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ABSTRACT

Concurrent programming languages are growing in importance
with the advent of multi-core systems. However, concurrent pro-
grams suffer from problems, such as data races and deadlock, ab-
sent from sequential programs. Unfortunately, traditional race and
deadlock detection techniques fail on both large programs and small
programs with complex behaviors.

In this paper, we present a compositional deadlock detection
technique for a concurrent language—SHIM—in which tasks run
asynchronously and communicate using synchronous CSP-style ren-
dezvous. Although SHIM guarantees the absence of data races, a
SHIM program may still deadlock if the communication protocol
is violated. Our previous work used NuSMV, a symbolic model
checker, to detect deadlock in a SHIM program, but it did not scale
well with the size of the problem. In this work, we take an incre-
mental, divide-and-conquer approach to deadlock detection.

In practice, we find our procedure is faster and uses less memory
than the existing technique, especially on large programs, making
our algorithm a practical part of the compilation chain.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification

General Terms

Algorithms, Verification

Keywords

SHIM, concurrency, static analysis, deadlock, divide-and-conquer

1. Introduction

Today’s parallel hardware demands concurrent programming lan-
guages, yet because of computer science’s long neglect of this dif-
ficult subject, most concurrent languages provide only error-prone
low-level concurrency primitives such as locks and shared memory.
In such a setting, the language and compiler can provide few assur-
ances of correctness, leaving the burden on the already overworked
programmer.

We believe concurrent programming languages must provide higher-
level abstractions that come with assurances of correctness if they
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are to be anywhere as easy to use as their polished sequential coun-
terparts. This work is part of an ongoing project designed to test
the viability of this approach.

Our concurrent SHIM model and language [14, 25] provides
certain program correctness guarantees and makes others easy to
check by adopting CSP’s rendezvous [17] in a Kahn network [19]
setting. In particular, it prevents data races by providing schedul-
ing independence: given the same input, a program will produce
the same output regardless of what scheduling choices its runtime
environment makes.

SHIM’s scheduling independence makes other properties easier
to check because they do not have to be tested across all sched-
ules; one is enough. Deadlock is one such property: for a particular
input, a program will either always or never deadlock; schedul-
ing choices cannot cause or prevent a deadlock. We exploited this
property in earlier work [27], where we transformed asynchronous
SHIM models into synchronous state machines and used the sym-
bolic model checker NuSMV [8] to verify the absence of dead-
lock. This is unlike traditional techniques, such as Holzmann’s
SPIN model checker [18], in which all possible interleavings must
be considered. While our technique was fairly effective because it
could ignore interleavings, we improve upon it here.

In this paper, we use explicit model checking with a form of
assume-guarantee reasoning [24] to quickly detect the possibility
of a deadlock in a SHIM program. Step by step, we build up a
complete model of the program by forming the product machine of
an automaton we are accumulating with another process from the
program, each time checking the accumulated model for deadlock.

Our key trick: we simplify the accumulated automaton after each
step, which often avoids exponential state growth. Specifically, we
abstract away internal channels—those that do not appear in any
other processes.

Figure 1 shows our technique in action. Starting from the (con-
trived) program, we first abstract the behavior of the first two tasks
into simple automata. The first task communicates on channel a,
then on channel b, then repeats; the second task does the same on
channels b and c. We compose these automata by allowing either
to take a step on unshared channels but insisting on a rendezvous
when a channel is shared. Then, since channel b is local to these
two tasks, we abstract away its behavior by merging two states.
This produces a simplified automaton that we then compose with
the automaton for the third task. This time, channel c is local, so
again we simplify the automaton and compose it with the automa-
ton for the fourth task.

The automaton we obtained for the first three tasks insists on
communicating first on a then d; the fourth tasks communicates on
d then a. This is a deadlock, which manifests itself as a state with
no outgoing arcs.
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void main()
{
chan int a, b, c, d;

for(;;) {
recv a; b = a + 1; send b;

} par for(;;) {
recv b; c = b + 1; send c;

} par for(;;) {
recv c; d = c + 1; send d;

} par for(;;) {
recv d; a = d + 1; send a;

}
}
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Figure 1: Analyzing a four-task SHIM program. Composing the automata for the first (1) and second (2) tasks gives a product
automaton (3). Channel b only appears in the first two tasks, so we abstract away its effect by identifying (4) and merging (5)
equivalent states. Next, we compose this simplified automaton (5) with that for the third task (6) to produce another (7). Now,
channel c will not appear again, so again we identify (8) and merge (9) states. Finally, we compose this (9) with the automaton for the
fourth task (10) to produce a single, deadlocked state (11) because the fourth task insists on communicating first on d but the other
three communicate first on a. The direct composition of the first three tasks without removing channels (12) is larger—eight states.

