
Logical Time for Reactive Software
Marten Lohstroh

marten@berkeley.edu

University of California, Berkeley

USA

Edward A. Lee

eal@berkeley.edu

University of California, Berkeley

USA

Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University, New York, NY

USA

David Broman

dbro@kth.se

KTH Royal Institute of Technology, Stockholm

Sweden

ABSTRACT
Timing is an essential feature of reactive software. It is not just a

performance metric, but rather forms a core part of the semantics of

programs. This paper argues for a notion of logical time that serves
as an engineering model to complement a notion of physical time,
which models the physical passage of time. Programming models

that embrace logical time can provide deterministic concurrency,

better analyzability, and practical realizations of timing-sensitive

applications. We give definitions for physical and logical time and

review some languages and formalisms that embrace logical time.
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1 INTRODUCTION
Timing of software execution is usually considered a performance

property rather than a correctness property. But in software for

cyber-physical systems, timing is often a critical feature of the

execution of the software. Today, no widely used programming lan-

guage specifies timing. Instead, timing is an emergent consequence

of a particular implementation and is sensitive to every detail of the

hardware on which the software runs and to what other software

may be sharing the same hardware. Even a small change in the

hardware or software context can lead to drastically different timing

behavior, making testing, maintenance, and upgrades difficult.
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Just as a programmer delegates to the compiler and the micro-

processor correct execution of the program logic, we argue that

there should be programmatic ways to similarly delegate delivery

of timing requirements. In recent years, inroads have been made

towards realizing this vision. But until the day that abstractions

for time are available in mature and well-supported programming

languages, compilers, and computer and network architectures,

significant challenges remain.

In this paper, we discuss logical time as a means for establishing

a sound engineering practice around the development of time-

centric reactive software. The main contributions are (i) precise

definitions of physical and logical time, and (ii) a short review of

some languages that embrace logical time.

2 HOW TO MODEL TIME
Software should employ an engineering model of time that can be

implemented in practice and reasoned about by humans instead

of a scientific model that models physical reality [20]. The classical

Newtonian model of time, which assumes there is a global state of

the system that is known instantaneously everywhere, is a good

approximation for relatively slow, relatively local, continuous dy-

namics, but today’s electronic systems may span the globe, operate

with sub-nanosecond timing, and consist of discrete, discontinuous

state transitions. These systems are not Newtonian because the

order in which physically separated events occur is neither practi-

cally knowable nor theoretically well-defined [30, 34]. Distributed

systems have no well-defined “current state.”

2.1 Logical Time vs. Physical Time
We want an unambiguous order of events because application be-

havior often depends on such ordering (think of bank account

transactions), but ordering defies simple observation [21]. If two ge-

ographically separated components each perform an event nearly

simultaneously, the “true” order of events may depend on your

frame of reference. As a consequence, reality precludes a knowable

current state of a distributed system. There is more than one truth.

Assigning logical timestamps can impose a well-defined event

ordering. If two separated components assign to their respective

events two timestamps 𝑡1 and 𝑡2 drawn from a totally ordered

set T, we can have a clear, unambiguous semantic model of the

progression of the system based on the order of these timestamps.

This is not a scientificmodel becausewe do not demand the ordering

of timestamps necessarily match any physical truth, but it is an

engineering model that we can implement faithfully. In particular,
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provided the system components all agree on events’ timestamps,

the system will agree on events’ global ordering.

Distributed databases systems often take this approach, assigning

timestamps based on local clocks. These clocks are imperfect by any
physical model of time, but are often adequate. An operating system

clock synchronized by NTP [29] often suffices; more demanding

applications use GPS, PTP [10], or atomic clocks. But these choices

only affect utility, not correctness.

Using timestamps proposes a logical model of time that is consis-

tent regardless of how the timestamps are assigned, provided they

are drawn from a totally ordered set. They need not even be related

at all to any wall clock measuring physical time. For an implementa-

tion to be correct (faithful to its semantics), it only needs to ensure

all observers see the events in timestamp order. The key advantage

here is a correctness criterion that completely sidesteps the ques-

tion of how to interpret physical reality, providing us with a means

to unambiguously specify timed behavior. But for such software to

be useful, we usually want to be able to relate timestamps to the

passage of time as perceived by physical observers.

