Logical Time for Reactive Software

Marten Lohstroh
marten@berkeley.edu
University of California, Berkeley
USA

Stephen A. Edwards
sedwards@cs.columbia.edu
Columbia University, New York, NY
USA

Edward A. Lee
eal@berkeley.edu
University of California, Berkeley
USA

David Broman
dbro@kth.se
KTH Royal Institute of Technology, Stockholm
Sweden

ABSTRACT
Timing is an essential feature of reactive software. It is not just a performance metric, but rather forms a core part of the semantics of programs. This paper argues for a notion of logical time that serves as an engineering model to complement a notion of physical time, which models the physical passage of time. Programming models that embrace logical time can provide deterministic concurrency, better analyzability, and practical realizations of timing-sensitive applications. We give definitions for physical and logical time and review some languages and formalisms that embrace logical time.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network reliability.

KEYWORDS
timing, reactive systems, programming model, software

ACM Reference Format:

1 INTRODUCTION
Timing of software execution is usually considered a performance property rather than a correctness property. But in software for cyber-physical systems, timing is often a critical feature of the execution of the software. Today, no widely used programming language specifies timing. Instead, timing is an emergent consequence of a particular implementation and is sensitive to every detail of the hardware on which the software runs and to what other software may be sharing the same hardware. Even a small change in the hardware or software context can lead to drastically different timing behavior, making testing, maintenance, and upgrades difficult.

2 HOW TO MODEL TIME
Software should employ an engineering model of time that can be implemented in practice and reasoned about by humans instead of a scientific model that models physical reality [20]. The classical Newtonian model of time, which assumes there is a global state of the system that is known instantaneously everywhere, is a good approximation for relatively slow, relatively local, continuous dynamics, but today’s electronic systems may span the globe, operate with sub-nanosecond timing, and consist of discrete, discontinuous state transitions. These systems are not Newtonian because the order in which physically separated events occur is neither practically knowable nor theoretically well-defined [30, 34]. Distributed systems have no well-defined “current state.”

2.1 Logical Time vs. Physical Time
We want an unambiguous order of events because application behavior often depends on such ordering (think of bank account transactions), but ordering defies simple observation [21]. If two geographically separated components each perform an event nearly simultaneously, the “true” order of events may depend on your frame of reference. As a consequence, reality precludes a knowable current state of a distributed system. There is more than one truth.

Assigning logical timestamps can impose a well-defined event ordering. If two separated components assign to their respective events two timestamps \(t_1 \) and \(t_2 \) drawn from a totally ordered set \(T \), we can have a clear, unambiguous semantic model of the progression of the system based on the order of these timestamps. This is not a scientific model because we do not demand the ordering of timestamps necessarily match any physical truth, but it is an engineering model that we can implement faithfully. In particular,
provided the system components all agree on events’ timestamps, the system will agree on events’ global ordering.

Distributed databases systems often take this approach, assigning timestamps based on local clocks. These clocks are imperfect by any physical model of time, but are often adequate. An operating system clock synchronized by NTP [29] often suffices; more demanding applications use GPS, PTP [10], or atomic clocks. But these choices only offer utility, not correctness.

Using timestamps proposes a logical model of time that is consistent regardless of how the timestamps are assigned, provided they are drawn from a totally ordered set. They need not even be related at all to any wall clock measuring physical time. For an implementation to be correct (faithful to its semantics), it only needs to ensure all observers see the events in timestamp order. The key advantage here is a correctness criterion that completely sidesteps the question of how to interpret physical reality, providing us with a means to unambiguously specify timed behavior. But for such software to be useful, we usually want to be able to relate timestamps to the passage of time as perceived by physical observers.

Assume that physical time at a single point in space behaves like a smoothly advancing real number. Assume that such time is measured by a clock c ∈ C located at that point in space, where C is a set of clocks. Every clock will be imperfect, so we do not assume consistency between distinct clocks.

Definition 2.1 (Physical time). Let T be the set of physical time values that a clock c ∈ C may return. The set T is totally ordered. When a clock c attempts to measure a time instant r ∈ R, it returns a Pc(r) ∈ T given by physical time function

$$P_c: \mathbb{R} \rightarrow T.$$

The various Pc and the underlying r values they measure are unknown to the system (and unknowable).