For programs that follow such a pipeline pattern, the number
of states grows exponentially with the number of pipeline stages
(precisely, n stages produce 2n states), yet our analysis only builds
machines with 2n states before simplifying them to n+ 1 states
at each step. Although we still have to step through and analyze
each of the n stages (leading to quadratic complexity), this is still a
substantial improvement.

Of course, our technique cannot always reduce an exponential
state space to a polynomial one, but we find it often did on the
example programs we tried.

In the rest of this paper, we introduce the SHIM programming
language and how we model SHIM programs (Section 2), then
show how we check these models for deadlock (Section 3) fol-
lowing our compose-and-abstract procedure described above. We
present experimental results in Section 4 that shows our technique
is superior to our earlier work using a symbolic model checking,
review related work in Section 5, and conclude in Section 6.

2. SHIM Programs

SHIM [26] is a C-like language with additional constructs for
communication and concurrency. Specifically, p par q runs state-
ments p and q in parallel, waiting for both to terminate before pro-
ceeding; send c and recv c are blocking communication operators
that synchronize on channel c. SHIM tasks communicate exclu-
sively through this multi-way rendezvous; there are no global vari-
ables or other shared data.

In Figure 2(a), two peer tasks communicate on channels a and b.
Tasks 1 and 2 run in parallel. The send a in task 1 waits for task 2
to receive the value. The tasks rendezvous then continue after the
communication takes place. Next, the two tasks rendezvous at b.
This time, task 2 sends and task 1 receives.

In Figure 2(b), the two tasks also attempt to communicate, but
task 1 attempts to synchronize on a first, then b, while task 2 ex-
pects to synchronize on b first. This is a deadlock—each task will
wait indefinitely for the other.

If the compiler finds two senders on a particular channel, the
compiler rejects the program to guarantee determinism.

It is easy to manually see deadlocks in small programs like Fig-
ure 2(b); it is much harder in programs with nested par statements,
large number of tasks, or programs with thousands of lines of code.

void main()
{
chan int a, b;
{ // Task 1
a = 5;
send a; // Send 5 on a
// now a = 5
recv b; // Receive b
// now b = 10

} par { // Task 2
recv a; // Receive a
// now a = 5
b = 10
send b; // Send 10 on b
// now b = 10

}
}

void main()
{
chan int a, b;
{
a = 5;
send a; // Deadlocks here

recv b;

} par {
b = 10;
send b; // Deadlocks here

recv a;

}
}

(a) (b)

Figure 2: (a) A SHIM program in which two tasks exchange
data on channels a and b and (b) one with deadlocks.

2.1 Modeling SHIM Programs

A sound abstraction not only simplifies the model of a program
but also greatly reduces the complexity of analysis. To detect dead-
lock, we abstract away a program’s computation and focus on com-
munication patterns. By doing this, we assume that any branch of
a conditional statement can be taken at any time, which is sound
but may lead us to find false deadlocks. The improvement in speed
more than makes up for the loss of precision, though. This abstrac-
tion is sound: if we report a program is deadlock-free, there is no
way it can reach a deadlocked state.

After abstraction, we construct an SHIM automaton for each task
and compose them one at a time to detect deadlock. We show how
this works for a simple program in Section 2.2, then we provide
a formalism for our model and our algorithms for compositional
deadlock detection. Finally, we illustrate the difference between
our approach and more traditional methods with a set of examples.
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void main()
{
int i;
chan int a, b;

{ // Task 1
if (i % 10) {
a = 1;
send a;

} else {
a = 0;
send a;
recv b;

}

} par { // Task 2
recv a;
c = 1;
send c;

} par { // Task 3
recv a;
recv c;
b = 10;
send b;

}
}
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Figure 3: A SHIM program and the automata for its tasks

2.2 An Example

Consider the SHIM program in Figure 3. The main function
starts three tasks that communicate through channels a, b and c.
The first task has a conditional statement, which we model as a
nondeterministic choice. One of its branches synchronizes on chan-
nel a. The other branch synchronizes on both a and b. The second
task synchronizes on channels a and c; the third task synchronizes
on channels a and c, and then on b. The ownership is as follows:
channel a is shared by all three tasks, channel b is shared by task 1
and task 3, and channel c is shared by tasks 2 and 3. This program
does not deadlock. First all three tasks synchronize on channel a
exhibiting multiway-rendezvous. Next, tasks 2 and 3 rendezvous
on channel c. Task 3 then synchronizes with task 1 on channel b if
the branch is not taken. Otherwise, it waits for task 1 to terminate
and then does a dummy send on channel b. This is because task 3
is no longer compelled to wait for a terminated process (task 1).

