
E�cient Veri�cation and Synthesis using Design CommonalitiesGitanjali Swamy Stephen Edwards Robert BraytonBoston Advanced Development Labs University of California at BerkeleyMentor Graphics, Boston,MA Berkeley, CAAbstractIn this paper we solve the problem of identify-ing a \matching" between two logic circuits or \net-works". A matching is a functions that maps eachgate or \node" in the new circuit into one in theold circuit (if a matching does not exist it maps itto null). We present both an exact and a heuristicway to solve the maximal matching problem. Thematching problem does not require any input corre-spondences. The purpose is to identify structurallyidentical regions in the networks, and exploit thecommonality between them for more e�cient ver-i�cation and synthesis.Synthesis and veri�cation tools that recognizecommonalities both between two versions of thesame design, as well within a single design, maybe able to outperform their counterparts that do notutilize these commonalities. This work is concernedwith detecting structural "matchings" that may bere-utilized.1 IntroductionWe address the problem of �nding a high qual-ity matching between two networks. We comparepairs of networks|combinational logic designs rep-resented as directed acyclic graphs whose nodes aregeneralized (multi-valued, non-deterministic) gatesand whose edges are generalized (multi-valued) con-necting wires. We look for matchings, functionsM : N ! N 0 [f;g from each node in a new net-work N to a node in the old network N 0 or to \un-matched" (;) such that ifM (n) = n0, then the gatesat nodes n and n0 are identical (when their inputsare permuted) and their fanins match (M (nk) = n0kfor corresponding fanins nk and n0k). The qual-

ity of a matching is the number of matched nodesq(M) = jfn 2 N jM (n) 6= ;gj. We solve the prob-lem of �nding the maximum quality matching.The ability to reuse parts of the design duringsynthesis and veri�cation is our primary motivationfor solving this problem. Our application was in-cremental design analysis, where we have multipleversions of the same design (generated by a com-piler that lost the correspondences) and would liketo share similar information. However, any appli-cation where input correspondences between designare not available is a valid application for this tech-nique. One example is veri�cation under re-timing[8], where latch correspondences get distorted andlost. We may want to avoid re-computation ofinformation shared between the original and re-timed design, but we do not have 1-1 correspon-dences between the inputs and outputs. We can stillshare functional and structural information betweennode n and the corresponding matching nodeM (n).Analysis can be done more e�ciently by identifyingunchanged portions of a design and reusing the in-formation computed for them. Our techniques mayalso be used to identify common areas within a sin-gle design, allowing common information to be com-puted e�ciently. This is particularly relevant in thecontext of circuits generated after high-level synthe-sis, where we may have multiple instantiations of thesame module that lead to similar structures in thecircuit, and we would like to avoid re-computationfor each instantiation.This common information can be used to createmore e�cient synthesis and veri�cation algorithms.It must be stressed that even though the experimentwe ran used veri�cation to illustrate this technique,the focus of this work is how to identify the designcommonalities.In the context of synthesis and veri�cation, a de-sign commonality or matching corresponds to struc-

turally identical transitive fanin cones of the designthat start at a node and contain all the nodes andwires in its transitive fanin. We choose to identifythese because the global function at a node is a func-tion only of its transitive fanins. An example is thetransition function [12], used frequently in formalveri�cation and usually computed using BDDs [4].Identifying matching nodes allows us to computethe new BDD by substituting variables, which canbe done e�ciently. For example, the BDD for f(b)can be obtained from a BDD for f(a) by substi-tution, even though a and b are di�erent primaryinputs altogether.The approach we propose does not require anyadditional matching information (e.g., correspon-dences between the primary inputs). We expectmost designs we compare will be the output ofa compiler that does not usually supply any cor-respondence information. An alternative wouldbe to use names to guess correspondences, butthis is insu�cient when names are automaticallygenerated|they are often very sensitive to smallchanges in a design. Finally, by not assuming in-put correspondences, our algorithms can be appliedto more general problems such as identifying iden-tical structures within the same design. Keep inmind that if the input correspondences were avail-able, there are more e�cient techniques to solve theproblem.We propose a greedy three-phase algorithm to�nd a good matching. First, nodes with identi-cal functions are identi�ed. Next, this informationis combined with connectivity information to �ndnodes that have identical structures in their transi-tive fanins. Finally, the matchings implied by thesenodes are combined into a high-quality matching.We use both a greedy heuristic, as well as an exactformulation.It is not correct to compare Brand et al's [1]work on incremental synthesis with this work, be-cause they require knowledge of input correspon-dences and can only detect regions that start at theinputs and have the exact same function.Another relevant piece of work by Burch et al [5]solves a functional matching problem that does notrequire input correspondence information. How-ever, they are only comparing Boolean functions,and their approach does not generalize to circuitdesigns. Note that one sub-problem in our networkmatching is node function matching, which coulduse Burch's approach. However, our main objective