The quality of the physical clocks in a system dictates the properties of the various Pc functions, which always fall short of ideal. We may desire successive interrogations of the same clock yield strictly larger measurements, i.e., τ1 < τ2 implies Pc(τ1) < Pc(τ2), but this is practically difficult. First, real clocks report quantized time values, so at best, Pc(τ1) ≤ Pc(τ2). Even worse, certain clocks occasionally run backward, e.g., an operating system clock being adjusted by NTP.

It is often useful to endow the set T with a metric, a distance function d: T × T → R with the usual properties of a metric. This enables quantifying the passage of time rather than just counting.

A measurement m of a system’s environment (e.g., a sensor reading) may be marked with a reading Tm = Pc(r) ∈ T from a local physical clock c taken when the measurement is taken (at time r). Although r cannot be directly known, this strategy ensures that readings from the same sensor will be treated consistently throughout a system regardless of how its other clocks may behave.

Systems may employ an additional level of abstraction between physical time values and the logical time values in their semantics:

Definition 2.2 (Tags and Logical time). A tag gτ for an event e is a member of a totally ordered set G endowed with a monotonic function $T: G \rightarrow T$. The tag denotes a logical time; any two events that have equal tags are logically simultaneous. The timestamp $T(g_τ)$ of the event e can be compared directly against a physical time obtained from a clock because it is a member of the same totally ordered set T.

In the simplest case, $G = T$ and T is the identity function, but in general, the ordering of events may need to be controlled in a more or less fine-grained way than is possible using the set T of time readings that a physical clock may yield. This is why the tag set G is not required to match time values that may be yielded by a physical clock. To tag a sensor reading taken at (unknown) time τ, we select a tag $g_m \in G$ such that $T(g) = P_c(τ)$, where c is a local physical clock.

Our tags are not as general as those of Lee and Sangiovanni-Vincentelli [23]; the set G is required to be totally ordered so that each tag can interpreted as a logical time value, and the function T gives a way to relate that logical time value to physical time.

2.2 Representations of Time

Choosing the set of physical time values T and the set of tags G must be done judiciously to achieve reasonable fidelity between the physical world and the logical world of the system. Here, we discuss considerations and choices.

Time as a real number may be questioned since some physical theories posit a discrete version of time that is granular on the order of Planck time (5.39×10^{-44} s), but this is not relevant for engineering and we know of no system with a clock this precise. This is why we use a real number r to represent the (unknowable) physical time. This makes it tempting to represent time in software systems with floating-point numbers, commonly used to approximate real numbers. But this turns out to be a poor choice, as explained by Broman, et al. [6]. Integer representations prove to be better.

The synchronous languages (see Section 3 below) use $G = \mathbb{Z}$, the natural numbers, to count the number of “instants” the program has encountered, and the mapping to physical clock readings is an arbitrary monotonic function that is irrelevant to the program correctness.

Sometimes, a more fine-grained mechanism is useful. For example, situations can arise where two events with the same timestamp r ∈ T are causally related and should not be treated as being logically simultaneous. In such situations, it has proven useful to use superdense time [7, 27, 28] or non-standard time [2].

Superdense Time. A superdense time model may use $G = T \times \mathbb{N}$ where N is the natural numbers, and for any $g = (t, n) \in G$, $T(g) = t$. That is, an event has a tag (t, n), where t is the timestamp and n is a superdense time index. In such a model, the total order relation used is the dictionary order, where $(t_1, n_1) < (t_2, n_2)$ if $t_1 < t_2$ or $t_1 = t_2$ and $n_1 < n_2$. This model allows for causally related events to have distinct tags without any notion of time increasing between them, such as $(t, 0), (t, 1), (t, 2), etc$. # To convert a physical time T to a tag, for example to tag a sensor reading, one could simply assign the tag $(T, 0)$ to the sensor reading event.

To give a concrete example, the Lingua Franca (LF) coordination language [26] assumes that physical time measurements are Unix

1To understand the usefulness of such a model of time, consider Newton’s cradle, the well-known toy with five steel balls hanging by strings. When one ball collides with the other four, its momentum is transferred through the three middle balls to the final ball. The three middle balls do not move. This transfer of momentum is usefully modeled as a sequence of events in superdense time.
time, which is a measurement of the number of nanoseconds that have elapsed since 00:00:00 UTC (Coordinated Universal Time) on 1 January 1970, the beginning of the Unix epoch, with adjustments made due to leap seconds. The LF runtime ensures that successive accesses to this physical time on any platform are strictly increasing and represents the result in a 64-bit signed integer (which will therefore overflow in the year 2262). LF uses superdense tags for events, where each tag consists of a 64-bit timestamp and a 32-bit unsigned superdense index. The timestamp of such events aligns with a local clock on a best-effort basis in that events will not be processed (by default) until a local physical clock matches or exceeds its timestamp. Similarly, asynchronous events injected into a running program, such as user interactions or sensor readings, are assigned timestamps based on an interrogation of a local clock.