We assume the overall SHIM program is not recursive. We re-
move statically bounded recursion using Edwards and Zeng [15]
and do not attempt to analyze programs with unbounded recursion.

Next, we duplicate code to force each function to have a unique
call site. While this has the potential for an exponential increase in
code size, we did not observe it.

We remove trivial functions—those that do not attempt to syn-
chronize. A function is trivial if it does not attempt to send or re-
ceive and all its children are trivial. Provided they terminate (an
assumption we make), the behavior of such functions does not af-
fect whether a SHIM program deadlocks. Fortunately, it appears
that functions called in many places rarely contain communication
(I/O functions are an exception), so the potential explosion from
copying functions to ensure each has a unique call site rarely oc-
curs in practice.
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Figure 4: Composing (a) the automata for tasks 1 and 2 from
Figure 3 and (b) composing this with task 3.

This preprocessing turns the call structure of the program into a
tree, allowing us to statically enumerate all the tasks, the channels
and their connections, and identify a unique parent and call site for
each task (aside from the root).

After preprocessing, we build a SHIM automaton for each task
from the compiler’s intermediate representation. A SHIM automa-
ton has two kinds of arcs: channel and γ . A transition labeled with a
channel name represents communication on that channel; a γ tran-
sition models conditionals (nondeterministic choices).

Figure 3 shows the three SHIM automata we construct for the
program. The if-else in task 1 is modeled as state 1 with two out-
going γ transitions. On the other hand, we use arcs labeled by
channels to represent communication.

Figure 4(a) shows the composition of tasks 1 and 2 from Fig-
ure 3. First, we compose task 1’s state 1 with task 2’s state 1. We
create the (1,1) state with two outgoing γ transitions, and we then
compose each of state 1’s successor in task 1 with state 1 of task 2,
generating states (2,1) and (3,1). At state (2,1), we can say that
task 1 is at state 2 and task 2 is at state 1. We then add a transi-
tion from (2,1) to (5,2) labeled a because both tasks are ready to
communicate on a in state (2,1). Similarly, we create state (4,2).

Then, at state (4,2), task 1 can fire b (in the absence of task 3)
and task 2 can fire c. Since task 1 shares channel b but not c and
task 2 shares channel c but not b, either transition is possible so we
have two scheduling choices at state (4,2), which is represented by
two transitions b and c from (4,2). By similar rules, we compose
other states and finally we end up with Figure 4(a) as the result.
The composed automaton owns channels a, b, and c.

Following the same procedure, we compose the automaton in
Figure 4(a) with task 3 in Figure 3 to produce the automaton in
Figure 4(b). We compose states in a similar fashion. However,
when composing state (4,2) of Figure 4(a) with state 2 of task 3 in
Figure 3, state (4,2)’s transition on channel b is not enabled because
task 3 does not have a transition on b from its state 2. On the other
hand, state (4,2)’s transition on channel c does not conflict with
task 3, allowing us to transit from state (4,2,2) to state (4,3,3) on
channel c in Figure 4(b).

3. Compositional Deadlock Detection

3.1 Notation
Below, we formalize our abstraction of SHIM programs. We

wanted something like a finite automaton that could model the ex-
ternal behavior of a SHIM process (i.e., communication patterns).
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We found we had to distinguish two types of choices: a nonde-
terministic choice induced by concurrency that can be made by the
scheduler (i.e., selecting one of many enabled tasks) and control-
flow choices made by the tasks themselves. Although a running
task is deterministic (it makes decisions based purely on its state,
which can be supplied in part by the [deterministic] series of data
that arrive on its channels), we chose to abstract data computa-
tions to simplify the verification problem at the expense of reject-
ing some programs that would avoid deadlock in practice. Thus,
we treat choices made by a task (e.g., at an if-else construct) as
nondeterministic.