is to get a quick matching rather than the exactnode function matching. We adopt a similar notionof a semi-canonical form, but our form is simpler(and hence faster) at the expense of some precision.Also, we deal with more general multi-valued func-tions [2], rather than just binary.2 Network MatchingWe assume the reader is familiar with the fol-lowing concepts: A network N or netlist of logicgates is characterized by a set of nodes n or logicgates with three associated functions: func(n) is thefunction of the node, fanins(n) 2 f0; 1; : : :g is thenumber of fanins of the node, and fanin(n; k) 2N; k = f1; : : : ; fanins(n)g is the kth fanin of thenode. The entire set of fanins of fanins etc are de-noted as the transitive fanins tf(n).In general, this problem is hard; it is easy to seethat an instance of sub-graph isomorphism can bereduced to an instance of this problem, making itNP-hard.Our aim is to �nd a node in the old network foreach node in the new network, with information wecan use for its analysis. This information, by as-sumption, is only a function of the node and itstransitive fanin. Thus, the matching node in theold network must have an identical transitive fanin(only up to the inputs). In any case, we can use in-formation computed for a node to get the same in-formation for its matching node, irrespective of theprimary inputs involved. For example, the BDD forf(b) can be obtained from a BDD for f(a) by sub-stitution, even though a and b are di�erent primaryinputs altogether.We cannot use the technique of using the simu-lation signatures of nodes to distinguish them, be-cause we do not have an input correspondence. Weidentify the set of all potentially matching nodes(called candidate pairs) and combine a compatiblesubset of these to form the matching. In Section 4,we show that the problem of �nding the best subsetcan be reduced to �nding a maximal prime compat-ible. In Section 5, we present a greedy algorithm for�nding a good subset.The following de�nition characterizes whichnodes we might consider matching. Informally, twonodes could match if their functions are identicaland their respective fanins could match.De�nition 1 A pair of nodes2

n1; n2 is a candidate pair (denoted n1 � n2) iffunc(n1) = func(n2), fanins(n1) = fanins(n2), and8k=1;:::;fanins(n1)fanin(n1; k) � fanin(n2; k). Notethat the correspondence between the fanins is de-termined by reducing the node function representa-tion to some semi-canonical form, and noting thatin that form, the ith variable for (canonical) nodefunction for n must correspond with the ith variablefor the (canonical) node function for n0.This is of course an approximation, since theremay be several permutations of fanins wherefunc(n1) = func(n2). Note that this de�nition im-plies that all primary inputs may match with eachother. We add the caveat that the primary inputsmay match provided they can take the same set ofvalues, i.e. a primary input that can take values0; 1; 2 cannot match with a primary input that takesvalues 0; 1; 2; 3; 4;5.Not all candidate pairs lead to consistent match-ings. Speci�cally, it may be necessary to match anode in the new network to two or more nodes inthe old network simultaneously. This is particularlynonsensical in the case of zero-fanin nodes, whichrepresent inputs to the network. Figure 1 depicts acontradictory situation.
NEW OLD

n

n

f
f

f f f

1
1

2 2 2

11

2 32
n’

n’

n’