Assume that physical time at a single point in space behaves

like a smoothly advancing real number. Assume that such time is

measured by a clock 𝑐 ∈ 𝐶 located at that point in space, where𝐶 is

a set of clocks. Every clock will be imperfect, so we do not assume

consistency between distinct clocks.

Definition 2.1 (Physical time). Let T be the set of physical time
values that a clock 𝑐 ∈ 𝐶 may return. The set T is totally ordered.

When a clock 𝑐 attempts to measure a time instant 𝜏 ∈ R, it returns
a P𝑐 (𝜏) ∈ T given by physical time function

P𝑐 : R→ T.
The various P𝑐 and the underlying 𝜏 values they measure are un-

known to the system (and unknowable).

The quality of the physical clocks in a system dictates the prop-

erties of the various P𝑐 functions, which always fall short of ideal.

We may desire successive interrogations of the same clock yield

strictly larger measurements, i.e., 𝜏1 < 𝜏2 implies P𝑐 (𝜏1) < P𝑐 (𝜏2),
but this is practically difficult. First, real clocks report quantized

time values, so at best, P𝑐 (𝜏1) ≤ P𝑐 (𝜏2). Even worse, certain clocks

occasionally run backward, e.g., an operating system clock being

adjusted by NTP.

It is often useful to endow the set T with a metric, a distance

function 𝑑 : T × T→ R with the usual properties of a metric. This

enables quantifying the passage of time rather than just counting.

A measurement 𝑚 of a system’s environment (e.g., a sensor

reading) may be marked with a reading 𝑇𝑚 = P𝑐 (𝜏) ∈ T from a

local physical clock 𝑐 taken when the measurement is taken (at

time 𝜏 ). Although 𝜏 cannot be directly known, this strategy ensures

that readings from the same sensor will be treated consistently

throughout a system regardless of how its other clocks may behave.

Systems may employ an additional level of abstraction between

physical time values and the logical time values in their semantics:

Definition 2.2 (Tags and Logical time). A tag 𝑔𝑒 for an event 𝑒 is a

member of a totally ordered set G endowed with a monotonic func-

tion T : G→ T. The tag denotes a logical time; any two events

that have equal tags are logically simultaneous. The timestamp
T (𝑔𝑒 ) of the event 𝑒 can be compared directly against a physical

time obtained from a clock because it is a member of the same

totally ordered set T.

In the simplest case, G = T and T is the identity function, but

in general, the ordering of events may need to be controlled in a

more or less fine-grained way than is possible using the set T of
time readings that a physical clock may yield. This is why the tag

set G is not required to match time values that may be yielded by a

physical clock. To tag a sensor reading taken at (unknown) time 𝜏 ,

we select a tag 𝑔𝑚 ∈ G such that T (𝑔) = P𝑐 (𝜏), where 𝑐 is a local
physical clock.

Our tags are not as general as those of Lee and Sangiovanni-

Vincentelli [23]; the set G is required to be totally ordered so that

each tag can interpreted as a logical time value, and the function

T gives a way to relate that logical time value to physical time.

2.2 Representations of Time
Choosing the set of physical time values T and the set of tags G
must be done judiciously to achieve reasonable fidelity between

the physical world and the logical world of the system. Here, we

discuss considerations and choices.

Time as a real number may be questioned since some physical

theories posit a discrete version of time that is granular on the order

of Planck time (5.39× 10−44 s), but this is not relevant for engineer-
ing and we know of no system with a clock this precise. This is

why we use a real number 𝜏 to represent the (unknowable) physical

time. This makes it tempting to represent time in software systems

with floating-point numbers, commonly used to approximate real

numbers. But this turns out to be a poor choice, as explained by

Broman, et al. [6]. Integer representations prove to be better.