These two types of nondeterministic choices must be handled
differently when looking for deadlocks: while it is acceptable for
an environment to restrict choices that arise from concurrency, an
environment cannot restrict choices made by the tasks themselves.

Our solution is an automaton with two types of edges: those
labeled with channels representing communication, which need not
all be followed when composing automata; and those labeled with
γ , which we use to represent an internal choice made by a task and
must be preserved when composing automata.

DEFINITION 1. A SHIM automaton a 6-tuple (Q,Σ,γ,δ ,q, f )
where Q is the set of states, Σ is the set of channels, γ �∈ Σ, q ∈Q is
the initial state, f ∈Q is the final state, and δ =Q×(Σ∪{γ})→ 2Q

the transition function, where |δ (s,c)| = 0 or 1 for c �= γ .

The δ transition function is key. For each state s ∈ Q and chan-
nel c ∈ Σ, either δ (s,c) = /0 and the automaton is not ready to ren-
dezvous on channel c in state s, or δ (s,c) is a singleton set consist-
ing of the unique next state to which the automaton will transition
if the environment rendezvous on c.

The special “channel” γ denotes computation internal to the sys-
tem. If δ (s,γ) �= /0, the automaton may transition to any of the
states in δ (s,γ) from state s with no rendezvous requirement on the
environment.

A state s∈Q such that δ (s,c) = /0 for all c∈ Σ∪{γ} corresponds
to the system terminating normally if s= f and is a deadlock state
otherwise.

Next, we define how to run two SHIM automata in parallel. The
main thing is that we require both automata to rendezvous on any
shared channel.

DEFINITION 2. The composition T1 ·T2 of two SHIM automata
T1 = (Q1,Σ1,γ,δ1,q1, f1) and T2 = (Q2,Σ2,γ,δ2,q2, f2) is (Q1 ×
Q2,Σ1 ∪Σ2,γ,δ ,〈q1,q2〉,〈 f1, f2〉), where

δ (〈p1, p2〉,γ) =
(
δ1(p1,γ)×{p2}

)∪ ({p1}×δ2(p2,γ)
)
,

and for c ∈ Σ1 ∪Σ2,

δ (〈p1, p2〉,c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ1(p1,c)×δ2(p2,c) when c ∈ Σ1 ∩Σ2;

δ1(p1,c)×{p2} when c ∈ Σ1 −Σ2 or

p2 = f2; and

{p1}×δ2(p2,c) when c ∈ Σ2 −Σ1 or

p1 = f1

Here, we defined two cases for the composed transition function.
On γ (corresponding to an internal choice), either the first automa-
ton or the second may take any of its γ transitions independently,
hence the set union. Note that /0×{p2} = /0.

For normal channels, there are two cases. For a shared channel
(c ∈ Σ1 ∩Σ2), both automata proceed simultaneously if each has a
transition on that channel, i.e., have rendezvoused. For non-shared

Algorithm 1 compose(automata list L)
1: T1, . . . ,Tn = reorder(L)
2: T = T1
3: for i = 2 to n do
4: T = T ·Ti {Compose using Definition 2}
5: q= initial state of T
6: for all channels c in T that are not in Ti+1, . . . ,Tn do
7: for all δ (p,c) = {q} do
8: Set δ (p,c) to /0 {p is the parent of q}
9: Add q to δ (p,ε)

10: Add p to δ (q,ε)
11: T = subset-construction(T ) {Remove ε transitions}
12: if T has a deadlock state then
13: return deadlock
14: else
15: return no-deadlock

channels or if one of the tasks has terminated, the automaton con-
nected to the channel may take a step independently (and implicitly
assumes the environment is willing to rendezvous on the channel).

There should be no difference between running T1 in parallel
with T2 and running T2 in parallel with T1, yet this is not obvi-
ous from the above definition. Below, we formalize this intuition
by defining what it means for two automata to be equivalent, then
showing the composition operator produces equivalent automata.

DEFINITION 3. Two SHIM automata T1 = (Q1,Σ1,γ,δ1,q1, f1)
and T2 = (Q2,Σ2,γ,δ2,q2, f2) are equivalent (written T1 ≡ T2) if
and only if Σ1 = Σ2 and there exists a bijective function b : Q1 →
Q2 such that q2 = b(q1), f2 = b( f1), and for every s ∈ Q1 and
c ∈ Σ1 ∪{γ}, δ2(b(s),c) = b(δ1(s,c)).

