requires suspending the thread owning the lock and often modifying its
program counter to a retry point; in their later work, they abandoned it for this
reason [94]. By contrast, we show a simple way to change a lock’s owner without
suspending the existing owner.

In our third contribution, we establish conditions under which atomic and
memory fence operations in a dominant thread can be dispensed with entirely.
Most multiprocessor memory systems do not provide sequential consistency across
threads: a sequence of writes by one thread may appear to occur in a different
order to a different thread. Few synchronization algorithms can cope with such
an unruly communication mechanism, so multiprocessors typically provide costly
but effective “fence” instructions that force all outstanding writes to complete.
Experiments on the Intel Core Duo chip show that their “mfence” instructions
require about two to three clock cycles. We show memory fences are essential
for the biased lock construction described above, assuming the weaker memory
ordering imposed by store-buffer forwarding, which is a feature of most modern
processors. We prove that for a processor with store-forwarding, any mutual ex-
clusion algorithm with a “symmetric choice” property requires memory fences.
The symmetric choice property is that there is a protocol state where either of
two contending threads may acquire the lock. Since standard algorithms such as
those by Dekker [45]], Peterson [96], and Lamport [74] have the symmetric choice
property, they all require memory fences to be correct. Our proposed solution,
therefore, is asymmetric by nature: it requires the dominant thread to grant access
to the lock after receiving a request from a nondominant thread. The protocol
as a whole is free from starvation provided the dominant thread checks for such
requests infinitely often.

Finally, we introduce biased read-write locks. A read-write lock allows mul-
tiple readers to read at the same time, but only one writer to access the critical
section at any time. We show, along with experiments that the general construction
of bias in normal locks can be extended to provide biased read-write locks.

In summary, we make four new contributions in this chapter:

1. we provide a simple, generalized construction of biased locks (Kawachiya [71]]
is a special case of our algorithm);

2. we provide a light-weight scheme for changing the owner of a lock dynami-
cally;

3. we introduce asymmetric locks; and

4. we apply bias to read-write locks.

CHAPTER 13. OPTIMIZING LOCKS 166

In the next section, we describe our generic owner-based locking scheme,
which assumes a fixed owner. We then discuss the algorithm for switching owner-
ship (Section[I3.3). The formalization of memory fence operations, the symmetric
choice property, and the subsequent proofs are discussed in Section[13.4l We define
asymmetric locks in Section We discuss how we verified our algorithms in
Section[I3.7 and discuss experimental results in Section[13.8]

13.2 Flexible, Fixed-Owner Biased Locks

In this section, we define a flexible biased locking scheme that assumes a lock
is owned by a fixed, pre-specified thread. The scheme reduces the cost of access for
the owning thread. In particular, the scheme does not incur the cost of a compare-
and-swap operation, but it does require memory fences for correctness. From this
point on, we focus on the x86 architecture; the kind of fences and their placement
may differ for other architectures.

At its core, our scheme employs different locking protocols for the owner and
the nonowners. For the owner, any two-process mutual exclusion protocol with
operations lock2 and unlock2 suffices; for the other threads, we use a generic
N-process mutual exclusion protocol with operations lockN and unlockN. This
exploits complementary characteristics: protocols that rely only on atomicity of
read and write, such as Peterson’s algorithm [96l], are efficient for two processes but
not necessarily for larger numbers of threads; protocols based on atomic primitives,
such as the MCS lock [83]], are more effective when there are many contending
threads.

Figure shows our biased lock scheme. The this_thread_id identifier con-
tains a unique number identifying the current thread. The nonowner threads first
compete for the N-process lock; the winning thread then competes for the two-
process lock with the owner process.

It is easy to see the scheme assures mutual exclusion among the threads pro-
vided the two locking protocols work, and thread IDs are well-behaved; other
properties depend on the locking protocols themselves. For example, the combined
protocol is starvation free if both locking protocols are; if only the 2-process
locking protocol is starvation free, the owner is always guaranteed to obtain the
lock but one or more of the nonowning threads could remain forever in the waiting
state. Similar results hold for bounded waiting, assuming starvation freedom.

This scheme can be implemented by employing Dekker’s algorithm for 2-
process locking and the compare_and_swap spin-lock algorithm from the intro-
duction for N-process locking. Such an implementation is similar to Onodera et
al. [94], but differs in the details of how N-process locking is invoked.

An alternative: use Peterson’s algorithm (Figure [I3.3)) for 2-process locking
and the MCS algorithm for N-process locking. On the Intel architecture, Peterson’s

CHAPTER 13. OPTIMIZING LOCKS 167

typedef struct {
Threadld owner;
Lock2 t; /xlightweight, 2—process lock x/
LockN n; /x N—process lock */

} Lock;

biased_lock (Lock =*1) {
if (this_thread_id == 1->owner)
lock2 (1->t) ;
else {
lockN (I->n) ;
lock2 (1->t) ;
}
}

biased_unlock (Lock =*1) {
if (this_thread_id == 1->owner)
unlock2 (1->t) ;
else {
unlock2 (1->t) ;
unlockN (I->n) ;
}
}

Figure 13.2: Our general biased-lock scheme

algorithm requires memory fences to ensure operations issued before the fence are
carried out before operations issued after the fence and to ensure that updates to
shared variables are made visible to other threads. This is because newer x86
implementations employ “store-forwarding” that effectively propagates memory
updates lazily, depositing them in processor-local store buffer before ultimately
dispatching them to the memory system. Hence the store buffer functions as an
additional level of cache and improves performance.

Unfortunately, store buffers break sequential memory consistency between pro-
cessors. To ensure local sequential consistency, a processor always consults its
local store buffer on a read to ensure it sees all its earlier writes, but the contents
of each processor’s (local) store buffer are not made visible to other processors,
meaning a shared memory update may be delayed or even missed by other proces-
sors. For instance, if variables x and y are both initialized to 0, one thread executes
write x 1, read y, and another thread executes write y I; read x, it is possible under
store forwarding for both threads to read O for both x and y, an outcome that is
impossible under sequential consistency. Intel’s reference manual [67] provides
more details and examples.

In the protocol in Figure [I3.3] in the absence of the first fence, thread i may

CHAPTER 13. OPTIMIZING LOCKS 168

not see the updated flag value of thread j and thread j may not see the updated
flag value of thread i. This would allow both threads to enter the critical section at
once, violating mutual exclusion. The second fence ensures all changes to global
variables made in the critical section become visible to other processors.

flag[i] = 1;

tarn = j;

fence () ; /« force other threads to see flag and turn =/

while (flag[j] && turn == j) {} /xspin %/

/% ...critical section... */

fence () ; /+ make visible changes made in critical section */
flag[i] = O;

Figure 13.3: Peterson’s mutual exclusion algorithm for process i when running
concurrently with process j. Its correctness demands memory fences.

13.3 Transferring Ownership On-The-Fly

Our biased lock scheme from the last section assumes that the dominant thread
is fixed and known in advance. However, certain applications may need to change
a lock’s dominant thread, such as when ownership of shared data is passed to a dif-
ferent thread. We call this ownership transfer or re-reservation. In this section, we
describe a simple method for effecting this transfer. Figure shows the outline
of our method. We do not fix a particular condition for switching ownership—each
application may define its own condition for when a switch is necessary. One such
scheme, for instance, is to maintain an average frequency of usage of a lock by
each thread, and switch ownership when the frequency of a nondominant thread
exceeds that of the dominant one.

The bias-transfer mechanism necessarily switches the status of a nondominant
thread. There are certain times when doing so is not safe. For example, it would
be incorrect to do so when the dominant thread is about to enter its critical section,
so we require that a nondominant thread hold the biased lock before switching its
status to dominant. This requirement is not, however, sufficient in itself. A thread
may switch to being dominant at a point in time where the earlier dominant thread
(line[12) is waiting for its lock. Therefore, we demand additional synchronization
between the old and new dominant threads.