Figure 1. A candidate pair (n1 � n01) with no
consistent matching.Formally, the consistency constraint requires amatching to be a function mapping each node inthe new network either to a matched node in theold network, or to \unmatched," represented as ;.De�nition 2 Given two networks N (the newnetwork) and N 0 (the old network), a match-ing is a function M : N ! N 0 [f;gsuch that M (n) 6= ; implies (n � M (n)

and 8k = 1; : : : ; fanins(n) : M (fanin(n; k)) =fanin(M (n); k)).Note: This de�nition implies that ifM (n) 6 =�, then8na 2 tf(n);M (na) 6 =�.
OLD NEW

n

n n

1 1

2 23 3

f

f f

f

f f

1

2 2 2 2n’ n’

n’1

Figure 2. A matching with q(M) = 3Our objective is to �nd a matching that maxi-mizes the number of matched nodes (called the qual-ity of the match), i.e. those for which M (n) 6 =�.De�nition 3 The quality of a matching M isthe number of matched nodes, i.e., q(M) =jfn j M (n) 6= ;gj.De�nition 4 If it exists, the implied matchingof a candidate pair n1 � n2 isM (n1) = n28kM (fanin(na; k)) = fanin(M (na); k); na 2 tf(n1) [fn1gM (n) = ;; n 62 tf(n1)Theorem 2.1 An implied matching is a matching.Proof.1. 8k = 1; : : : ; fanins(n);M (fanin(n; k)) =fanin(M (n); k).2. M is a function.2 We will be combining implied matchings toform bigger matchings, but some pairs of impliedmatchings|those that map a node in the new net-work to two di�erent nodes in the old|cannot becombined. We need a formal de�nition of whichmatchings can be merged:De�nition 5 A pair of matchings M1 and M2 arecompatible (written M1 *) M2) if (M1(n) 6= ;) ^(M2(n) 6= ;))M1(n) = M2(n).3

Note that compatibility is not transitive; i.e.M1 *) M2, and M2 *) M3, does not imply thatM1 *)M3.De�nition 6 The merge of two matchings M1and M2, written M1 +M2, is the function(M1 +M2)(n) = � M2(n) if M1(n) = ;M1(n) otherwiseLemma 2.2 If M1 *) M2, then M1 + M2 is amatching and M1 +M2 = M2 +M1, i.e. mergingis commutative. Moreover, if in addition M2 *)M3and M1 *)M3, then (M1+M2)+M3 = M1+(M2+M3), i.e. merging is associative.Proof. M1 *) M2 , 8n(M1(n) 6= ;) � (M2(n) 6=;))M1(n) = M2(n).(M1 +M2)(n) = � M2(n) if M1(n) = ;M1(n) if M1(n) 6= ;(M2 +M1)(n) = � M1(n) if M2(n) = ;M2(n) if M2(n) 6= ;1. if M1 6= ;, M2 6= ;.)M1 +M2 =M1 = M2 = M2 +M1.2. if M1 = ;, M2 6= ;.)M1 +M2 =M2 = M2 +M1.3. if M1 6= ;, M2 = ;.)M1 +M2 =M1 = M2 +M1.4. if M1 = ;, M2 = ;.)M1 +M2 = ; = M2 +M1.)M1 +M2 = M2 +M1. Associativity proved in asimilar manner, i.e. by enumerating all possibilities.2Lemma 2.3 Merging only improves quality, i.e., ifM1 *)M2, then q(M1); q(M2) � q(M1 +M2).Proof. Assume not.) 9n st (M1(n) 6= ;) � (M1 +M2)(n) = ;.M1(n) 6= ;) (M1 +M2)(n) = M1(n) 6= ;.) (M1 +M2)(n) 6= ;.A contradiction, hence 6 9n st (M1(n) 6= ;) � ((M1 +M2)(n) = ;.) q(M1) � q(M1 +M2). 2