The synchronous languages (see Section 3 below) useG = N, the
natural numbers, to count the number of “instants” the program

has encountered, and the mapping to physical clock readings is

an arbitrary monotonic function that is irrelevant to the program

correctness.

Sometimes, a more fine-grained mechanism is useful. For exam-

ple, situations can arise where two events with the same timestamp

𝑡 ∈ T are causally related and should not be treated as being logi-

cally simultaneous. In such situations, it has proven useful to use

superdense time [7, 27, 28] or non-standard time [2].

Superdense Time. A superdense time model may use G = T × N
where N is the natural numbers, and for any 𝑔 = (𝑡, 𝑛) ∈ G, T (𝑔) =
𝑡 . That is, an event has a tag (𝑡, 𝑛), where 𝑡 is the timestamp and 𝑛

is a superdense time index. In such a model, the total order relation

used is the dictionary order, where (𝑡1, 𝑛1) < (𝑡2, 𝑛2) if 𝑡1 < 𝑡2 or

𝑡1 = 𝑡2 and 𝑛1 < 𝑛2. This model allows for causally related events

to have distinct tags without any notion of time increasing between

them, such as (𝑡, 0), (𝑡, 1), (𝑡, 2), etc.1 To convert a physical time

𝑇 to a tag, for example to tag a sensor reading, one could simply

assign the tag (𝑇, 0) to the sensor reading event.

To give a concrete example, the Lingua Franca (LF) coordination

language [26] assumes that physical time measurements are Unix

1
To understand the usefulness of such a model of time, consider Newton’s cradle,

the well-known toy with five steel balls hanging by strings. When one ball collides

with the other four, its momentum is transferred through the three middle balls to the

final ball. The three middle balls do not move. This transfer of momentum is usefully

modeled as a sequence of events in superdense time.
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time, which is a measurement of the number of nanoseconds that

have elapsed since 00:00:00 UTC (Coordinated Universal Time) on

1 January 1970, the beginning of the Unix epoch, with adjustments

made due to leap seconds. The LF runtime ensures that successive

accesses to this physical time on any platform are strictly increasing

and represents the result in a 64-bit signed integer (which will

therefore overflow in the year 2262). LF uses superdense tags for

events, where each tag consists of a 64-bit timestamp and a 32-bit

unsigned superdense index. The timestamp of such events aligns

with a local clock on a best-effort basis in that events will not

be processed (by default) until a local physical clock matches or

exceeds its timestamp. Similarly, asynchronous events injected into

a running program, such as user interactions or sensor readings,

are assigned timestamps based on an interrogation of a local clock.

Once an event is assigned a tag, it is handled in a such a way

that every component in the system sees events in tag order. If two

events have the same tag (they are logically simultaneous), then no

component that watches for these events will see one as present

and the other as absent at that tag. This policy makes it easy to

build deterministic distributed systems that have a consistent view

of system state at each logical time.

2.3 Consistency
In logical time, unlike time in physics, there is a well-defined no-

tion of a globally shared instant. Using logical time, we can make

statements like, “at (logical) time 𝑡 , all components in the system

agree that the value of a shared variable 𝑥 is 𝑥 (𝑡),” a principle called
“consistency.” With care, we can design physical system realizations

that adhere to this principle. A system implementation is consistent

if for every 𝑡 anywhere in the system, the local value 𝑥 (𝑡) is the
same as any 𝑥 (𝑡) computed elsewhere in the system for the same

logical time value 𝑡 .

2.4 Implementing Consistent Systems
Now that we have a separation between logical and physical time

and a notion of consistency, how do we build systems that correctly

implement consistency? This ranges from easy to impossible, de-

pending on the requirements of the system. Let us start with easy.