Once an event is assigned a tag, it is handled in such a way that every component in the system sees events in tag order. If two events have the same tag (they are logically simultaneous), then no component that watches for these events will see one as present and the other as absent at that tag. This policy makes it easy to build deterministic distributed systems that have a consistent view of system state at each logical time.

2.3 Consistency

In logical time, unlike time in physics, there is a well-defined notion of a globally shared instant. Using logical time, we can make statements like, "at (logical) time \(t \), all components in the system agree that the value of a shared variable \(x \) is \(x(t) \)." A principle called "consistency." With care, we can design physical system realizations that adhere to this principle. A system implementation is consistent if for every \(t \) anywhere in the system, the local value \(x(t) \) is the same as any \(x(t) \) computed elsewhere in the system for the same logical time value \(t \).

2.4 Implementing Consistent Systems

Now that we have a separation between logical and physical time and a notion of consistency, how do we build systems that correctly implement consistency? This ranges from easy to impossible, depending on the requirements of the system. Let us start with easy. Suppose that our system consists of two nodes, one of which updates \(x \) and the other of which updates \(y \). Suppose further that we use a simple logical time model, like that of synchronous languages, where \(t \in \mathbb{N} \), the natural numbers, and \(T \) is some arbitrary monotonic function. In pseudo code, suppose the first component does this:

```plaintext
while(true) {
    t = t + 1
    wait for a local physical clock to reach \( t \) seconds
}
```

Now, we have established a relationship between logical time \(t \) and physical time. But that relationship is a bit subtle. In particular, suppose the two nodes have independent physical clocks, and no effort is made to synchronize them. Then the whole system will eventually align to the slower of the physical clocks. It will still remain consistent, in that for any \(t \in \mathbb{N} \), the two nodes will agree on the values of \(x(t) \) and \(y(t) \), but they will disagree by an arbitrarily large amount on the discrepancy between \(t \) and their local measurement of physical time.

Consider now a more difficult case. Suppose that in each pass through the while loop above, each component may or may not send an update to the other component. Consistency could still be maintained by sending "null messages" whenever the component does not update its variable, but this could be inefficient, particularly if the updates are rare (as in most database applications).

A more clever solution might be to use some technique to synchronize the physical clocks [10, 17, 19, 24] then assume a bound \(E \) on the clock synchronization error and a bound \(L \) on the network latency. Then, instead of waiting for a message from the other component, each component could wait for its physical clock reading \(T \) to satisfy \(T > t + E + L \). At that (physical) time, if it has not received an update from the other component, then it can assume that no such update is forthcoming and it can proceed. This is the essential principle behind PTIDES [35], and this principle is used in Google Spanner [8], a globally distributed database.

This implementation will be "correct," of course, only under the assumptions \(E \) and \(L \). Consistency will only be maintained if the bounds \(E \) and \(L \) are not exceeded at run time. Fortunately, violations of these bounds are (eventually) detectable simply by including the tag \(t \) along with each message. If the first component receives a message with an update to \(y \) at logical time \(t \), but its own local value of its variable \(t \) is bigger than \(t \), then it knows that one of these assumptions has been violated (it is impossible to tell which one). In the case of Google Spanner, an update gets committed only after an acknowledgment has been received (more subtly, it uses a fault tolerant Paxos [18] consensus algorithm [8]). Consistency is maintained for traces consisting of all updates that are committed.

There is a long history with many other sophisticated methods for implementing consistent systems. In addition to the legacy from database systems [14], distributed simulation has also contributed a wealth of techniques [12]. Lingua Franca (see Section 3.4) realizes extensions of several of these techniques [1].