The try flag array (line [3), which has one entry per thread, provides syn-
chronization. If thread A is dominant, the #ry[A] entry, if set, indicates to other
threads that the owner may be in the process of acquiring the lock in lines PHI2]
Meanwhile, if some other thread (say, B) calls switch_to_dominant in an attempt
to become dominant (lines 29H37)), then B changes the owner and waits for the

1

3

5

7

9

CHAPTER 13. OPTIMIZING LOCKS 169

typedef struct {
Threadld owner;
Lock2 t; /xlightweight, 2—process lock x/
LockN n; /x N—process lock */
bool try [NTHREADS] ;
} Lock;

28 void switch_to_dominant (Lock =*1)
{
30 lockN (1->n) ;
lock2 (1->t) ;

void biased_lock (Lock =*1) { 22 prev_owner = l->owner;

¥—>try[this_thread_id] = b I->owner = this_thread_id;
ence () ; . -
if (this_thread_id == l->owner) { 34 lvlvrﬁ?lzkz((ll_:t;; Eprev owner]) {3
lock2 (1->t) ; ST
if (this_thread_id != l->owner) { 36) unlockN (1->n) ;
/* owner has changed */
unlock2 (1->t) ; 38 id biased unlock (Lock 1) {
void biased_unloc ock *
goto NON_OWNER; 4 if (this_thread_id == I->owner)
} else /x owner has not changed */ unlock2 (1->1) ;
I->try [this_thread_id] = 0; 1 !
} else { 42 else {
NON OWNER : unlock2 (1->t) ;
I->try [this_thread_id] = 0; “ }“nl"CkN“‘>““
lockN (1->n) ; 46)
lock2 (1->t) ;
}
}

Figure 13.4: Bias Transfer

previously dominant thread A to reach a stable state: one where it is certain that A
realizes the change of ownership (line 33).

This procedure adds a few instructions (starting line [9)) to the lock algorithm
for the owner thread. The overhead is two additional assignments, one test and
a fence instruction, due to the infrequency of owner switching and the expected
infrequency in nonowner locks.

13.4 Mutual Exclusion and Memory Fences

Given the high cost of atomic and fence operations, one may wonder whether
there are mutual exclusion schemes where these operations are not needed. Clas-
sical algorithms such as Dekker or Peterson do not use atomic operations, but do
require fences to be correct on modern architectures. In this section, we show that
the use of fences is unavoidable if the architecture supports store-buffer forwarding
unless certain requirements are relaxed.

Fence and atomic operations have the property that they both make prior mem-
ory updates “visible” to all other processors in a shared-memory system. Hence,

CHAPTER 13. OPTIMIZING LOCKS 170

the following definition.

Definition 7 A revealing operation makes updates to all shared variables per-
formed in the current thread prior to the operation visible to other processors.
Le., a processor reading a shared variable immediately after the operation would
obtain the same value as the revealing thread would immediately before the oper-
ation.

Without a revealing operation, updates may never be propagated to other pro-
cessors. The statement of our first theorem is not particularly surprising, but it is
interesting to see where the requirement of a revealing operation arises in the proof.

Theorem 3 Any mutual exclusion protocol that ensures freedom from starvation
must use a revealing operation within every matched lock-unlock pair for each
thread in the protocol.

PROOF The proof is by contradiction. Suppose there is a protocol meeting the as-
sumptions; i.e., it (C1) ensures mutual exclusion, (C2) ensures starvation freedom
for each thread, assuming each thread stays in its critical section for a finite amount
of time, and (C3) and does so assuming a demonic scheduler.

Consider the operation of the protocol on a pair of threads, A and B, where
operations in A’s lock, unlock, and critical section code do not use any revealing
operation. Suppose that A and B start at their initial state. If A is at a lock operation
and runs by itself, by (C2), it must enter its critical section. After the point where
A enters its critical section, consider a new continuation, E1, where B executes its
lock instruction. By (C1), thread B is enabled but must wait since A is in its critical
section.

Continue E1 so that thread A exits its critical section and then B runs by
itself. By (C2), B must enter its critical section. The decision by B to enter its
critical section cannot be made on local information alone since otherwise there
is a different schedule where, by (C3), the demonic scheduler can give sufficient
time to B to make its decision while A is in its critical region, violating (C1).
Thus, between the point in E1 where B waits to the point where it enters its critical
section, A must have changed at least one global variable also visible to B and
these critical changes must have been made be visible to B.

Now consider an alternative execution, E2, from the point in E1 where A enters
its critical section and B is waiting such that in E2, thread A exits its critical
section but changes to the global variables by A are not made visible to B. Such
an execution is allowed since A is assumed not to execute a revealing operation
within its lock-unlock actions. Without a revealing operation, the architecture is

CHAPTER 13. OPTIMIZING LOCKS 171

not constrained to make the shared-variable updates in A visible to B. Thus, the
state visible to B is unchanged. There are two cases to consider at this point. If A
cannot acquire the lock again (e.g., if the lock is turn based), then both A and B
are blocked, leading to starvation. If A can acquire the lock, the prior sequence can
be repeated, leading to starvation for B. In either case, thread B does not enter its
critical section, contradicting (C2). O
This theorem raises the question of whether revealing operations can be elim-
inated by giving up starvation freedom. The next theorem shows that this is not
possible for most standard protocols, all of which have the following property.

Definition 8 A symmetric choice point in a mutual exclusion protocol is a state
where two or more threads are waiting to enter a critical section and either thread
can win the race by executing a sequence of its own actions.

A mutual exclusion protocol has the symmetric choice property if there is a
reachable symmetric choice point. The standard mutual exclusion protocols by
Dekker, Peterson, and Lamport as well as the spin-lock protocol presented in the
introduction have the symmetric choice property.

Theorem 4 A mutual exclusion protocol requires a revealing operation for each
acquire operation at a symmetric choice point.

PROOF by contradiction. Suppose there is a mutual exclusion protocol with a
symmetric choice point, s, where two threads, A and B are waiting to enter the
critical section and A does not have a revealing operation in its acquire operation.

By definition of symmetric choice, there is an execution E1 from s where A
acquires the lock first and another execution, E2, from s where B acquires the lock
first. Construct execution E3 by first executing E1, then E2. Since there is no
revealing operation in E1, the values of the shared variables as seen by process B
at the end of E1 are the same as that in s, and the local state of B is unchanged by
El (B remains in its waiting state). Therefore, it is possible to append execution
E2 to E1 and get E1;E2, but the sequence E1;E2 results in both A and B acquiring
the lock concurrently, violating mutual exclusion. O

13.5 Asymmetric Locks

Theorem 4] implies an algorithm that avoids revealing operations in locks must
not have a symmetric choice state—i.e., it must be asymmetric. We now present
such an algorithm.

For this section only, we return to assuming there is a fixed, known dominant
thread. The algorithm is made asymmetric by forcing the nondominant threads to

CHAPTER 13. OPTIMIZING LOCKS 172

request permission from the dominant thread to proceed. Figure shows the
algorithm.

Before entering the critical section, the dominant thread checks whether an-
other thread is accessing the critical section by probing the grant variable (line [10Q)).
While leaving the critical section (lines 20H24), it checks the request flag to deter-
mine whether another (nondominant) thread wishes to enter the critical section. If
the flag is set, the dominant process hands the lock to the other thread by calling
fence and setting the grant variable to 1. The call to fence commits any changes to
shared variables made in the critical section before it passes the lock to any other
thread.

A nondominant thread that desires to enter the critical section (lines [[2HI4)
must first acquire a n-process lock, then set the request flag and wait for a grant.
While leaving the critical section (lines 26H28)), it resets the grant variable after
calling fence. The call to fence commits all local changes to the main memory
before the lock is passed back to the dominant process.

This method has the disadvantage that a nondominant requesting thread must
wait for the dominant process to grant it permission. This implies the dominant
thread must periodically check the request flag. Thus, the algorithm ensures star-
vation freedom for the nondominant threads only when the dominant thread checks
the request flag infinitely often in any infinite computation. This can be ensured by
periodically polling the request flag.

The advantage of the algorithm is that the dominant thread does not use a
compare-and-swap instruction and uses a fence instruction only only when it passes
control of the critical region to a nondominant thread. In periods of no contention
from other threads, the dominant thread does not use any atomic or fence instruc-
tions, so locking incurs very little overhead.

13.6 Read-Write Biased Locks

In this section, instead of considering only exclusive locks, we discuss the
design of biased read-write locks that incur very little overhead on the dominant
thread. In general, a read-write lock allows either multiple readers or a single writer
to access a critical section at any time.

We use a combination of a 2-process lock and a n-process lock. For the 2-
process lock, we use a modified version of Peterson’s algorithm; see Figure
and Figure [[3.771 The flag variable can take three values: READ, WRITE, and
UNLOCK. When a dominant thread i tries to obtain a read lock, it spins if at the
same time there is another thread j writing (lines [[3HI16in Figure [13.6). When the
dominant thread tries to obtain a write lock, it waits if there is another thread that
is either reading or writing (lines @7} Figure [13.7)).