Partition nodes in both networks by functionRe�ne this partition s.t. all nodes in a bucket havefanins in the same bucketsForm all candidate pairs by considering all pairs ofnodes in each bucketSort the candidate pairs by the number of nodes intheir transitive fanin
Figure 3. Identifying compatible nodes.3 Determining Matchings: A Re-�nement AlgorithmIn order to determine the entire set of impliedmatchings, we use the following iterative algorithm.We begin by assuming all nodes whose node func-tions are matched to be matched. We implementthis algorithm with a hash table. Nodes with thesame node function are put into the same initial\bucket" in the hash table. The canonical form ofthe node function imposes a certain order on thefanins of the node. If two node functions in canoni-cal form are equal, then the fanins node correspond-ing to ith variable of the node function, must cor-respond. We re�ne the node matchings iteratively,by \un-matching" two nodes, if some of their cor-responding fanins are un-matched. We accomplishthis by re-bucketing each node in the hash table. Ateach iteration, the new bucket signature of a nodeconsists of its table signature (canonical form) andthe bucket numbers of its fanins (in the order im-posed by their node function tables). Thus, if atsome iteration, any nodes in the same bucket havecorresponding fanins in di�erent buckets, then af-ter that iteration, these nodes get put into di�erentbuckets.This algorithm is similar to the algorithm for thecomputation of equivalent states in an FSM [6], [12].After this re�nement, all pairs of nodes in a bucketare candidates. The algorithm is shown in Figure 3.Note that at th ith iteration of this algorithm,nodes that match up to at least i levels of fanin areidenti�ed. Thus, though we have described a proce-dure that matches entire cones, this procedure canbe modi�ed to match sub-regions by restricting thenumber of iterations of the re�nement procedure, orkeeping track of all buckets seen during the re�ne-ment process.4

4 An Exact FormulationOnce we have a set of consistent matchings (Sec-tion 3), we address the problem of �nding a maxi-mum compatible matching exactly.Lemma 2.3 indicates that merging compatiblematchings gives higher quality matchings. In thissection, we use this idea to exactly characterize theproblem of �nding the maximal quality matching.We show that the maximal matching is a \prime"matching|one for which merging in other match-ings is either impossible or unproductive.Lemma 4.1 If M is the sum of a �nite number ofcompatible implied matchings then it is a matching,i.e., 8i;jMi *)Mj and M = M1+M2+ � � �+Mk)M is a matching .Proof. Follows from the de�nition of matching,implied matching, and Lemmas 2.2. 2We can de�ne a dominance relation [7] [11] asfollows:De�nition 7 A matching M1 dominatesa matching M2 (written M1 � M2) if M1 *) M2and M1 +M2 = M1.De�nition 8 A prime matching is one that is notdominated by any other matching.Lemma 4.2 If M1 is a prime matching, and M1 �M2, then q(M1) � q(M2)).Proof. Since M1 � M2, M1 *) M2) M1 = M1 +M2.Lemma 2.3 implies q(M2) � q(M1 + M2). SinceM1 +M2 = M1, it follows that q(M2) � q(M1). 2We can reduce maximal or prime matching to aprime generation problem in the following manner.1. Associate a Boolean variable ui with eachmatching Mi. ui = 1 implies Mi is part ofthe given matching.2. For each pair of matchingsMi andMj that arenot compatible Mi 6 *)Mj , construct a clause(ui + uj). This means either Mi must notbe in the partition or Mj must not be in thepartition.3. logically AND all such clauses to get a func-tion f(u).

4. A prime of function f(u) corresponds to acompatible set of matchings. The maximalprime corresponds to a maximal matching.Theorem 4.3 A maximum matching is a primematching and can be built from a set of compatibleimplied matchings.Proof. Follows from Lemmas 4.1 and 4.2. 2Thus, from the above the problem of �nding themaximummatching is one of �nding the maximumquality prime. We can do this naively by enumerat-ing each prime matching and calculating its quality(in actuality, we implement a slightly more e�cientprocedure). However, since the number of primesof a set of n elements is O(3n=n) [10] and n canbe O(N2), where N is the number of nodes in eachnetwork, it is often impractical to explicitly searchthe entire set of primes. This worst case comes whenthe network consists of a set of zero-fanin nodes withidentical functions.5 A Greedy AlgorithmThe exact method cannot handle large examples;we extend the scope of the examples by using thefollowing heuristic algorithm. Our heuristic algo-rithm �nds the set of all candidate pairs with im-plied matchings and merges them greedily, tryingthe highest quality ones �rst.First we used the re�nement procedure of Sec-tion 3 to identify candidate pairs. Once the can-didate pairs are identi�ed, we build a matchingby merging together compatible implied matchings.We consider candidate pairs one at a time, start-ing with those with the largest number of nodes intheir transitive fanins, and \grow" a matching bymerging each compatible implied matching.The entire algorithm is shown in Figure 4. InSection 7, we report the performance of our imple-mentation of this algorithm against the exact algo-rithm.6 Table Matching: Matching NodeFunctionsIn this section, we discuss how to identifywhether two node functions are identical if we donot have an input correspondence. This is knownas Boolean matching, and is a well studied problem.5