2.5 Consistency vs. Availability

Consistency is agreement on the value \(x(t) \) of some shared state \(x \) at logical time \(t \). Fundamentally, maintaining consistency comes at an unavoidable price in availability [5, 22]; specifically, there is a physical time delay that has to be imposed before a program can access the value of \(x(t) \) in order to ensure consistency. As shown by Lee, et al. [22], this time delay is a linear function (in a max-plus algebra) of measurable delays due to networks, execution time, and clock synchronization. Moreover, this time delay can be
edge = false -> (c and not pre(c));
edgecount = 0 -> if edge then pre(edgecount) + 1
else pre(edgecount);

<table>
<thead>
<tr>
<th>Instant</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>pre(c)</td>
<td>?</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>edge</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>edgecount</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 1: A Lustre program fragment that counts false-to-
true transitions on input c and its behavior on a stream.

reduced by relaxing consistency requirements; specifically, if we
assert that component A’s value of \(x(t) \) at logical time \(t \) should
agree with component B’s value \(x(t + \Lambda) \) for some \(\Lambda > 0 \),
then a smaller physical time delay may be required to maintain this
relaxed consistency. Lingua Franca (Section 3.4) supports explicit
manipulations of this tradeoff between consistency and availability.

3 LOGICAL TIME IN LANGUAGES

A variety of languages and formalisms have emerged that embrace
logical time. In this section, we review and compare a few of these.

3.1 The Synchronous Languages

Logical time in the synchronous languages Esterel, Lustre, and
Signal [3] uses natural-number tags that count “instants” of com-
putation, i.e., \(G = \mathbb{N} \). The relationship between tags and physical
time, i.e., the functions \(P_c \) and \(T_c \), is implementation-dependent;
most use periodic instants or the union of environmental inputs.

Each language describes systems that are concurrent, determinis-
tic, and behave like single finite-state machines. Execution proceeds
as a sequence of instants tagged 0, 1, 2, ..., In each instant, the sys-
tem examines its state and the inputs to compute its outputs for
that instant and the next state. Computation can be logically instan-
taneous in that an input event may directly cause an output event
with the same tag. Furthermore, programs can refer to the previous
and next instant by observing the current state and controlling the
next state, respectively. The Lustre program in Figure 1 illustrates
this: the first line says that the value of the Boolean signal edge
in the current instant is logical AND of the Boolean signal c in the
current instant and its value from the previous instant.

Implementations typically take one of two approaches to tie logi-
cal and physical time. The simpler approach is periodic instants, as is
done in synchronous digital logic circuits and periodically sampled
control systems. Here, for any timestamp \(g \in \mathbb{N} \), \(d(\tau(g + 1), \tau(g)) \),
where \(d \) is a metric on \(\tau \), is equal to the fixed clock period. Implement-
ations employ a single periodic clock whose ticks are used to
invoke a software “tick” function that reads environmental inputs,
consults and updates the current state, and emits environmental
outputs. As with synchronous digital logic, the periodic approach
correctly implements the system provided the worst-case execution
time of the “tick” function is less than the clock period. Note that
in addition to synchronizing output events, the periodic approach
also effectively constrains the environment to only deliver inputs
on those instant boundaries.

The second, more general approach allows the environment to
choose when instants occur, e.g., when there is an event on any
environmental input. The periodic approach is a special case of
this where all the environmental inputs have been forced to be syn-
chronous with the clock. This approach allows the programmer to
focus more on how to react to events rather than their relationship
with the clock, but it does so at the expense of making it harder
to determine whether the system can be implemented correctly.
Specifically, this approach requires the reaction time to any input
event is less than the time to the next event. Not only does this
require knowledge of reaction time, it also requires knowledge of
how quickly the environment will deliver inputs.

While the languages share a model of time and computation,
they specify behavior differently. Esterel is an imperative language
with the notion of multiple program counters; Lustre and Signal
are both concurrent dataflow languages that provide subsampling
in which portions of a system perceive only a subset of instants;
Signal further provides supersampling where components may pro-
grammatically insert instants between those of another signal [4].

The languages’ approaches to specifying and implementing intra-
instant behavior also differ. A Lustre program [13] is a list of flow
expressions (e.g., Figure 1); the Lustre compiler insists there be a
static expression evaluation order that respects data dependencies.
In particular, any self-referential cycle, such as that for edgecount,
must be broken with a pre. Esterel’s addition of control depend-
encies to Lustre-like data dependencies makes its behavior more
difficult to compute and statically analyze, e.g., that a program will
be causal (non-contradictory) in every instant. While the Esterel
compiler also insists it can find a static order in which to execute
statements in each instant, such orders may require interleaving
statements and the order may even be state-dependent. Signal pro-
grams are potentially even harder to verify as their semantics are
akin to constraint-solving over both values and timing.