Suppose that our system consists of two nodes, one of which up-

dates 𝑥 and the other of which updates 𝑦. Suppose further that we

use a simple logical time model, like that of synchronous languages,

where 𝑡 ∈ G = N, the natural numbers, and T is some arbitrary

monotonic function. In pseudo code, suppose the first component

does this:

t = 0;
while(true) {
x(t) = some update;
send x(t) to the other component;
wait for y(t) from the other component;
if (x(t) + y(t) < 0) break;
t = t + 1

}

Suppose the second component does the same thing, but with 𝑥

replaced by 𝑦 and vice versa. Such a system is consistent even
with no reference to physical time. Suppose we add a connection to

physical time as follows:

while(true) {
...
t = t + 1
wait for a local physical clock to reach t seconds

}

Now, we have established a relationship between logical time 𝑡

and physical time. But that relationship is a bit subtle. In particular,

suppose the two nodes have independent physical clocks, and no

effort is made to synchronize them. Then the whole system will

eventually align to the slower of the physical clocks. It will still

remain consistent, in that for any 𝑡 ∈ N, the two nodes will agree

on the values of 𝑥 (𝑡) and 𝑦 (𝑡), but they will disagree by an arbi-
trarily large amount on the discrepancy between 𝑡 and their local

measurement of physical time.

Consider now a more difficult case. Suppose that in each pass

through the while loop above, each component may or may not
send an update to the other component. Consistency could still be

maintained by sending “null messages” whenever the component

does not update its variable, but this could be inefficient, particularly

if the updates are rare (as in most database applications).

A more clever solution might be to use some technique to syn-

chronize the physical clocks [10, 17, 19, 24] then assume a bound 𝐸

on the clock synchronization error and a bound 𝐿 on the network

latency. Then, instead of waiting for a message from the other com-

ponent, each component could wait for its physical clock reading𝑇

to satisfy𝑇 > 𝑡 +𝐸 +𝐿. At that (physical) time, if it has not received

an update from the other component, then it can assume that no

such update is forthcoming and it can proceed. This is the essential

principle behind PTIDES [35], and this principle is used in Google

Spanner [8], a globally distributed database.

This implementation will be “correct,” of course, only under the

assumptions 𝐸 and 𝐿. Consistency will only be maintained if the

bounds 𝐸 and 𝐿 are not exceeded at run time. Fortunately, violations

of these bounds are (eventually) detectable simply by including the

tag 𝑡 along with each message. If the first component receives a

message with an update to 𝑦 at logical time 𝑡1, but its own local

value of its variable 𝑡 is bigger than 𝑡1, then it knows that one of

these assumptions has been violated (it is impossible to tell which

one). In the case of Google Spanner, an update gets committed only

after an acknowledgment has been received (more subtly, it uses a

fault tolerant Paxos [18] consensus algorithm [8]). Consistency is

maintained for traces consisting of all updates that are committed.

There is a long history with many other sophisticated methods

for implementing consistent systems. In addition to the legacy from

database systems [14], distributed simulation has also contributed

a wealth of techniques [12]. Lingua Franca (see Section 3.4) realizes

extensions of several of these techniques [1].

2.5 Consistency vs. Availability
Consistency is agreement on the value 𝑥 (𝑡) of some shared state 𝑥

at logical time 𝑡 . Fundamentally, maintaining consistency comes

at an unavoidable price in availability [5, 22]; specifically, there

is a physical time delay that has to be imposed before a program

can access the value of 𝑥 (𝑡) in order to ensure consistency. As

shown by Lee, et al. [22], this time delay is a linear function (in a

max-plus algebra) of measurable delays due to networks, execution

time, and clock synchronization. Moreover, this time delay can be
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edge = false -> (c and not pre(c));
edgecount = 0 -> if edge then pre(edgecount) + 1

else pre(edgecount);

Instant 0 1 2 3 4 5 6 7 8 9 10 11

c f t t f t f t f t t f t

pre(c) ? f t t f t f t f t t f

edge f t f f t f t f t f f t

edgecount 0 1 1 1 2 2 3 3 4 4 4 5

Figure 1: A Lustre program fragment that counts false-to-
true transitions on input c and its behavior on a stream.

reduced by relaxing consistency requirements; specifically, if we

assert that component 𝐴’s value of 𝑥 (𝑡) at logical time 𝑡 should

agree with component 𝐵’s value 𝑥 (𝑡 + Δ) for some Δ > 0, then

a smaller physical time delay may be required to maintain this

relaxed consistency. Lingua Franca (Section 3.4) supports explicit

manipulations of this tradeoff between consistency and availability.