Partition nodes in both networks by functionRe�ne this partition s.t. all nodes in a bucket havefanins in the same bucketsForm all candidate pairs by considering all pairs ofnodes in each bucketSort the candidate pairs by the number of nodes intheir transitive faninM(n) = ;, the empty matchingfor Mi largest to Mi smallestif M *)MiM =M +MiRETURNM
Figure 4. The greedy matching algorithm.For our experiment, we are looking for a quick es-timator of whether two node functions, representedas node function tables match.The nodes in our networks have discrete-valuedfunctions (a generalization of Boolean functions) as-sociated with them. These are represented in BLIF-MV-style tables [2], such as that in Figure 5. Eachcolumn on the left represents an input variable, andeach row is a pattern that, when the inputs matchit, produces the output in the rightmost column.Each entry is either a single value (e.g., 3), a setof values (e.g., 1; 2; 5), or the set of all values (i.e.,\{"). Note that BLIF-MV permits symbolic valuesof the form red; blue; greeen, which are representedas the values 0; 1; 2.Figure 5 represents a function f(x1; x2; x3) thatis 3 when x1 = 0 and x2 = 2 or 3, or when x2 = 1;is 0 when x1 = 1, x2 = 0, and x3 = 1; and is 1default. x1 x2 x3 f0 2,3 { 3{ 1 { 31 0 1 0default 1
Figure 5. A multi-valued table. x1, x2, andx3 are the input variables.We want to be able to quickly identify tablesthat compute the same function. Transforming eachtable into a permutation-invariant canonical formis an approximate approach to solving this prob-

lem; di�erent tables that are not equivalent modulopermutations may also compute the same function.Computing a canonical form (modulo all permuta-tions) is much more expensive([5]); in the interestsof quick computation, we have opted for this sim-pler semi-canonical form. For example, the tablesshown in Figures 5 and 6 are essentially identicalmodulo a row column permutation, and there is anidentical permutation semi-canonical form for bothof them, which can be used to identify this.y1 y2 y3 f{ { 1 3{ 0 2,3 31 1 0 0default 1
Figure 6. A multi-valued table. y1, y2, andy3 are the input variables.De�nition 9 Two tables arepermutation equivalent if one can transformedto the other by permuting the rows and columns.We assume that the values in each entry are alwaysordered, so that we do not have to distinguish be-tween 2; 3 and 3; 2. To make this entry compact,we use ordered lists of ranges, i.e. 2 � 5; 7 � 8, torepresent each entry.De�nition 10 A function is canonicalizing i� itmaps all permutation-equivalent tables to a singletable, which is called the permutation-invariantcanonical form of the table.A function is canonicalizing if it imposes apermutation-invariant total order on rows andcolumns and then sorts the rows and columns basedon this. Finding such a total order is di�cult andexpensive, so we resort to an order that is partialfor certain tables. We count the number of timesa particular value appears in the entries in a rowor column and order the rows and columns basedon this sum. The reason we use this \addition" ofthe number of times a value occurs in a column asa hash function is because we need a permutationinvariant canonical form.Consider the table in Figure 7. If we order therows and columns according the number of 1's that6

P =0@ 1 1 01 1 11 0 0 1A 231P = 3 2 1
Figure 7. A simple table annotated with the
number of 1’s in each row and column.appear in each row and column, we obtain the tablein Figure 8. We were fortunate in this example,since the number of 1's in each row and column isdi�erent, but in general, this strategy only producessemi-canonical tables. P =0@ 0 0 10 1 11 1 1 1A 123P = 1 2 3