3.2 The Sparse Synchronous Model

In a synchronous program implemented with a periodic clock, there
is a tradeoff between timing precision and system complexity. Finer
timing precision requires a shorter clock period, which demands
less work be done in each instant. This forces designers to refactor
higher-complexity tasks into operations across multiple instants, a
difficult manual task similar to pipelining in digital logic designs.

The Sparse Synchronous Model (SSM) [9] avoids this tradeoff by
adding computation across multiple instants to the synchronous
languages’ logical time model of natural-numbered tags \(G = \mathbb{N} \),
instantaneous execution, the ability to confront and determinis-
tically resolve simultaneous events, and the distinction between in-
tra- and inter-instant semantics.

However, unlike Lustre, Esterel, and Signal, SSM insists the in-
stants are periodic, i.e., \(d(\tau(g + 1), \tau(g)) \) is the fixed clock period).
While an implementation knows its clock period, this is hidden
from the user, who may only query, specify, and manipulate time as
seconds. SSM does not expose the notion of the “next” or “previous”
instant to the user. Under this policy, increasing the clock frequency
should not affect program behavior.

As its name implies, SSM assumes computation is sparse: con-
ceptually, a program only perceives a small fraction of all possible
The Lingua Franca coordination language, which is meant to com-
produce tasks during most of these logically idle instants.

Multi-cycle computation in SSM is specified by the after con-
struct. When a statement such as "after 1 ms, a ← b + c" runs at
some instant \(t \), it captures the values of \(b \) and \(c \) at time \(t \), starts
the addition operation, schedules the value of \(b \) to be updated at logical
time \(t + 1 \) ms, and terminates instantly (i.e., the current instant \(t \)
is not updated) to allow other statements to be evaluated at the
same (logical) instant. In traditional real-time task terminology,
the addition task is released at time \(t \) and given a deadline of time
\(t + 1 \) ms, although unlike in many real-time models, SSM delivers
the result at exactly the (logical time) deadline and never earlier.

The SSM runtime system follows the logical time semantics and
keeps itself synchronized to physical time. It relies on hardware
timers to count instants with minimal software intervention. While
the synchronous languages can express behavior like “wait until
instant 1000,” doing so requires the program to count the instants.

By contrast, SSM has such delays in the form of the after primitive
and implements it efficiently with an event queue that it keeps
synchronized with physical time via hardware timers.

3.3 Logical Execution Time

The Logical Execution Time (LET) principle and its pioneering
implementation in the Giotto language [11, 15, 16] depends heavily
on the separation between logical time and physical time. Under
this principle, the inputs to a software component are fixed at a
logical time \(t \) and the outputs are produced at a later logical time
\(t + L \), where \(L \) is the logical execution time of the component, like
that seen in the after primitive in SSM. A key advantage of the
LET principle is that logical time and physical time can be more
closely aligned because \(L \) accounts for the physical time that elapses
during the computation performed by the component. This makes
the interaction between software and its physical environment
more controllable. On the other hand, too tight a binding between
logical and physical time can make it difficult to take advantage of
timing variability in software execution.

3.4 Lingua Franca

The Lingua Franca coordination language, which is meant to com-
pose reactive segments of target code written in mainstream lan-
guages like C, Python, and Rust, embraces the concept of multiple
timelines. The execution of an LF program involves the scheduling
of tagged events and handling them in tag order. Events that enter
the system asynchronously from the environment are pinned to
a logical timeline using a tag derived from a reading of a physical
clock. This happens via the scheduling of a “physical action.”
The scheduling of a “logical action,” on the other hand, occurs in reac-
tion to another event, and the tag of resulting is computed on the
basis of the tag of the triggering event.

In LF, reactive code is encapsulated in "reactions," which are part of stateful components called "reactors" [25] which have ports
that can be wired together using connections. Values produced
on ports are logically instantaneous, meaning that they amount
to events with the same tag as the events that triggered the reac-
tions producing the outputs. Based on the connection topology
between reactors and the signatures of their reactions (which spec-
ify which ports they have access to), the runtime system imposes
scheduling constraints to ensure that no reaction executes until all
of the ports it depends on have either settled on a final value or
are known to be absent at that tag. Any two reactions that have no
such dependencies between them may execute in parallel.