CHAPTER 13. OPTIMIZING LOCKS 173

typedef struct {
Threadld owner;
lockN n; /% N—process lock x/
bool request;
bool grant;

6 } Lock;
8 biased_lock (Lock =*1) {
if (this_thread_id == 1->owner)
while (1->grant) {3} /x wait %/
else {

lockN (1->n) ;

l->request = 1;

while (!l->grant) {} /* wait %/
}

16 }

18 biased_unlock (Lock =1

—

{
if (this_thread_id == I->owner) {
if (1->request) {
I->request = 0;
fence () ; /+ make visible all memory updates */
I->grant = 1; fence() ;
}
} else {
fence () ;
l->grant = 0;
unlockN (1->n) ;
}

30 }

Figure 13.5: Our asymmetric lock algorithm

For a nondominant process to acquire a write lock (lines[TOHI3] Figure [13.7), it
first acquires a normal n-process write lock, rwn. This write lock rwn is contended
only by nondominant processes. Once this lock is obtained, the process checks if
the dominating process is in the unlock state and then enters the critical section.
At this point the nondominant process is the only process in the critical section
because the rwlockN provides exclusive access among the nondominant processes.
The Peterson-like algorithm that follows it provides exclusive access from the
dominant thread.

For a nondominant process to acquire a read lock (lines [I8H28] Figure [13.6),
it first acquires a normal n-process read lock on n. Since the n-process read lock
on rwn can be held by multiple non-dominating processes, the first nondominant
reader competes with the dominant process. If the dominant process is busy writ-

CHAPTER 13. OPTIMIZING LOCKS 174

typedef struct {

2 Threadld owner;
int flagi; /% Owner’s flag */
4 int flagj; /« Non—owner’s flag */
bool turn;
6 RWIockN rwn; /x N—process read—write lock */
LockN n; /x N—process locksx/
8 int non_owner_readers; /+ No. of nondominant readers #/ 0
0 } Lock; biased_r_unlock (Lock =*1) {
biased_r_lock (Lock 1) { 34 if (th1s_t.hread_1d == l->owner) {
. . . I->flagi = UNLOCK;
12 if (this_thread_id == 1->owner) { 36 fence () ;
I->flagi = READ; } !
14 l->turn = j; 38 else {
fence () ; lockN (1->n) ;
16 while (l->turn == j && l->flagj == WRITE) {} | ' d .
} else { 40 .E>nlon_owner_rea ers;1 -;
18 rwlockN (1->rwn, READ) ; /x Get aread lock %/ it ~>non_owner_readers == 0)
. 42 1->flagj = UNLOCK;
lockN (1->n) ; /* Get an exclusive lock */
unlockN (1->n) ;
20 I->non_owner_readers++ ;
. 44 rwunlockN (1->rwn) ;
if (1->non_owner_readers == 1) { }
22 /* First nondominant reader */ 46}
I->flagj = READ;
24 I->turn = 1i;
fence () ;
26 while (I->turn == i && l->flagi == WRITE) {}
}
28 unlockN (I->n) ;
}
30 }

Figure 13.6: Read functions of biased read-write locks

ing, the first nondominant reader spins on the flag variable. The last nondominant
reader to exit the critical section sets the flagj variable to UNLOCK (lines B}
42l Figure [13.6). The first and last readers are maintained by a counter variable
non_owner_readers and the field is protected by a normal n-process lock n.

As in the previous sections, for the dominant process to obtain either a read
lock (lines [2HI6] in Figure [13.6) or write lock (lines BH7] in Figure 03.7) when
there is no contention, requires the manipulation of only two flags, which results in
far less overhead than normal n-process read-write locks.

The rwlockN function, which obtains a normal n-process read or write lock, can
use standard reader-writer locks and implemented to be reader starvation-free or
writer starvation-free. Between the dominant and nondominant process, the writer
dominant process may starve, especially when nondominant readers keep coming

CHAPTER 13. OPTIMIZING LOCKS 175

1 biased_w_lock (Lock =*1)
{

3 if (this_thread_id == owner) {
1->flagi = WRITE;
5 I->turn = j;
fence () ;
7 while (lI->turn == j && l->flagj '= UNLOCK) {}
} else {
9 rwlockN (I->rwn, WRITE) ;
1->flagj = WRITE;
11 l->turn = 1i;
fence () ;
13 while (I->turn == i && l->flagi '= UNLOCK) ({}
}
15 }

17 biased_w_unlock (Lock =*1) {

if (this_thread_id == l->owner) {
19 I->flagi = UNLOCK;
fence () ;
21 }
else {

23 I->flagj = UNLOCK;
I->rwunlockN (1->rwn) ;
25}

}
Figure 13.7: Write functions of biased read-write locks

in and never relinquishing the lock. But since these readers are nondominant,
we expect the readers to arrive infrequently. Therefore, starvation is unlikely in
practice.

13.7 Algorithm Verification

The correctness of the algorithm presented in Section can be inferred
easily from its construction. The n-lock provides mutual exclusion among non-
dominant threads. The 2-lock provides mutual exclusion among the dominant and
the nondominant thread.

The correctness of the asymmetric algorithm is less obvious and in fact, we
discovered several pitfalls while developing it. We verified the algorithm from
Section using the SPIN [63] model checker. We created two processes, one
dominant; the other nondominant, and verified mutual exclusion and progress prop-
erties. Even when there is more than one nondominant thread in the system, mutual
exclusion holds because the normal n-lock provides exclusive access among the
nondominant threads. The progress property also holds if the normal lock satisfies

CHAPTER 13. OPTIMIZING LOCKS 176

the progress property. The bounded waiting property however is not satisfied
because nondominant threads are dependent on the dominant thread to acquire the
lock.

For the ownership transfer protocol, we used SPIN to verify a configuration
with one dominant thread and two nondominant threads. Each nondominant thread
attempts nondeterministically to change ownership. We believe that this configura-
tion describes all interesting interactions; the generalization of this automatic proof
to arbitrary numbers of threads is ongoing work.

We also verified the biased read-write protocol using SPIN. We coded one
dominant thread and two nondominant threads. Each one nondeterministically
attempts a read or a write lock. The mutual exclusion property is satisfied even
when there are more than two nondominant threads because the nondominant
thread has to acquire either a normal n-write-lock or n-read-lock depending on
the action before entering the critical section.

The verification with SPIN is based on a sequentially consistent model. By per-
turbing the sequence of assignments, it is possible to discover which orderings are
relevant for the proof of correctness; this indicates positions where fences must be
inserted for correctness on modern architectures with weaker ordering guarantees.
In the future, we plan to use tools such as Check-Fence [22]] to determine optimum
placement of fences.

13.8 Experimental Results

The experiments described in this section have two purposes: to compare the
performance of the new biased lock algorithms against similar algorithms proposed
in earlier work using the pthread spin-lock implementation on Linux as the base
reference, and to confirm our intuition about the behavior of these algorithms,
i.e., that the performance improves monotonically with increasing domination.
We coded the algorithms in C and we ran the experiments on an Intel Core 2
Quad processor with 2GB Memory and Fedora Core 7 installed. Programs were
compiled with -O flag. We reimplemented reference [12] in C.

13.8.1 Performance with varying domination

To compare the different algorithms, we created four threads and made one
of them dominant. The critical section just incremented a counter—a deliberately
small task to maximize lock overhead. We varied the dominance percentage and
measured the execution times; see Figure A dominance of 90% indicates that
for 100 accesses to the critical section, the dominant thread accesses the critical
section 90 times and the remaining threads access the critical section 10 times.
The lock accesses were evenly spaced: they follow a skewed but nonbursty access
pattern.

CHAPTER 13. OPTIMIZING LOCKS 177

We tested our micro benchmark on various algorithms. Our base case for com-
parison is the pthread spin lock (represented by a horizontal line at 0). We described
the biased asymmetric lock in Section The biased thread implementation
uses Peterson’s algorithm for 2-lock and p-threads for n-lock. The biased MCS
implementation uses Peterson along with MCS locks. The biased CAS is the
implementation from Kawachiya et al. [94]

Biased Asymmetic]

4 Biased Pthread I]
Biased MCS I
Biased CAS (KKO) []
g 2 Unbiased Pthread ———
©
()
[0]
&
e 0 —
(0]
(7))
[0v]
o
13}
£ 2-
4 -

| | | | | | | | | |
0 10 20 30 40 50 60 70 80 90
Domination Percentage

Figure 13.8: Behavior at varying domination percentages

For each of these algorithms, we observed the performance improve as we
increased the dominance of the owner thread. Figure [I13.9] shows details of the
results from Figure [[3.8]for domination between 90 and 100%, the expected range
for the motivating packet processing application. Not surprisingly, the asymmetric
method performs best when the domination percentage is high because asymmetric
locks are very lightweight and do not require fence instructions in the dominant
thread when there is no intervention from other threads. On the other hand, when
the domination is less, the nondominant threads have to wait until the dominant
thread signals; this overhead is insignificant for high dominance.