3 LOGICAL TIME IN LANGUAGES
A variety of languages and formalisms have emerged that embrace

logical time. In this section, we review and compare a few of these.

3.1 The Synchronous Languages
Logical time in the synchronous languages Esterel, Lustre, and

Signal [3] uses natural-number tags that count “instants” of com-

putation, i.e., G = N. The relationship between tags and physical

time, i.e., the functions P𝑐 and T , is implementation-dependent;

most use periodic instants or the union of environmental inputs.

Each language describes systems that are concurrent, determinis-

tic, and behave like single finite-state machines. Execution proceeds

as a sequence of instants tagged 0, 1, 2, . . . . In each instant, the sys-

tem examines its state and the inputs to compute its outputs for

that instant and the next state. Computation can be logically instan-

taneous in that an input event may directly cause an output event

with the same tag. Furthermore, programs can refer to the previous

and next instant by observing the current state and controlling the

next state, respectively. The Lustre program in Figure 1 illustrates

this: the first line says that the value of the Boolean signal edge
in the current instant is logical and of the Boolean signal c in the

current instant and its value from the previous instant.

Implementations typically take one of two approaches to tie logi-

cal and physical time. The simpler approach is periodic instants, as is

done in synchronous digital logic circuits and periodically sampled

control systems. Here, for any timestamp 𝑔 ∈ N, 𝑑 (T (𝑔 + 1),T (𝑔)),
where 𝑑 is a metric on T, is equal to the fixed clock period. Imple-

mentations employ a single periodic clock whose ticks are used to

invoke a software “tick” function that reads environmental inputs,

consults and updates the current state, and emits environmental

outputs. As with synchronous digital logic, the periodic approach

correctly implements the system provided the worst-case execution

time of the “tick” function is less than the clock period. Note that

in addition to synchronizing output events, the periodic approach

also effectively constrains the environment to only deliver inputs

on those instant boundaries.

The second, more general approach allows the environment to

choose when instants occur, e.g., when there is an event on any

environmental input. The periodic approach is a special case of

this where all the environmental inputs have been forced to be syn-

chronous with the clock. This approach allows the programmer to

focus more on how to react to events rather than their relationship

with the clock, but it does so at the expense of making it harder

to determine whether the system can be implemented correctly.

Specifically, this approach requires the reaction time to any input

event is less than the time to the next event. Not only does this

require knowledge of reaction time, it also requires knowledge of

how quickly the environment will deliver inputs.

While the languages share a model of time and computation,

they specify behavior differently. Esterel is an imperative language

with the notion of multiple program counters; Lustre and Signal

are both concurrent dataflow languages that provide subsampling

in which portions of a system perceive only a subset of instants;

Signal further provides supersampling where components may pro-

grammatically insert instants between those of another signal [4].

The languages’ approaches to specifying and implementing intra-

instant behavior also differ. A Lustre program [13] is a list of flow

expressions (e.g., Figure 1); the Lustre compiler insists there be a

static expression evaluation order that respects data dependencies.

In particular, any self-referential cycle, such as that for edgecount,
must be broken with a pre. Esterel’s addition of control depen-

dencies to Lustre-like data dependencies makes its behavior more

difficult to compute and statically analyze, e.g., that a program will

be causal (non-contradictory) in every instant. While the Esterel

compiler also insists it can find a static order in which to execute

statements in each instant, such orders may require interleaving

statements and the order may even be state-dependent. Signal pro-

grams are potentially even harder to verify as their semantics are

akin to constraint-solving over both values and timing.

3.2 The Sparse Synchronous Model
In a synchronous program implemented with a periodic clock, there

is a tradeoff between timing precision and system complexity. Finer

timing precision requires a shorter clock period, which demands

less work be done in each instant. This forces designers to refactor

higher-complexity tasks into operations across multiple instants, a

difficult manual task similar to pipelining in digital logic designs.