Figure 8. The table in canonical formWe can extend these ideas to tables with set-valued entries by converting each entry to an in-teger. First, each set is transformed to a vectorof 0's and 1's. Each 1 represents the presence ofa value in the set; each 0 represents the absence,e.g., the entry 2; 3 would be represented as a vector(1100). A bitwise sum of all such vectors in a rowor column (zero-extending them if necessary) givesa vector than can be used to impose a partial or-der. E.g. The bitwise sum of (2; 3) = (1100) and(0; 1; 2) = (0111) is (1211). (1211) denotes that inthe given column there is one 0 value, one 1 value,two 2 values and one 3 value.These vectors can be transformed to integers tomake them easier to manipulate.IntuitionNote that in a table with n rows and m columns,the total number of 1's in a position in a columncannot exceed n. Similarly, the total number of 1'sin a row cannot exceed m. By transforming thesevectors to base b = maxfm;ng+ 1 integers, we cansum the integers in a row or column, and still en-sure that each column sum only includes informa-tion about that column (no carry between (value)

� 1 0 11 1 0 �� 1 1 01 0 1 �
Figure 9. Identical tablespositions). For example, if each entry in a columnis the entry 2 = (0100), and there are 15 columns.The bitwise sum for the column is 0F00; F denotes15 in base 16. If we were to represent the number inbase 10, then the sum would be (1500), and due thecarry we cannot distinguish between �fteen 2 entriesversus one 3 and �ve 2 entries. Under this repre-sentation permutation equivalent rows or columnshave the same sum. This may result in some ambi-guity. Consider the two tables shown in Figure 9;both rows of the given tables have the same sum,and hence are indistinguishable. If this ambiguityis never resolved, then these two rows will never beinterchanged. Thus, the fact that the two tablesare identical will not be detected. This issue can beresolved by using a secondary tie breaker like theposition of the �rst 1 entry. In general, this prob-lem is part of a larger problem of "symmetries" [9].De�nition 11 For a table with n rows and mcolumns, let mj be the maximum value of the in-put variable in column j, and let Eij(k) be 1 if theentry in row i and column j contains the value kand 0 otherwise. The numerical representation ofthis table is an n�m matrix T with entriestij = mjXk=0 bkEij(k)It is clear that each subset of values at a tableentry has unique encoding tij. Figure 10 shows thetable of Figure 5 converted to a matrix of naturalnumbers. For this table, (1 + maxfm;ng) = 4. Asan example, the entry 2; 3 is converted to a basefour number: t1;2 = 40 �0+41 �0+42 �1+43 �1 = 80.De�nition 12 In an m � n table (tij), a row i isbefore row k if Pnj=1 tij < Pnj=1 tkj. A column jis before a column k if Pmi=1 tij <Pmi=1 tik.7

P =0@ 1 80 55 4 54 1 4 1A 86149P = 10 85 14
Figure 10. The table converted to a matrix
of natural numbers.0@ 4 4 15 5 41 5 80 1A
Figure 11. The table in semi-canonical formDe�nition 13 The semi-canonical form of a ta-ble tij is a permutation of the rows and columns oftij such that if row i is before row k then i < k, andif column j is before column k then j < k.Figure 11 shows the table in Figure 10 convertedto semi-canonical form.Theorem 6.1 A table in semi-canonical form rep-resents the same function as the original table undersome permutation of variables.Hence two tables with the same semi-canonicalform represent the same discrete function.7 Experiments and ResultsWe have implemented the algorithms describedin the VIS [3] environment.In order to to test our procedure, we designed thefollowing experiment. We assume that the designhas been read in, and the designer has computed theoutput function BDDs of each node (as functionsof the primary inputs). At this point the designermodi�es the original design by either changing thefunctionality, or just re-optimizing the hardware forsome other objective. The designer would like touse the BDDs computed for the old network to e�-ciently compute the BDDs in the new network. Ob-viously, we assume that there is a su�cient amountof structural similarity between the old and the net-work design. To emulate a design change, we took