CHAPTER 13. OPTIMIZING LOCKS 178

350 -
300 - Biased Asymmetic]
g Biased Pthread I
5 250 - Biased MCS I
S 200 - Biased CAS (KKO) [
£ 450 - Unbiased Pthread ——
3
S 100 -
G
£ 50 -
0 F-_ETEL:'TE-_:TE-_DTD-_DTD-:H‘D-DTD.-DTD..DT 4
90 91 92 93 94 95 96 97 98 99 100
Domination Percentage
Figure 13.9: Behavior at high domination percentages
Biased Asymmetic]
Biased Pthread N
Biased MCS I
Biased CAS (KKO) [
Unbiased Pthread I
9 Without locking ———
> 0
(0]
[0}
& 20 -
£
& -40 -
o
2 60 -
-80 -
-100 L | | | |
5 10 15 20 25

Fibonacci Computation

Figure 13.10: Lock overhead for a sequential program

CHAPTER 13. OPTIMIZING LOCKS 179

30 -

o5 - Biased Asymmetric (fib (8)) 1
g Biased Asymmetric (fib (13)) N
g 20 - Unbiased Pthread ——
S 15 -
£
o 10 -
3
S 5 -
2
- 0

-5 - | | | | | | | | | | |

90 91 92 93 94 95 96 97 98 99 100
Percentage of local operations

Figure 13.11: Behavior of our packet-processing simulator with asymmetric locks

o N b~ O
|

Biased Pthread I
_ Unbiased Pthread ——— I I I

I I . -
4 - I |

[[[[[

0 10 20 30 40

1
N
|

Increase in speed (%)

| | | | | |
50 60 70 80 90 100
Localization Percentage

Figure 13.12: Performance of our biased locks on a database simulator for the
query SELECT SUM(C2) GROUP BY C1

CHAPTER 13. OPTIMIZING LOCKS 180

20 -
S
15 =
§ Dominance set statically and correctly I
73 10 - With on-the-fly ownership transfer []
c
‘© Unbiased Pthread ——
3
(0]
3]
£
| | | | | | | | | | |
90 91 92 93 94 95 96 97 98 99 100
Domination Percentage
Figure 13.13: The effect of bias transfer
Dominance set statically but incorrectly [
10 - With on-the-fly ownership transfer]
2 Unbiased Pthread ———
2 0
(9
s 0T T 0 |
£ -10 -
[0
(2]
@
o -20 -
o
£
-30 —

| | | | | | | | | | |
90 91 92 93 94 95 96 97 98 99 100
Domination Percentage

Figure 13.14: The effect of bias transfer for incorrect biasing

CHAPTER 13. OPTIMIZING LOCKS 181

Unbiased Pthread Il

100 - Biased Pthread]
< 80 - Sequential
2
8 60 -
Q.
w
£ 40 -
(0]
(7]
3 20 -
3]
C
- 0

| | | | |
Barnes Raytrace Water-Spatial Radiosity Ocean
Application

Figure 13.15: Performance of our biased locks on applications (SPLASH2 bench-
mark) without dominant behavior.

&2 Zog - Biased RW Pthread NN

2 250~ UnBiased RW Pthread —

2 200 -

e 150 -

o 100 -

S 50 -

g, N B

i - 1]]]]]]]]
0 10 20 30 40 50 60 70 80 90 100

Domination Percentage

Figure 13.16: A comparison of our biased rwlock with Linux thread rwlock.

CHAPTER 13. OPTIMIZING LOCKS 182

30 Biased RW Pthread I

;@ Unbiased RW Pthread ——

S 20 -

(0]

3

o 10 - I |
k=

[}

g 0 I — I

: I

£ 10 - I

[[[[[[[[[[[[
0O 10 20 30 40 50 60 70 80 90 100 110

Percentage of Local Lookups

Figure 13.17: Performance of our biased read-write locks on a router simulator
with 95% reads and 5% writes.

13.8.2 Locked vs. lockless sequential computation

Next, to measure the overhead of each of these locks, we created a sequential
program that, to represent work, does the naive recursive Fibonacci computation
fib(n) = fib(n — 1) 4+ fib(n — 2), and thus shows exponential behavior with increas-
ing n. We protected the counter by a lock and compared the performance of
different locks with the version without locks; see Figure[I3.10l This setup merely
measures the overhead of these locks. First, we see that the thread locks has the
maximum overhead (about 100%) and asymmetric locks has the least (less than
1%). Second, as the computation load increases, the relative overhead decreases
slowly.

13.8.3 Performance of a packet-processing simulator with asymmetric locks

From these experiments, we concluded that asymmetric locks are the best for
our packet-processing application. Also, since the nondominant threads require
permission from the dominant/owner thread to enter the critical section, asymmet-
ric locks are suitable for applications that have dominant threads that run forever. In
our packet-processing application, we replaced the thread locks by our asymmetric
locks and compared the performance with the original one with pthreads (Fig-
ure[I3.11)). Within each lock we also added a synthetic computation that calculates
Fibonacci numbers. When the computation time is high (e.g., for fib(13)), the
nondominant threads have to wait more for the dominant thread to signal, therefore
we see fib(8) performing better than fib(13). The difference between the two loads

CHAPTER 13. OPTIMIZING LOCKS 183

is roughly a factor of 10 because fib(n) scales as ¢”, where ¢ ~ 1.618 is the golden
ratio.

13.8.4 Biased Locks for Database Queries

Flexible locks (Section [13.2)) that consist of 2-locks combined with n-locks
are more robust to variations in computational load, although they require fence
instructions whenever a dominant lock is obtained or released. To test the be-
havior of these locks, we wrote code that performs the SOL query “SELECT
aggregate_function(c1) FROM t group by c2.” Such a query is typically processed
concurrently. The table ¢ is divided into n parts; each part is processed by a separate
thread, which maintains a local hash table. If the data c2 in 7 is localized, most of
the hash updates are local to the thread, otherwise it is necessary to modify the hash
table of a different thread; see Figure [[3.121 As the locality of data increases, the
biased locks perform better. Although the performance depends strongly on how
the data are ordered, in many cases the ordering is such that data are localized.

13.8.5 Ownership transfer

We fixed the ownership of locks in the above applications, but our algorithm
in Section [13.3 allows for ownership transfer. To test its performance, we created
four threads that each perform a Fibonacci calculation in the critical section. Fig-
ure [13.13] compares the performance of our biased locks that supports on-the-fly
ownership changes with the implementation that only supports static ownership.
The implementation that supports change of ownership does not do as well as the
the static implementation because of the extra overhead to support bias transfer.
The ownership changes to the thread that was recently dominant, i.e, the most
recent thread that has been acquiring the lock continuously. However, it does better
than the unbiased implementation.

13.8.6 Ownership transfer with incorrect dominance

In Figure we also compare the ownership on-the-fly implementation
with a static ownership implementation, but for the latter implementation, we set
the dominance incorrectly. The ownership on-the-fly implementation easily adapts
itself and changes the dominance to the most recently dominant.

13.8.7 Overheads for nondominant behavior

The general trend is that as the dominance increases, biased locks perform bet-
ter than unbiased locks. With applications that do not exhibit dominant behavior,
we do not expect any improvement. We tested our biased locks on SPLASH?2
benchmarks [134]]. Most of these benchmarks exhibit master-slave behavior where
work is divided among different threads. Even in the absence of dominance, our

CHAPTER 13. OPTIMIZING LOCKS 184

biased implementation deteriorated by at most 2% compared to the sequential
version for these benchmarks.

13.8.8 Performance of biased read-write locks

Finally, we compared our biased read-write lock implementation with the pthread
implementation of read-write locks. Figure shows the results. Our biased
read-write lock performs very well even when the dominance fraction is not very
high because read-write locks are generally very expensive and our dominant read-
write lock optimizes it to a large extent.

13.8.9 Performance on a simulated router application

To test the effect of biased read-write locks on actual examples, we simulated a
router application. A router maintains a look-up table where the entries are mostly
static, but occasionally (5% of the time) the IP addresses change, in which case
a write lock is required. It usually maintains a distributed look-up table in which
most lookups are local to a thread. Figure suggests that, as expected, as we
increase the number of local lookups, the biased read-write locks perform better.