LF programs can be federated, in which case a program is split
into multiple processes that can be run on distinct machines. The
code generator synthesizes the communication and coordination
so that, globally, every reactor sees events in logical time order [1].

In LF, by default, logical time “chases” physical time. When an
event with the smallest tag \(g \) is to trigger reactions, the runtime
system waits until a local clock \(c \) reads \(P_L(t) \geq T(g) \). This gives a
best-effort alignment of logical and physical times.

The deadline construct in LF gives another mechanism to relate
logical and physical times. A reaction may be specified as follows:

\[
\text{reaction}((\text{triggers}) \rightarrow \text{effects} = \text{target-language code})
\]

The second body of code will be invoked instead of the first if, when
the reaction is triggered by an event with logical time \(g \), a physical
clock \(c \) reads \(P_L(t) > T(g) + 10\text{ms} \). A deadline specifies an upper
bound on the discrepancy between logical time and physical time.

By imposing logical time delays, a lower bound can be enforced
on the difference between the logical time of an event and the
physical time at which the event is reacted to in other parts of the
system. For example, one can add an “after” clause to a connection
between two reactors, which shifts the logical time at which an
event is witnessed at the receiving end of the connection by a given
amount of time. Adding logical delays breaks direct dependencies
and hence relaxes scheduling constraints. This improves availability
of the system at the cost of a measured loss in consistency [22].

3.5 Timed C

Timed C [31] is a C programming language extension that enables
programming with time. The language consists of a small set of lan-
guage primitives for specifying timed semantics, centered around
the concept of timing points. For instance, the code fragment

```c
while(true) {
    // Computation
    stp(10, 30, ms);
}
```

shows a soft timing point (stp) running in an infinite loop. The
timing point specifies that the lower bound is 10 ms, and the upper
bound is 30 ms. Conceptually, logical time only evolves at timing
points and time does not advance when code is executed in-between
timing points. In this example, logical time advances by 10 ms in
each instance of stp, regardless of the computation time for the code
between timing point invocations. Using real-time terminology, the
lower bound of a timing point specifies the relative arrival time.\(^\text{2}\)

\(^\text{2}\)The semantics for a clear distinction of arrival time and physical time was introduced
by Natarajan et al. [33], compared to the original Timed C paper [31].
The upper bound dictates the relative deadline. In the case of a missed deadline for a soft timing point, the overshoot o is the difference between physical time and logical time, $o = T' (\tau) - T (q_\tau)$, for some activation o of a timing point at a time instant τ. For a soft timing point, the deadline is not enforced, but can still be used during scheduling.

A firm timing point, $f tp$, is used when a missed deadline is not fatal, but the utility of the computation is zero. A firm timing point also has a lower and an upper bound, but where the deadline for the upper bound is enforced. That is, if the deadline is missed, the runtime jumps out from the computation and immediately proceeds to the next timing point. As a consequence, the programmer can handle missed deadlines. There is a special critical section construct to preserve data consistency.

The latest version of the semantics of Timed C [32] supports concurrent tasks that may communicate via FIFO channels or latest-value channels. There is currently no support for time-stamped values as part of the programming model, or incorporating logical time in a distributed setting, as in Lingua Franca. In contrast to synchronous programming languages, Timed C enables programs to reason about and react to disparities between logical time and physical time, such as deadline misses. Thus, like Lingua Franca, Timed C supports explicitly relaxing consistency to improve availability.

4 CONCLUSION

The notion of logical time, as distinct from physical time, is a critical element for engineering time-centric reactive systems. This notion appears in many related forms in synchronous languages, the logical execution time (LET) paradigm, and emerging programming languages and formalisms. It can give rigorous meaning to consistency and to control the practical timing of programs.

ACKNOWLEDGMENTS

The work in this paper was funded in part by the National Science Foundation (NSF), Award #CNS-2233769 (Consistency vs. Availability in Cyber-Physical Systems); the National Institutes of Health under grant RF1MH120034-01; the iCyPhy Research Center (Industrial Cyber-Physical Systems); the National Institutes of Health uncertainty in Cyber-Physical Systems); the Swedish Foundation for Strategic Research (FFL15-0032; the Swedish Foundation for Strategic Research Center (Industrial Cyber-Physical Systems); the National Institutes of Health un-...