Example Non-Inc Inc Match TotalTime Time Time Timebigkey 1 0.183 1.65 1.883cordic latches 2.367 0.066 1.7 1.766clma 11.6 0.8 11.78 12.68clmb 11.45 0.8 10.45 11.25des 2.884 0.017 1.967 1.984i10 13.334 0.067 1.867 1.934minmax10 800.734 0.2 0.35 0.55minmax12 352.634 0.25 0.467 0.717mm9a 27.034 0.033 0.35 0.383mm9b 526.0 0.2 0.367 0.567pair 1.434 0.884 0.466 1.35s13207 1.6 0.217 18.734 18.941s1423 1.783 0.133 0.317 0.315s15850 31.617 0.267 12.317 12.584s38584 10.85 1.35 138.434 139.784
Table 2. Incremental Vs. Non Incremental
UpdateMCNC, ISCAS and VIS benchmark examples andmodi�ed them to obtain a circuit called \new". Theoriginal benchmark spec corresponds to the \old"design.As an experiment we built the function BDDsassociated with the \old" design. This is done re-cursively, by building the BDD at each node as afunction of the BDDs of its fanin nodes. Next, weran the matching algorithm on the old and new de-signs. If there existed a match from a node in thenew network, to the old, we re-used the BDD forthe old node by merely substituting the old net-work BDD variables with the corresponding BDDvariables in the new network. If there was no match,we re-computed the BDD by using the BDDs com-puted for the fanin nodes of the new node. We re-ported time for this incremental computation (IncTime) as well as the time for computing the match-ing (Match Time). We also built the BDDs for thenew network from scratch, and reported this non-incremental time (Non-Inc Time).Table 1 reports the quality of the matching Vs.the time to match the examples. Columns 2 and 3list the number of inputs and outputs in the circuitrespectively. The outputs include both the primaryoutputs and latch inputs for non-combinational cir-8

Example]]] Nodes] Nodes Initial Re�ne MatchInputs Outputs Total in Match Time Time Timebigkey 262 197 1369 791 0.317 0.033 1.567clma 382 115 11382 10973 4.766 3.534 11.783clmb 382 33 10842 10407 4.634 3.416 10.45cm163a 16 38 68 11 0.017 0 0.017cordic latches 23 2 3468 2873 0.35 0.267 1.617i10 257 224 2754 2750 0.284 0.6 1.734minmax10 13 40 723 87 0.033 0.117 0.15minmax12 15 48 914 104 0.066 0.15 0.233mm9a 12 36 830 637 0.05 0.05 0.316mm9b 12 35 714 106 0.067 0.083 0.167s13207 31 790 10065 8713 0.75 1.333 18.583s1423 17 79 1199 298 0.1 0.083 0.317s1488 8 25 711 97 0.084 0.083 0.184s1494 8 25 658 34 0.083 0.083 0.183s15850 14 683 11591 10272 0.933 1.684 12.183s38584 12 1730 23775 20839 5.767 7.267 138.434
Table 1. Quality and Time to Matchcuits. Columns 4 and 5 list the total and matchednumber of nodes in the network respectively. Thematching times are listed by its component; i.e.time to get the initial matching(Initial Time), timeto re�ne the partition(Re�ne Time), and time togenerate matching in Column 6, 7 respectively, aswell as the total time to match (Match Time = ini-tial + re�ne +time to generate and evaluate thequality of the entire matching cones), in Column 8.Since we used an explicit matching algorithm, it isrightly observed that as the size of the matching in-creases so does the time to match. The dominantportion of the time appears to be spent in gener-ating the matching rather than the re�nement orinitial time.Table 2 reports the times for the non-incrementalBDD computation (Column 2) Vs. the incrementalBDD computation (Column 3) and total matchingtime (Column 4). The times for incremental BDDcomputation alone were always better than the non-incremental time (obviously using previously com-puted information is better than no information).However, when we add in the matching time, thisis not always the case.Of the reported example (we only consideredthose with more than 1 sec of CPU time for non-incremental BDD building), most have signi�cantly

better total times for the incremental procedure(match time + incremental time) as compared tothe non-incremental procedure. Only 2 had signif-icantly worse time for the incremental method, 3had approximately equal times and the rest alwaysreported better times (incremental + matching) forthe incremental method.We also report the results on the exact compu-tation (Section 4)as compared to the heuristic (Sec-tion 5). The exact method ran out of memory muchfaster, and hence we were only able to deal withsmall examples with the exact method. However,Table 3 shows that for examples where the exactmethod could complete, the heuristic answers werealmost always the same.We only report examples with signi�cant timeto build BDDs with the given order. Though ourtechniques extend to multi-valued examples. Wewere not able to �nd multi-valued examples in ourset, with large enough BDD time, so their resultsare not signi�cant and have not been reported.We have shown that for small examples the exactanswer is almost identical to our heuristic. Thisdemonstrates the e�ectiveness of our heuristic.We examined the one example where the match-ing time far exceeded the non-incremental time, andfound that the cause of this problem was the large9