13.9 Related Work and Conclusions

We have provided simple algorithms for constructing biased locks. We imple-
mented these algorithms as a simple library, without any special support from the
operating system. Our experimental evaluation shows that our algorithms perform
well in practice when the dominance fraction is high, as expected. This matches
the profile of our intended applications, e.g., network packet processing. The
evaluations were all carried out on an Intel Quad core machine and the results,
therefore, reflect the relatively high costs of fence and atomic operations on the
x86 architecture.

As we mentioned in the introduction, there is other work on optimizing lock
implementations, such as thin locks [8] and lock-reservation algorithms [715 04
71. The original thin lock algorithm requires a compare-and-swap on each lock
acquisition, which our algorithm avoids.

The lock-reservation work is closest to ours. In Kawachiya et al. [71l], the
disadvantage is that when a lock is reserved for the owner and the nonowner tries
to attempt the lock, the nonowner stops the owner thread and replaces a lock word.
This step is very expensive because the owner thread is suspended. Onodera et
al. [94]] proposes a modification similar to ours: a hybrid algorithm that tightly
intertwines Dekker’s 2-process algorithm with an n-process CAS algorithm. Our
scheme simplifies this by keeping the two algorithms separate and generalizes it by
allowing any choice of 2-process and n-process mutual algorithms.

CHAPTER 13. OPTIMIZING LOCKS 185

We show how to transfer lock ownership among threads without suspending
the current owner. Although Russell and Detlefs [104]] also support bias transfer,
their global safe-point technique for bias revocation is costly. In their technique,
it is difficult to determine at any point whether a biased lock is actually held by a
given thread. Our technique is simple and inexpensive: it only requires two extra
assignments and two comparisons.

Finally, we examined the necessity of memory fence instructions on modern
processors and shed light on the key role played by the symmetric choice prop-
erty of most mutual-exclusion algorithms. The asymmetric algorithm presented
in Section is, in a sense, the most efficient possible, since it avoids both
memory fence and atomic operations in the dominant process except at the point
of transferring control of the lock, where they are unavoidable. Earlier work on
asymmetric biased locks [43}; [44] has a similar motivation, but the analogues of
the request-grant protocol, called SERTALIZE(t) by Dice et al. [43], appear fairly
heavyweight, involving either thread suspension and program counter examination,
or context switches.

It is clear that the performance improvement of biased locks depends on the
relative performance of compare-and-swap, memory fence, and simple memory
instructions. There is unfortunately no standard model that one can use to theoret-
ically analyze performance, therefore we picked the instance of the most common
architecture for our experiments. We plan to experiment on more machines in the
future.

Lastly, we have not yet used biased locks in our SHIM models and compilers
that guarantee determinism, even though their deterministic constructs are imple-
mented using locks. We wish to do this soon.

186

Part V

Conclusions

CHAPTER 14. CONCLUSIONS 187

Chapter 14

Conclusions

It is time for a new era of bug-free parallel programming that will enable program-
mers to shift easily from the sequential to the parallel world. I believe that this
thesis will be a significant step along the way to parallel programming.

This thesis provides programming language support to address the two major
problems of concurrency — nondeterminism and deadlocks. Through this thesis,
we demonstrate that determinism is not a huge performance bottleneck. It has
advantages for code synthesis, optimization, and verification, making it easier
for an automated tool to understand a program’s behavior. This advantage is
particularly helpful for deadlock detection, which for models like SHIM can ignore
differently interleaved executions.

Most concurrent programming languages that are in use today allow program-
mers to write programs that are nondeterministic and/or prone to deadlocks. These
bugs are usually checked during runtime. This thesis presents a way to avoid these
bugs during the software development phase.

We believe that our techniques simplify debugging and hence enhance the
productivity of programmers. The language and the compiler simply prevent non-
determinism and deadlocks. The programmer does not have to worry about these
concurrency bugs and can focus on the logic of the program.

Since we adopt our techniques at the compiler level, the application-level pro-
grammer does not have to worry about the hardware. This enhances portability,
especially when the underlying hardware changes. Also, we also do not propose
changes in the hardware; a software amendment is always easier and faster to apply.

Although we have presented our techniques with SHIM, we believe that our
ideas can be extended to any general programming language. In Chapter we
adopted our model to the X10 programming language. Realistically, it will take one
engineer and approximately six months to port our ideas to any general-purpose

CHAPTER 14. CONCLUSIONS 188

concurrent programming language. Some of the techniques we have discussed are
already in the official X10 release. A good way to evaluate the practical use of this
thesis is to adopt these ideas in many other concurrent programming languages. We
would like to see how their benchmarks perform and if there is significant perfor-
mance overhead. In addition, we would like to see how programmer productivity
increases.

Our future plans for SHIM include code generation fusing parallelism with
static scheduling [48]], extracting parallelism [82], data distribution [113l, com-
munication optimization [102]], synthesis of hardware and dealing with reactive
systems.

We currently do not deal with pointers and complicated data structures, and
we need a good mechanism to include them. Our long term goal is automatic
determinism [125]— starting from a nondeterministic program, our compiler will
insert just enough additional synchronization to guarantee deterministic behavior,
even in the presence of nondeterministic scheduling choices. Our ultimate goal is
deterministic deadlock-free concurrency along with efficiency.

BIBLIOGRAPHY 189

Bibliography

[1]

(2]

(3]

(4]

(5]

[6]

[7]

[8]

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66-76, 1996.

Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K.
Shyamasundar. May-happen-in-parallel analysis of x10 programs. In
Proceedings of Principles and Practice of Parallel Programming (PPoPP),
pages 183—-193, New York, NY, USA, 2007. ACM.

Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers, Principles, Techniques, and Tools. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 2006.

Thomas William Ainsworth and Timothy Mark Pinkston. Characterizing
the Cell EIB on-chip network. IEEE Micro, 27(5):6—14, September 2007.

Gautam Altekar and Ion Stoica. Odr: output-deterministic replay for
multicore debugging. In SOSP "09: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 193-206, New York,
NY, USA, 2009. ACM.

Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient
system-enforced deterministic parallelism. In Proceedings of Operating
System Design and Implemetation (OSDI), pages 193-206, Vancouver, BC,
Canada, October 2010.

David Bacon and Stephen Fink. Method and apparatus to provide concur-
rency control over objects without atomic operations on non-shared objects.
US Patent Docket No. YO999-614, 2000.

David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin
locks: featherweight synchronization for java. In PLDI *98: Proceedings of
the ACM SIGPLAN 1998 conference on Programming language design and
implementation, pages 258-268, New York, NY, USA, 1998. ACM.

BIBLIOGRAPHY 190

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: A dialect
of Java without data races. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 382—400, Minneapolis, Minnesota, October 2000.

Howard Barringer, Dimitra Giannakopoulou, , and Corina S. Pdsdreanu.
Proof rules for automated compositional verification through learning. In
Proceedings of the 2nd International Workshop on Specification and Ver-
ification of Component-Based Systems (SAVCBS), pages 14-21, Helsinki,
Finland, 2003. Iowa State University Technical Report #03—11.

Yosi Ben-Asher, Eitan Farchi, and Yaniv Eytani. Heuristics for finding con-
current bugs. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), page 288, Nice, France, April 2003.

Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen.
Compositional verification for component-based systems and application. In
Proceedings of the 6th International Symposium on Automated Technology
for Verification and Analysis (ATVA), volume 5311 of Lecture Notes in
Computer Science, pages 64—79, Berlin, Heidelberg, 2008. Springer-Verlag.

Saddek Bensalem, Jean-Claude Fernandez, Klaus Havelund, and Laurent
Mounier. Confirmation of deadlock potentials detected by runtime analysis.
In Proceedings of the Workshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD), pages 41-50, Portland, Maine, July
2006.

Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional
reasoning in model checking. In Compositionality: The Significant Differ-
ence (COMPOS), volume 1536 of Lecture Notes in Computer Science, pages
81-102, Bad Malente, Germany, September 1998.

Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Gross-
man. Coredet: a compiler and runtime system for deterministic multi-
threaded execution. SIGARCH Comput. Archit. News, 38:53—64, March
2010.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace:
safe multithreaded programming for c/c++. In OOPSLA ’09: Proceeding
of the 24th ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 81-96, New York, NY, USA,
2009. ACM.

BIBLIOGRAPHY 191

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Gérard Berry and Georges Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87-152, November 1992.

Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The essence
of data access in Cw. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of Lecture Notes
in Computer Science, pages 287-311, Glasgow, UK, July 2005.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-
threaded runtime system. In Proceedings of Principles and Practice of
Parallel Programming (PPoPP), pages 207-216, Santa Barbara, California,
July 1995.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons,
Hyojin Sung, and Mohsen Vakilian. A type and effect system for de-
terministic parallel java. In OOPSLA ’09: Proceeding of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages
and applications, pages 97-116, New York, NY, USA, 2009. ACM.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types
for safe programming: Preventing data races and deadlocks. In Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), November 2002.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Checkfence:
Checking consistency of concurrent data types on relaxed memory models.
In Proceedings of Program Language Design and Implementation (PLDI),
pages 12-21, San Diego, California, USA, June 2007.

Jacob Burnim and Koushik Sen. Asserting and checking determinism
for multithreaded programs. In ESEC/FSE °09: Proceedings of the 7th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
on European software engineering conference and foundations of software
engineering symposium, pages 3—12, New York, NY, USA, 2009. ACM.

Sagar Chaki, Edmund Clarke, Joél Ouaknine, and Natasha Sharygina. Au-
tomated, compositional and iterative deadlock detection. In Proceedings of
the International Conference on Formal Methods and Models for Codesign
(MEMOCODE), San Diego, California, June 2004.

BIBLIOGRAPHY 192

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Sagar Chaki, Jo€l Ouaknine, Karen Yorav, and Edmund Clarke. Auto-
mated compositional abstraction refinement for concurrent C programs: A

two-level approach. Electronic Notes in Theoretical Computer Science,
89(3):417-432, 2003.

Sagar Chaki and Nishant Sinha. Assume-guarantee reasoning for deadlock.
In Formal Methods in Computer-Aided Design (FMCAD), pages 134-141,
San Jose, California, November 2006.

Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type
inference for locality analysis of distributed data structures. In Proceedings
of Principles and Practice of Parallel Programming (PPoPP), pages 11-22,
New York, NY, USA, 2008. ACM.

K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock
detection. ACM Trans. Comput. Syst., 1(2):144-156, 1983.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. SIG-
PLAN Not., 40(10):519-538, 2005.

Guang-len Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall,
and Andrew F. Stark. Detecting data races in cilk programs that use locks.
In Proceedings of the tenth annual ACM symposium on Parallel algorithms
and architectures, SPAA °98, pages 298-309, New York, NY, USA, 1998.
ACM.

Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java
multithreaded applications. In SPDT ’98: Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools, pages 48-59, New York, NY,
USA, 1998. ACM.

Alex Chunghen Chow, Gordon C. Fossum, and Daniel A. Brokenshire. A
programming example: Large FFT on the Cell Broadband Engine. In Global
Signal Processing Expo (GSPx), Santa Clara, California, October 2005.
Available from IBM.

Marek Chrobak, Janos Csirik, Csandd Imreh, John Noga, Jiri Sgall, and
Gerhard J. Woeginger. The buffer minimization problem for multiprocessor
scheduling with conflicts. In Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP), volume 2076 of

BIBLIOGRAPHY 193

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

Lecture Notes in Computer Science, pages 862—874, Heraklion, Crete,
Greece, 2001. Springer-Verlag.

Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV version 2: An OpenSource tool for sym-
bolic model checking. In Proceedings of the International Conference
on Computer-Aided Verification (CAV), volume 2404 of Lecture Notes in
Computer Science, pages 359-364, Copenhagen, Denmark, July 2002.

E. Clarke, D. Long, and K. McMillan. Compositional model checking. In
Proceedings of the Fourth Annual Symposium on Logic in Computer Science
(LICS), pages 353-362, Piscataway, NJ, USA, 1989. IEEE Press.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications.

ACM Transactions on Programming Languages and Systems, 8(2):244-263,
1986.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In Proceedings of the
International Conference on Computer-Aided Verification (CAV), volume
1855 of Lecture Notes in Computer Science, pages 154-169, Chicago,
[llinois, July 2000.

Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking
up is hard to do: An evaluation of automated assume-guarantee reasoning.
ACM Transactions on Software Engineering Methodology, 17(2):1-52,
2008.

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasdreanu.
Learning assumptions for compositional verification. In Proceedings of
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2619 of Lecture Notes in Computer Science, pages 331-346.
Springer-Verlag, 2003.

James C. Corbett. Evaluating deadlock detection methods for concurrent
software. [EEE Transactions on Software Engineering, 22(3):161-180,
March 1996.

Eddy de Greef, Francky Catthoor, and Hugo de Man. Array placement
for storage size reduction in embedded multimedia systems. In ASAP ’97:
Proceedings of the IEEE International Conference on Application-Specific

BIBLIOGRAPHY 194

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Systems, Architectures and Processors, page 66, Washington, DC, USA,
1997. IEEE Computer Society.

Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp:
deterministic shared memory multiprocessing. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 85-96. ACM, 2009.

Dave Dice, Hui Huang, and Mingyao Yang. Asymmetric dekker
synchronization. Technical report, Sun Microsystems, 2001.
http://home.comcast.net/ pjbishop/Dave.

Dave Dice, Mark Moir, and William Scherer. Quickly reacquirable locks.
Technical report, Sun Microsystems, 2003. http://home.comcast.net/ pjbish-
op/Dave.

Edsger W. Dijkstra. Cooperating sequential processes. Technological
University, Eindhoven, The Netherlands, September 1965. Reprinted in
Programming Languages, F. Genuys, Ed., Academic Press, New York, 1968,
43-112, 1965.

Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones, and
Satnam Singh. Lock free data structures using STM in Haskell. In
Proceedings of Functional and Logic Programming (FLOPS), volume 3945
of Lecture Notes in Computer Science, pages 65-80, Fuji Susono, Japan,
April 2006.

Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems. In Proceedings of the International
Conference on Embedded Software (Emsoft), pages 3744, Jersey City, New
Jersey, September 2005.

Stephen A. Edwards and Olivier Tardieu. Efficient code generation from
SHIM models. In Proceedings of Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 125-134, Ottawa, Canada, June 2006.

Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic model for
heterogeneous embedded systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(8):854—-867, August 2006.

Stephen A. Edwards and Nalini Vasudevan. Compiling SHIM. In
Sandeep K. Shukla and Jean-Pierre Talpin, editors, Synthesis of Embedded
Software: Frameworks and Methodologies for Correctness by Construction,
chapter 4, pages 121-146. Springer, 2010.

BIBLIOGRAPHY 195

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

Stephen A. Edwards, Nalini Vasudevan, and Olivier Tardieu. Programming
shared memory multiprocessors with deterministic message-passing concur-
rency: Compiling SHIM to Pthreads. In Proceedings of Design, Automation,
and Test in Europe (DATE), pages 1498-1503, Munich, Germany, March
2008.

Stephen A. Edwards and Jia Zeng. Static elaboration of recursion for con-
current software. In Proceedings of the Workshop on Partial Evaluation and
Program Manipulation (PEPM), pages 71-80, San Francisco, California,
January 2008.

A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen,
P. H. Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang,
T. Zhang, P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo.
Using advanced compiler technology to exploit the performance of the Cell
Broadband Engine architecture. IBM Systems Journal, 45(1):59-84, 2006.

Alexandre E. Eichenberger, Kathryn O’Brien, Kevin K. O’Brien, Peng
Wu, Tong Chen, Peter H. Oden, Daniel A. Prener, Janice C. Shepherd,
Byoungro So, Zehra Sura, Amy Wang, Tao Zhang, Peng Zhao, and Michael
Gschwind. Optimizing compiler for the CELL processor. In Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 161-172, Saint Louis, Missouri, September 2005.

Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,
Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex
Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming
the memory hierarchy. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC), Tampa, Florida, 2006. Article 83.

Bugra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. CellSort: High
performance sorting on the Cell processor. In Proceedings of Very Large
Data Bases (VLDB), pages 1286—1297, Vienna, Austria, September 2007.

Marc Geilen, Twan Basten, and Sander Stuijk. Minimising buffer require-
ments of synchronous dataflow graphs with model checking. In Proceedings
of the 42nd Design Automation Conference, pages 819-824, Anaheim,
California, 2005. ACM.

R. Govindarajan, Guang R. Gao, and Palash Desai Y. Minimizing buffer
requirements under rate-optimal schedule in regular dataflow networks.
Journal of VLSI Signal Processing Systems, 31(3):207-209, July 2002.

BIBLIOGRAPHY 196

[59]

[60]

[61]

[62]

[63]

[64]
[65]
[66]

[67]
[68]

[69]

[70]

[71]

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. In Proceedings of Principles and Prac-
tice of Parallel Programming (PPoPP), pages 48-60, Chicago, Illinois,
USA, June 2005.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer.
Thread-modular abstraction refinement. In Proceedings of the International
Conference on Computer-Aided Verification (CAV), volume 2725 of Lecture
Notes in Computer Science, pages 262-274. Springer, 2003.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666—677, August 1978.