LEMMA 1. Composition is commutative: T1 ·T2 ≡ T2 ·T1.

PROOF. Follows from Definition 2 and Definition 3 by choosing
b(〈p1, p2〉) = 〈p2, p1〉.

LEMMA 2. Composition is associative: (T1 ·T2) ·T3 ≡ T1 · (T2 ·
T3).

PROOF. Follows from Definition 2, Lemma 1, and Definition 3
by choosing b

(〈〈p1, p2〉, p3〉
)

= 〈p1,〈p2, p3〉〉.

3.2 Our Algorithm
We are finally in a position to describe our algorithm for com-

positional deadlock detection. Algorithm 1 takes a list of SHIM
automata as input and returns either a composed SHIM automaton
or failure when there is a deadlock. Since the order in which the
tasks are composed does affect which automata are built along the
way and hence memory requirements and runtime (although, be-
cause of Lemma 1, not the final result), the reorder function (called
in line 1) orders the automata based on a heuristic that groups tasks
with identical channels. Once we compose tasks, we abstract away
channels that are not used by other tasks, simplifying the composed
automaton at each step.

We then compose tasks one by one. At each step we check if the
composed automaton is deadlock free. We remove (line 6 through
line 11) any channels that are local to the composed tasks (i.e.,
not connected to any other tasks). For every channel c, we find
all the transitions on that channel (i.e., δ (p,c) = {q}) and add ε
transitions between states p and q. Then, we use the standard subset
construction algorithm [1] to merge such states.
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Table 1: Comparison between our compositional analysis (CA) and NuSMV

Program Lines Channels Tasks Deadlock?
Runtime (s) Memory (MB)

CA NuSMV CA NuSMV

Source Sink 35 2 11 No 0.004 0.004 1.31 6.28
Berkeley 49 3 11 No 0.01 0.01 2.6 5.96
Bitonic Sort 74 56 24 No 1.83 4.01 7.82 53.20
31-tap FIR Filter 218 150 120 No 0.2 21.10 21.06 63.33
Pipeline (1000 pipes) 1003 1000 1000 Yes 397.8 607.8 24.7 813
FFT (50 FFT tasks) 978 100 52 No 34.73 327 16.7 719
Frame Buffer 220 11 12 No 1.81 4.90 5.50 7.5
JPEG Decoder (30 IDCT processes) 2120 180 31 No 51.9 1177 16.06 203.44

We do not abstract away channels connected to other tasks be-
cause the other tasks may impose constraints on the communica-
tion on these channels that lead to a deadlock. In general, adding
another connected task often imposes order. For example, when
task 1 and task 2 are composed, communications on b and c may
occur in either order. This manifests itself as the scheduling choice
at state (4,2) in Figure 4(a). However when task 3 is added, the
communication on c occurs first.

The automata we produce along the way often have more behav-
ior than the real system because at each point we have implicitly as-
sumed that the environment will be responsive to whatever the au-
tomaton does. However, we never omit behavior, making our tech-
nique safe (i.e., we never miss a possible deadlock). Extra behavior
generally goes away as we consider more tasks (our abstraction
of data means that our automata are always over-approximations,
however). For example, when we compose Figure 4(a) with task
3, we get Figure 4(b). We get rid of the impossible case where
communication on b appears before c generated in Figure 4(a).

We can only guarantee the absence of deadlock. Since we are
ignoring data, we check for all branches in a conditional for dead-
lock freedom; even if one path fails, at best we can only report the
possibility of a deadlock. It may be that the program does not in
fact deadlock due to correlations among its conditionals.

4. Experimental Results

We ran our compositional deadlock detector on the programs
listed in Table 1 using a 3.2 GHz Pentium 4 machine with 1 GB
memory. The Lines column lists the number of lines in the pro-
gram; Channels is the number of channels declared in the program;
Tasks is the number of non-trivial tasks after transforming the call-
graph into a tree. Deadlock? indicates the outcome.

The Runtime columns list the number of seconds taken by both
our new compositional tool and our previous work [27], which
relies on NuSMV to model-check the automaton. Similarly, the
Memory columns compare the peak memory consumption of each.

Source-Sink is a simple example centered around a pair of tasks
that pass data through a channel and print the results through an
output channel. The Berkeley example contains a pair of tasks that
communicate packets through a channel using a data-based proto-
col. After ignoring data, the tasks behave like simple sources and
sinks, so it is easy to prove the absence of deadlock. The verifi-
cation time and memory consumption are trivial for both tools in
these examples because they have simple communication patterns.