Example Heuristic] Nodes Exact] Nodesin Matching in Matchingapex7 12 12bbsse 23 23c8 15 16cm163a 11 11i2 48 48mark1 18 18minmax10 87 87minmax12 104 104mult32b 253 253term1 62 62
Table 3. Exact Vs. Heuristic Common Sub-
structuressymmetry in the circuit coupled with the large sizeof the circuit. There were many possible matchings,and examining them all, while determining the qual-ities of matchings was expensive. As part of futurework, the work of Malik [9] to detect symmetriescould be used to speed up our computation. Wefound that as we increased the size of the example,the matching time increased signi�cantly. This isdue to our explicit formulation of the matching al-gorithm. As future work an implicit formulation ofthe matching algorithms can used to overcome someof the size limitations (implicit prime generation).Our techniques could be extended to deal withmatching arbitrary sections of the network, ratherthan the entire transitive fanin cone. One applica-tion would be �nding structurally identical sectionswithin a single network, so that information com-puted at one section may be re-used for anotherstructurally identical portion.References[1] D. Brand, A. Drumm, S. Kundu, and P. Narain.Incremental Synthesis. In Proc. Intl. Conf. onComputer-Aided Design, pages 14{18, Nov. 1994.[2] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam,K. Kodandapani, R. P. Kurshan, S. Malik,A. L. Sangiovanni-Vincentelli, E. M. Sentovich,T. Shiple, K. J. Singh, and H.-Y. Wang. BLIF-MV: An Interchange Format for Design Veri�ca-tion and Synthesis. Technical Report UCB/ERLM91/97, Electronics Research Lab, Univ. of Cali-fornia, Berkeley, CA 94720, Nov. 1991.

[3] R. K. Brayton et al. VIS: A System for Veri�cationand Synthesis. In Proc. of the Conf. on Computer-Aided Veri�cation, pages 428{432, 1996.[4] R. Bryant. Graph-based Algorithms for BooleanFunction Manipulation. IEEE Trans. Comput., C-35:677{691, Aug. 1986.[5] J. Burch and D. Long. E�cient boolean functionmatching. In Proceedings of IEEE/ACM Inter-national Conference on Computer-Aided Design,pages 408{411, November 1992.[6] J. Hopcroft. An n log n algorithm for minimizingstates in a �nite automaton. In Z. Kohavi andA. Paz, editors, Theory of Machines and Computa-tions. Proceedings of an International Symposiumon the Theory of Machines and Computations.,pages 189{196, Haifa, Isreal, 1971. Academic Press.[7] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A Fully Implicit Algorithm for ExactState Minimization. In Proc. of the Design Au-tomation Conf., pages 684{690, June 1994.[8] C. E. Leiserson and J. B. Saxe. Optimizing Syn-chronous Systems. Journal of VLSI and ComputerSystems, 1(1):41{67, Spring 1983.[9] S. Malik, J. Mohnke, and P. Molitor. Limitsof Using Signatures for Permutation IndepedantBoolean Matching. In Proc. Intl. Workshop onLogic Synthesis, Tahoe, May 1995.[10] E. J. McClusky. Minimization of Boolean Func-tions. Bell System Technical Journal, 35, 1956.[11] G. M. Swamy, P. Mcgeer, and R. K. Brayton. AnExact Logic minimizer using BDD based Methods. Technical Report "Masters Thesis" UCB/ERLM93/94, Electronics Research Lab, Univ. of Cali-fornia, Berkeley, CA 94720, 1993.[12] H. Touati, H. Savoj, B. Lin, R. K. Brayton, andA. L. Sangiovanni-Vincentelli. Implicit State Enu-meration of Finite State Machines using BDD's. InProc. Intl. Conf. on Computer-Aided Design, pages130{133, Nov. 1990.
10