C. A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Upper
Saddle River, New Jersey, 1985.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279-294, May 1997.

IBM. Cell Broadband Engine Architecture, October 2007. Version 1.02.
IBM. Example Library API Reference, September 2007. Version 3.0.

IBM et al T. J. Watson libraries for analysis, 2006.
http://wala.sourceforge.net.

Intel TA-32 Architecture Software Developer’s Manual, vol. 3A, 2009.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Proceedings of Principles of Programming Languages (POPL),
pages 295-308, St. Petersburg Beach, Florida, January 1996.

James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns,
Theodore R. Maeurer, and David Shippy. Introduction to the Cell multi-
processor. IBM Journal of Research and Development, 49(4/5):589—-604,
July/September 2005.

Gilles Kahn. The semantics of a simple language for parallel programming.
In Information Processing 74: Proceedings of IFIP Congress 74, pages
471-475, Stockholm, Sweden, August 1974. North-Holland.

Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock reserva-
tion: Java locks can mostly do without atomic operations. In OOPSLA
'02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented

BIBLIOGRAPHY 197

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(801

[81]

programming, systems, languages, and applications, pages 130-141, New
York, NY, USA, 2002. ACM.

Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor
communication network: Built for speed. IEEE Micro, 26(3):10-23, May-
June 2006.

Jean-Pierre Krimm and Laurent Mounier. Compositional state space genera-
tion with partial order reductions for asynchronous communicating systems.
In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 1785 of Lecture Notes in Computer Science,
pages 266-282. Springer, 2000.

Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput.
Syst., 5(1):1-11, 1987.

Dongmyun Lee and Myunghwan Kim. A distributed scheme for dynamic
deadlock detection and resolution. Information Sciences, 64(1-2):149-164,
1992.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235-1245, September 1987.

Flavio Lerda, Nishant Sinha, and Michael Theobald. Symbolic model
checking of software. In Byron Cook, Scott Stoller, and Willem Visser,
editors, Electronic Notes in Theoretical Computer Science, volume 89.
Elsevier, 2003.

Bill Lin. Efficient compilation of process-based concurrent programs
without run-time scheduling. In Proceedings of Design, Automation, and
Test in Europe (DATE), pages 211-217, Paris, France, February 1998.

E. Malaguti. The vertex coloring problem and its generalizations. 40R: A
Quarterly Journal of Operations Research, 7:101-104, March 2009.

E. Malaguti, M. Monaci, and P. Toth. Models and heuristic algorithms for
a weighted vertex coloring problem. Journal of Heuristics, 2008. DOI:
10.1007/s10732-008-9075-1.

Stephen P. Masticola and Barbara G. Ryder. A model of Ada programs
for static deadlock detection in polynomial times. In Proceedings of the
Workshop on Parallel and Distributed Debugging (PADD), pages 97-107,
New York, NY, USA, May 1991. ACM.

BIBLIOGRAPHY 198

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

Sjoerd Meijer, Bart Kienhuis, Alex Turjan, and Erwin de Kock. A process
splitting transformation for Kahn process networks. In Proceedings of
Design, Automation, and Test in Europe (DATE), pages 1355-1360, Nice,
France, April 2007.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans. Comput.
Syst., 9(1):21-65, 1991.

Nicolas Mercouroff. An algorithm for analyzing communicating processes.
In Proceedings of the 7th International Conference on Mathematical Foun-
dations of Programming Semantics, pages 312-325, London, UK, 1992.
Springer.

The Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, June 1995. Version 1.1.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Systematic consolidation
of input and output buffers in synchronous dataflow specifications. IEEE
Workshop on Signal Processing Systems (SiPS), pages 673—682, 2000.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Shared buffer imple-
mentations of signal processing systems using lifetime analysis techniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20(2):177-198, February 2001.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Buffer merging—a pow-
erful technique for reducing memory requirements of synchronous dataflow
specifications. ACM Transactions on Design Automation of Electronic
Systems, 9(2):212-237, April 2004.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Memory Management for
Synthesis of DSP Software. CRC Press, Inc., Boca Raton, FL, USA, 2006.

Wonhong Nam, P. Madhusudan, and Rajeev Alur. Automatic symbolic
compositional verification by learning assumptions. Journal of Formal
Methods in System Design, 32(3):207-234, June 2008.

M. Ohara, H. Inoue, Y.Sohda, H. Komatsu, and T. Nakatani. MPI microtask
for programming the Cell Broadband Engine processor. IBM Systems
Journal, 45(1):85-102, 2006.

BIBLIOGRAPHY 199

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayap-
pan, and Chau-Wen Tseng. Uts: An unbalanced tree search benchmark.
In Proceedings of the Workshop on Languages and Compilers for Parallel
Computing (LCPC), pages 235-250, 2006.

Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient
deterministic multithreading in software. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 97-108, New York, NY, USA, 2009.
ACM.

Tamiya Onodera, Kiyokuni Kawachiya, and Akira Koseki. Lock reservation
for Java reconsidered. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), pages 559-583, 2004.

OpenMP Architecture Review Board, www.openmp.org. OpenMP C and
C++ Application Program Interface, March 2002. Version 2.0.

G. L. Peterson. Myths about the mutual exclusion problem. IPL 12(3), pages
115-116, 1981.

Fabrizio Petrini, Gordon Fossum, Juan Fernandez, Ana Lucia Varbanescu,
Mike Kistler, and Michael Perrone. Multicore surprises: Lessons learned
from optimizing Sweep3D on the Cell Broadband Engine. In Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS),
pages 1-10, Long Beach, California, USA, March 2007.

D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa. The design and implementation of a first-
generation CELL processor. In Proceedings of the International Solid-
State Circuits Conference (ISSCC), volume 1, pages 184-185, 582, San
Francisco, California, February 2005.

Jean pierre Krimm and Laurent Mounier. Compositional state space gen-
eration from Lotos programs. In Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 1217 of Lecture
Notes in Computer Science, pages 239-258, Enschende, The Netherlands,
April 1997. Springer.

Amir Pnueli. In transition from global to modular temporal reasoning about
programs. In Proceedings of the NATO Advanced Study Institute on Logics

BIBLIOGRAPHY 200

and Models of Concurrent Systems, pages 123-144, La Colle-sur-Loup,
France, 1985. Springer.

[101] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.

[102] John Reppy and Yinggi Xiao. Specialization of CML message-passing
primitives. SIGPLAN Notices, 42(1):315-326, 2007.

[103] Paul Roe. Parallel Programming Using Functional Languages. PhD
thesis, Department of Computing Science, University of Glasgow, Scotland,
February 1991.

[104] Kenneth Russell and David Detlefs. Eliminating synchronization-related
atomic operations with biased locking and bulk rebiasing. SIGPLAN Not.,
41(10):263-272, 2006.

[105] Tarik Saidani, Stéphane Piskorski, Lionel Lacassagne, and Samir Bouaziz.
Parallelization schemes for memory optimization on the Cell processor: A
case study of image processing algorithm. In Proceedings of the Workshop
on Memory Performance: Dealing with Applications, Systems and Architec-
ture (MEDEA), pages 9-16, Brastov, Romania, September 2007.

[106] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: concurrent
programming for modern architectures. In PPoPP ’07: Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 271-271, New York, NY, USA, 2007. ACM.

[107] Enno Scholz. Four concurrency primitives for Haskell. In ACM/IFIP
Haskell Workshop, pages 1-12, La Jolla, California, June 1995. Yale
Research Report YALE/DCS/RR-1075.

[108] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe.
Cache aware optimization of stream programs. In Proceedings of Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), pages 115—
126, New York, NY, USA, 2005. ACM.

[109] Baolin Shao, Nalini Vasudevan, and Stephen A. Edwards. Compositional
deadlock detection for rendezvous communication. In Proceedings of the
International Conference on Embedded Software (Emsoft), pages 59-60,
Grenoble, France, October 2009.

BIBLIOGRAPHY 201

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Nir Shavit and Dan Touitou. Software transactional memory. In PODC
'95: Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 204-213, New York, NY, USA, 1995. ACM.

L. A. Smith, J. M. Bull, and J. Obdrzdlek. A parallel java grande benchmark
suite. In Supercomputing '01: Proceedings of the 2001 ACM/IEEE confer-
ence on Supercomputing (CDROM), pages 8—8, New York, NY, USA, 2001.
ACM.

Christos Sofronis, Stavros Tripakis, and Paul Caspi. A memory-optimal
buffering protocol for preservation of synchronous semantics under pre-
emptive scheduling. In Proceedings of the International Conference on
Embedded Software (Emsoft), pages 21-33, New York, NY, USA, 2006.
ACM.