The Bitonic Sort example uses twenty-four comparison tasks
that communicate on fifty-six channels to order eight integers. Al-
though bitonic sort has twenty-four tasks, every channel is owned
at most by 2 tasks, which gives our tool an opportunity to abstract

away channels when it is not used by the rest of the tasks during
composition. This helps to reduce the size of the automaton.

The FIR filter is a parallel 31-tap filter with 120 tasks and 150
channels. Each task consists of a single loop. Figure 5 compares
our approach and NuSMV model checker for filters of sizes ranging
from 3 to 31. The time taken by our tool grows quartically with the
number of taps and exponentially with NuSMV. Figure 5(b) shows
the memory consumption.

“Pipeline” is the example from Figure 1. Like the FIR, we tested
our tool on a varying number of tasks. Although both tools seem
to achieve O(n4) asymptotic time behavior, ours remains faster and
uses less memory. Figure 9 illustrates how our tool performs expo-
nentially on this example if we omit the channel abstraction step.

The FFT example is similar to the pipeline: most of the tasks’
SHIM automata consist of a single loop. However, there is a mas-
ter task that divides and communicates data to its slaves. The slaves
and the master run in parallel. The master then waits for the pro-
cessed data from each of the slaves. Figure 7 shows we perform
much better as the size of the FFT increases.

The Framebuffer and JPEG examples are the only programs we
tested with conditionals. Framebuffer is a 640× 480 video frame-
buffer driven by a line-drawing task. It has a complicated, nonde-
terministic communication pattern, but is fairly small and not para-
metric. Our technique is still superior, but not by a wide margin.

The JPEG decoder is one of the largest applications we have
written and is parametric. JPEG decoder has a number of paral-
lel tasks, among which is a producer task that nondeterministically
communicates with rest of the IDCT tasks. Figure 8(a) shows our
tool exhibiting better asymptotic behavior than NuSMV.

Although our tool worked well on the examples we tried, it has
some limitations. Our tool is sensitive to the order in which it com-
poses automata. Although we use a heuristic to order the automata,
it hardly guarantees optimality.

By design, our tool is not a general-purpose model checker; it
cannot verify any properties other than the absence of deadlock.
Furthermore, it can only provide abstract counter-examples because
we remove channels during composition. We have not examined
how best to present this information to a user.

Our compositional approach is forced to build the entire system
for certain program structures. Consider the call graph shown in
Figure 10. The main function forks two parallel tasks, f and g.
Both f and g share channels a1, . . . ,an. We first compose the chil-
dren of f and then inline the composed children in f before com-
posing f with g. If f is a pipeline program with a structure similar
to the one described in Figure 1, when we compose f ’s children,
we cannot abstract away any channel because g also owns all the
channels. This leads to exponential behavior, but we find SHIM
programs are not written like this in practice.
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Figure 5: n-tap FIR
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Figure 6: Pipeline
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Figure 7: Fast Fourier Transform

 0.01

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30

V
er

if
ic

at
io

n 
T

im
e 

(s
ec

on
ds

)

Number of IDCT processes

NuSMV
Compositional analysis

(a) Verification time

 10

 100

 5  10  15  20  25  30M
em

or
y 

C
on

su
m

pt
io

n 
(M

B
)

Number of IDCT processes

NuSMV
Compositional analysis

(b) Memory Consumption

Figure 8: JPEG Decoder
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Figure 9: The importance of abstracting internal channels:
verification times for the n-task pipeline with vs. without.

main()

f (a1,a2, · · · ,an) g(a1,a2, · · · ,an)

p1(a1,a2) pn(an,a1)
· · ·

par par

par par

Figure 10: A SHIM program’s call graph

5. Related work

Many have tried to detect deadlocks in models with rendezvous
communication. For example, Corbett [13] proposes static meth-
ods for detecting deadlocks in Ada programs. He uses partial order
reduction, symbolic model checking, and inequality necessary con-
ditions to combat state space explosion. However, these techniques
do build the entire state space with some optimizations. These may
be necessary for Ada, which does not have SHIM’s scheduling in-
dependence. By contrast, we avoid building the complete state
space by abstracting the system along the way. Masticola et al. [21]
also propose a way to find deadlocks in Ada programs. Their tech-
nique is less precise because they use approximation analysis that
runs in polynomial time. Secondly, their method only applies to a
subset of Ada programs. By contrast, our technique can be applied
to any SHIM program, but can run in exponential time on some.