The Sparse Synchronous Model (SSM) [9] avoids this tradeoff by

adding computation across multiple instants to the synchronous

languages’ logical time model of natural-numbered tags (G = N),
instantaneous execution, the ability to confront and determinis-

tically resolve simultaneous events, and the distinction between

intra- and inter-instant semantics.

However, unlike Lustre, Esterel, and Signal, SSM insists the in-

stants are periodic, i.e., 𝑑 (T (𝑔 + 1),T (𝑔)) is the fixed clock period).

While an implementation knows its clock period, this is hidden

from the user, who may only query, specify, and manipulate time as

seconds. SSM does not expose the notion of the “next” or “previous”

instant to the user. Under this policy, increasing the clock frequency

should not affect program behavior.

As its name implies, SSM assumes computation is sparse: con-

ceptually, a program only perceives a small fraction of all possible
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instants (specifically those in which an event arrives from the envi-

ronment or is a result delivered by a multi-instant computation).

Practically, however, the system is performing the work of long-

running tasks during most of these logically idle instants.

Multi-cycle computation in SSM is specified by the after con-
struct. When a statement such as “after 1 ms, 𝑎 ← 𝑏 + 𝑐” runs at
some instant 𝑡 , it captures the values of 𝑏 and 𝑐 at time 𝑡 , starts the

addition operation, schedules the value of 𝑎 to be updated at logical

time 𝑡 + 1 ms, and terminates instantly (i.e., the current instant 𝑡

is not updated) to allow other statements to be evaluated at the

same (logical) instant. In traditional real-time task terminology,

the addition task is released at time 𝑡 and given a deadline of time

𝑡 + 1 ms, although unlike in many real-time models, SSM delivers

the result at exactly the (logical time) deadline and never earlier.

The SSM runtime system follows the logical time semantics and

keeps itself synchronized to physical time. It relies on hardware

timers to count instants with minimal software intervention. While

the synchronous languages can express behavior like “wait until

instant 1000,” doing so requires the program to count the instants.

By contrast, SSM has such delays in the form of the after primitive

and implements it efficiently with an event queue that it keeps

synchronized with physical time via hardware timers.

3.3 Logical Execution Time
The Logical Execution Time (LET) principle and its pioneering

implementation in the Giotto language [11, 15, 16] depends heavily

on the separation between logical time and physical time. Under

this principle, the inputs to a software component are fixed at a

logical time 𝑡 and the outputs are produced at a later logical time

𝑡 + 𝐿, where 𝐿 is the logical execution time of the component, like

that seen in the after primitive in SSM. A key advantage of the

LET principle is that logical time and physical time can be more

closely aligned because 𝐿 accounts for the physical time that elapses

during the computation performed by the component. This makes

the interaction between software and its physical environment

more controllable. On the other hand, too tight a binding between

logical and physical time can make it difficult to take advantage of

timing variability in software execution.

3.4 Lingua Franca
The Lingua Franca coordination language, which is meant to com-

pose reactive segments of target code written in mainstream lan-

guages like C, Python, and Rust, embraces the concept of multiple

timelines. The execution of an LF program involves the scheduling

of tagged events and handling them in tag order. Events that enter

the system asynchronously from the environment are pinned to

a logical timeline using a tag derived from a reading of a physical

clock. This happens via the scheduling of a “physical action.” The

scheduling of a “logical action,” on the other hand, occurs in reac-

tion to another event, and the tag of resulting is computed on the

basis of the tag of the triggering event.

In LF, reactive code is encapsulated in “reactions,” which are

part of stateful components called “reactors” [25] which have ports

that can be wired together using connections. Values produced

on ports are logically instantaneous, meaning that they amount

to events with the same tag as the events that triggered the reac-

tions producing the outputs. Based on the connection topology

between reactors and the signatures of their reactions (which spec-

ify which ports they have access to), the runtime system imposes

scheduling constraints to ensure that no reaction executes until all

of the ports it depends on have either settled on a final value or

are known to be absent at that tag. Any two reactions that have no

such dependencies between them may execute in parallel.