Philip Stanley-Marbell, Kanishka Lahiri, and Anand Raghunathan. Adap-
tive data placement in an embedded multiprocessor thread library. In
Proceedings of Design, Automation, and Test in Europe (DATE), pages 698—
699, Munich, Germany, March 2006.

R. E. Strom and S. Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering,
12(1):157-171, 1986.

Olivier Tardieu and Stephen A. Edwards. R-SHIM: Deterministic con-
currency with recursion and shared variables. In Proceedings of the
International Conference on Formal Methods and Models for Codesign
(MEMOCODE), page 202, Napa, California, July 2006.

Olivier Tardieu and Stephen A. Edwards. Scheduling-independent threads
and exceptions in SHIM. In Proceedings of the International Conference on
Embedded Software (Emsoft), pages 142—-151, Seoul, Korea, October 2006.

Olivier Tardieu and Stephen A. Edwards. Scheduling-independent threads
and exceptions in SHIM. Technical Report CUCS-036-06, Columbia
University, Department of Computer Science, New York, New York, USA,
September 2006.

Jiirgen Teich, Eckart Zitzler, and Shuvra S. Bhattacharyya. Buffer memory
optimization in DSP applications—an evolutionary approach. In Pro-
ceedings of Parallel Problem Solving from Nature (PPSN), volume 1498
of Lecture Notes in Computer Science, pages 885-896, Amsterdam, The
Netherlands, September 1998. Springer-Verlag.

BIBLIOGRAPHY 202

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Ho, M. Brown,
and S. Amarasinghe. Streamlt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622, Cambridge, MA.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamlt: A
language for streaming applications. In Proceedings of the International
Conference on Compiler Construction (CC), volume 2304 of Lecture Notes
in Computer Science, pages 179—-196, Grenoble, France, April 2002.

Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical com-
piler techniques on efficient multithreaded code generation for OpenMP
programs. The Computer Journal, 48(5):588-601, 2005.

Nalini Vasudevan and Stephen A. Edwards. Static deadlock detection for the
SHIM concurrent language. In Proceedings of the International Conference
on Formal Methods and Models for Codesign (MEMOCODE), pages 49-58,
Anaheim, California, June 2008.

Nalini Vasudevan and Stephen A. Edwards. Buffer sharing in CSP-like pro-
grams. In Proceedings of the International Conference on Formal Methods
and Models for Codesign (MEMOCODE), Cambridge, Massachusetts, July
2009.

Nalini Vasudevan and Stephen A. Edwards. Celling SHIM: Compiling
deterministic concurrency to a heterogeneous multicore. In Proceedings of
the Symposium on Applied Computing (SAC), volume III, pages 1626-1631,
Honolulu, Hawaii, March 2009.

Nalini Vasudevan and Stephen A. Edwards. A determinizing compiler. In
Programming Languages Design and Implementation (PLDI) - Fun Ideas
and Thoughts Session, Dublin, Ireland, June 2009.

Nalini Vasudevan and Stephen A. Edwards. Buffer sharing in rendezvous
programs. [EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29(10):1471-1480, October 2010.

Nalini Vasudevan and Stephen A. Edwards. Determinism should ensure
deadlock-freedom. In Proceedings of the 2nd USENIX Workshop on Hot
Topics in Parallelism (HotPar), Berkeley, California, June 2010.

Nalini Vasudevan, Stephen A. Edwards, Julian Dolby, and Vijay Saraswat.
d’c: Deterministic, deadlock-free concurrency. In High Performance
Computing - Student Research Symposium, December 2010.

BIBLIOGRAPHY 203

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Nalini Vasudevan, Kedar Namjoshi, and Stephen A. Edwards. Simple and
fast biased locks. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 65-74, Vienna,
Austria, September 2010.

Nalini Vasudevan, Satnam Singh, and Stephen A. Edwards. A deterministic
multi-way rendezvous library for Haskell. In Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 1—
12, Miami, Florida, April 2008.

Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and Stephen A. Edwards.
Compile-time analysis and specialization of clocks in concurrent programs.
In Proceedings of Compiler Construction (CC), volume 5501 of Lecture
Notes in Computer Science, pages 48—62, York, United Kingdom, March
2009.

Martin Vechev, Eran Yahav, Raghavan Raman, and Vivek Sarkar. Automatic
verification of determinism for structured parallel programs. In Radhia
Cousot and Matthieu Martel, editors, Static Analysis, volume 6337 of
Lecture Notes in Computer Science, pages 455-471. Springer Berlin /
Heidelberg, 2011.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and
Flavio Lerda. Model checking programs. Automated Software Engineering,
10(2):203-232, April 2003.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The SPLASH-2 programs: characterization and method-
ological considerations. In ISCA ’95: Proceedings of the 22nd Annual
International Symposium on Computer architecture, pages 24-36, New
York, NY, USA, 1995. ACM.

Hao Zheng, Jared Ahrens, and Tian Xia. A compositional method with
failure-preserving abstractions for asyn chronous design verification. /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(7):1343-1347, July 2008.

	I Introduction
	The Problem
	Terminology
	Problem Statement
	Design Considerations
	Performance
	Scalability
	Programmer Flexibility and Ease of Use

	Thesis Outline

	Background
	Problems with concurrent programming
	Concurrent programming models
	Determinizing tools
	Model checkers and verifiers

	II Determinism
	The SHIM Model
	SHIM on a Shared Memory Architecture
	Reviewing SHIM
	Design exploration with SHIM
	Porting and parallelizing a JPEG decoder
	Parallelizing an FFT
	Race freedom

	Generating Pthreads code for SHIM
	Mutexes and condition variables
	The static approach
	Implementing rendezvous communication
	Starting and terminating tasks
	Optimizations

	Experimental results
	Related work
	Conclusions

	SHIM on a Heterogeneous Architecture
	The Cell Processor
	DMA and Alignment
	Mailboxes and Synchronization

	Our Compiler
	Code for the PPE
	Code for the SPEs

	Collecting Performance Data
	Experimental Results
	Related Work
	Conclusions

	SHIM as a Library
	SHIM as a Library Versus a Language
	Related Work
	Concurrency in Haskell
	Our Concurrency Library
	Our Library's API
	Deadlocks and Other Problems
	An STM Implementation
	Forking parallel threads
	Deterministic send and receive
	A Mailbox Implementation

	Experimental Results
	STM Versus Mailbox Rendezvous
	Examples Without Rendezvous
	Maximum element in a list
	Boolean Satisfiability
	Examples With Rendezvous
	Linear Search
	Systolic Filter and Histogram

	Conclusions

	III Deadlock-freedom
	Deadlock Detection with a Model Checker
	Related Work
	Abstracting SHIM Programs
	An Example

	Modeling Our Automata in NuSMV
	Finding Deadlocks
	Results
	Conclusions

	Compositional Deadlock Detection for SHIM
	An Example
	Compositional Deadlock Detection
	Notation
	Our Algorithm

	Experimental Results
	Related work
	Conclusions

	Runtime Deadlock Detection for SHIM
	The Algorithm
	Conclusions

	D2C: A Deterministic Deadlock-free Model
	Approach
	Implementation
	Results
	Conclusions

	IV Improving Efficiency
	Reducing Memory in SHIM programs
	Abstracting SHIM Programs
	An Example

	Merging Tasks
	Tackling State Space Explosion
	Buffer Allocation
	Experimental Results
	Related Work
	Conclusions

	Optimizing Barrier Synchronization
	The X10 Programming Language
	Clocks in X10
	Clock Patterns

	The Static Analyzer
	Constructing the Automaton
	Handling Async Constructs with the Clock Model
	Specifying Clock Idioms
	Combining Clock Analysis with Aliasing Analysis

	The Code Optimizer
	Results
	Related Work
	Conclusions and Future Work

	Optimizing Locks
	Introduction
	Flexible, Fixed-Owner Biased Locks
	Transferring Ownership On-The-Fly
	Mutual Exclusion and Memory Fences
	Asymmetric Locks
	Read-Write Biased Locks
	Algorithm Verification
	Experimental Results
	Performance with varying domination
	Locked vs. lockless sequential computation
	Performance of a packet-processing simulator with asymmetric locks
	Biased Locks for Database Queries
	Ownership transfer
	Ownership transfer with incorrect dominance
	Overheads for nondominant behavior
	Performance of biased read-write locks
	Performance on a simulated router application

	Related Work and Conclusions

	V Conclusions
	Conclusions
	Bibliography