Compositional verification is a common approach for alleviating
the state explosion problem. It decomposes a system into several
components, verifies each component separately, and infers the sys-
tem’s correctness. This approach verifies the properties of a com-
ponent in the absence of the whole system. Two variants of the
method have been developed: assume-guarantee [24] and compo-
sitional minimization [9].

In the assume-guarantee paradigm, assumptions are first made
about a component, then the component’s properties are verified
under these assumptions. However, it is difficult to automatically
generate reasonable assumptions, often requiring human interven-
tion. Although there has been significant work on this [2, 7, 12, 16,
22], Cobleigh et al. [11] report that, on average, assume-guarantee
reasoning does not show significant advantage over monolithic ver-
ification either in speed or in scalability. Compared to assume-
guarantee reasoning, which verifies a system top down with as-
sumptions, our work incrementally verifies the system bottom up.
In addition, the assumptions we make along the way are somehow
trivial: the environment is assumed to be merely responsive to our
tasks’ desire to rendezvous.

Instead of assuming an environment, compositional minimiza-
tion models the environment of a component using another compo-
nent called the interface and reasons about the whole system’s cor-

rectness through inference rules. Krimm et al. [23] implemented
this algorithm to generate state space from Lotos programs, then
extended their work [20] to detect deadlocks in CSP programs with
partial order reduction. Our work is similar in that we iteratively
compose an interface with a component and later simplify the new
interface by removing channels and merging equivalent states. How-
ever, they provide little experimental evidence about how their al-
gorithm scales or compares with traditional model checkers.

Zheng et al. [28] apply the compositional minimization paradigm
to hardware verification. They propose a failure-preserving inter-
face abstraction for asynchronous design verification. To reduce
complexity, they use a fully automated interface refinement ap-
proach before composition. Our channel abstraction technique is
analogous to their interface refinement, but we apply it to asyn-
chronous software instead of synchronous hardware.

There are many other compositional techniques for formal analy-
sis. Berezin et al. [4] survey several compositional model checking
techniques used in practice and discuss their merits. For exam-
ple, Chaki et al. [5, 6] and Bensalem et al. [3] combine compo-
sitional verification with abstraction-refinement methodology. In
other words, they iteratively abstract, compose and refine the sys-
tem’s components, once a counter-example is obtained. By con-
trast, we do not apply any refinement techniques but build the sys-
tem incrementally to even find a counter-example.

Compared to our previous work on deadlock detection [27] in
SHIM, what we present here uses explicit model checking, incre-
mental model building, and on-the-fly abstraction instead of throw-
ing a large model at a state-of-the art symbolic model checker (we
used NuSMV [8]). Experimentally, we find the approach we present
here is better for all but the smallest examples.

6. Conclusions

We presented a static deadlock detection technique for the SHIM
concurrent language. The semantics of SHIM allow us to check for
deadlock in programs compositionally without loss of precision.

We expand a SHIM program into a tree of tasks, abstract each as
a communicating automaton, then compose the tasks incrementally,
abstracting away local channels after each step.

We abstract away data-dependent decisions when building each
task’s automaton. This both greatly simplifies their structure and
can lead to false positives: our technique can report a program will
deadlock even though it cannot. However, we believe this is not a
serious limitation because there is often an alternative way to code a
particular protocol that makes it insensitive to data and more robust
to small modifications. We illustrated this in previous work [27].

We have compared our compositional technique with our previ-
ous work (which used the NuSMV general-purpose model checker)
on different examples with varying problem sizes. Experimentally,
we find our compositional algorithm is able to detect or prove the
absence of deadlock faster: on the order of seconds for large sized
examples. We believe this is fast enough to make deadlock check-
ing a regular part of the compilation process.

Tardieu and Edwards [26] added concurrent, deterministic ex-
ceptions to the SHIM model, which are a convenient mechanism
for task control. We currently ignore them, which is safe but as a
result, we may report as erroneous programs that throw exceptions
to avoid a deadlock situation. While we do not know of any such
programs, we plan to consider this issue in the future.

We also plan to explore counterexample-guided abstraction [6,
10] to consider some data and improve the precision of our analysis.

Currently, our tool only checks for deadlocks, but we believe we
may be able to extend our abstraction techniques to check other
safety properties. We plan to do this in the future.
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