LF programs can be federated, in which case a program is split

into multiple processes that can be run on distinct machines. The

code generator synthesizes the communication and coordination

so that, globally, every reactor sees events in logical time order [1].

In LF, by default, logical time “chases” physical time. When an

event with the smallest tag 𝑔 is to trigger reactions, the runtime

system waits until a local clock 𝑐 reads P𝑐 (𝜏) ≥ T (𝑔). This gives a
best-effort alignment of logical and physical times.

The deadline construct in LF gives another mechanism to relate

logical and physical times. A reaction may be specified as follows:

reaction(triggers) -> effects {=
target-language code

=} deadline (10ms) {=
target-language code

=}

The second body of code will be invoked instead of the first if, when

the reaction is triggered by an event with logical time 𝑔, a physical

clock 𝑐 reads P𝑐 (𝜏) > T (𝑔) + 10ms. A deadline specifies an upper
bound on the discrepancy between logical time and physical time.

By imposing logical time delays, a lower bound can be enforced

on the difference between the logical time of an event and the

physical time at which the event is reacted to in other parts of the

system. For example, one can add an “after” clause to a connection
between two reactors, which shifts the logical time at which an

event is witnessed at the receiving end of the connection by a given

amount of time. Adding logical delays breaks direct dependencies

and hence relaxes scheduling constraints. This improves availability

of the system at the cost of a measured loss in consistency [22].

3.5 Timed C
Timed C [31] is a C programming language extension that enables

programming with time. The language consists of a small set of lan-

guage primitives for specifying timed semantics, centered around

the concept of timing points. For instance, the code fragment

while(true) {
// Computation
stp(10, 30, ms);

}

shows a soft timing point (stp) running in an infinite loop. The

timing point specifies that the lower bound is 10ms, and the upper

bound is 30ms. Conceptually, logical time only evolves at timing

points and time does not advance when code is executed in-between

timing points. In this example, logical time advances by 10ms in

each instance of stp, regardless of the computation time for the code

between timing point invocations. Using real-time terminology, the

lower bound of a timing point specifies the relative arrival time2.

2
The semantics for a clear distinction of arrival time and physical time was introduced

by Natarajan et al. [33], compared to the original Timed C paper [31].
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The upper bound dictates the relative deadline. In the case of a

missed deadline for a soft timing point, the overshoot 𝑜 is the

difference between physical time and logical time, 𝑜 = P𝑐 (𝜏) −
T (𝑔𝑒 ), for some activation 𝑒 of a timing point at a time instant 𝜏 .

For a soft timing point, the deadline is not enforced, but can still be

used during scheduling.

A firm timing point, ftp, is used when a missed deadline is not

fatal, but the utility of the computation is zero. A firm timing point

also has a lower and an upper bound, but where the deadline for

the upper bound is enforced. That is, if the deadline is missed, the

runtime jumps out from the computation and immediately proceeds

to the next timing point. As a consequence, the programmer can

handle missed deadlines. There is a special critical section construct

to preserve data consistency.

The latest version of the semantics of Timed C [32] supports

concurrent tasks that may communicate via FIFO channels or latest-

value channels. There is currently no support for time-stamped

values as part of the programming model, or incorporating logical

time in a distributed setting, as in Lingua Franca. In contrast to syn-

chronous programming languages, Timed C enables programs to

reason about and react to disparities between logical time and phys-

ical time, such as deadline misses. Thus, like Lingua Franca, Timed

C supports explicitly relaxing consistency to improve availability.

4 CONCLUSION
The notion of logical time, as distinct from physical time, is a crit-

ical element for engineering time-centric reactive systems. This

notion appears in many related forms in synchronous languages,

the logical execution time (LET) paradigm, and emerging program-

ming languages and formalisms. It can give rigorous meaning to

consistency and to control the practical timing of programs.
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