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Abstract

In a hard real-time embedded system, the time at which a result is computed is as important as
the result itself. Modern processors go to extreme lengths to ensure their function is predictable, but
have abandoned predictable timing in favor of average-case performance. Real-time operating systems
provide timing-aware scheduling policies, but without precise worst-case execution time bounds they
cannot provide guarantees.

We describe an alternative in this paper: a SPARC-based processor with predictable timing and
instruction-set extensions that provide precise timing control. Its pipeline executes multiple, indepen-
dent hardware threads to avoid costly, unpredictable bypassing, and its exposed memory hierarchy pro-
vides predictable latency. We demonstrate the effectiveness of this precision-timed (PRET) architecture
through example applications running in simulation.

1 Introduction

Developing hard real-time software on modern processors has grown very difficult because their complex-

ity has made predicting execution speed nearly impossible. Between multi-stage pipelines with hazards,

bypassing, and complex interactions between related instructions, superscalar out-of-order instruction fetch

units that almost recompile the program on-the-fly, three-level memory hierarchies with complex cache re-

placement policies, it is extremely difficult to accurately predict exactly how many cycles it will take to

execute a sequence of simple instructions [8], let alone code with conditional branches. Modern processors

are truly chaotic [4].
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Unfortunately, worst-case execution time bounds are the foundation on which all real-time software

engineering is built. Of course, one can always be conservative with over-estimates, but this has become

unrealistic since the difference between hitting level one cache and main memory can be a thousand cycles.

We believe the solution for real-time embedded software is no less than a rethinking of processor archi-

tecture. As has been argued elsewhere [7], it is time to consider architectures that provide timing as pre-

dictable as their function. In this paper, we propose a concrete example of such a precision-timed (PRET)

architectures: a multithreaded processor based on the SPARC instruction set architecture (ISA) that delivers

predictable timing along with predictable function and performance. Below, we present a cycle-accurate

model of the PRET architecture using SystemC [21] and an application running on it to demonstrate how

software can take advantage of PRET architectures. In the future, we plan an FPGA implementation as well.

2 The PRET Philosophy

The philosophy behind PRET [7] is that modern processor architecture has gone down an unpredictability

hole due to its single-minded focus on average-case performance. It needs to be rethought to be effective for

real-time embedded systems. Patterson and Ditzel’s similar observation [23] started the RISC revolution. In

the same way, we must rethink real-time embedded processor architectures.

The complexity of modern processors [11] has made the task of calculating or even bounding the execu-

tion time of a sequence of operations very difficult [8]. While this is not critical for best-effort computing, it

is a disaster for hard real-time systems.

The PRET philosophy is that temporal characteristics should be as predictable as function. Much like

how arithmetic on a processor is always consistent, predictable, and documented, we want its speed to

be equally consistent, predictable, and documented. While turning the clock back to the era of eight-bit

microprocessors is one obvious way to achieve this, instead the goal of PRET is to re-think many of the

architectural features enabled by rising integration levels and render them predictable.

Thus, PRET espouses software-managed scratchpad memories [2], thread-interleaved pipelines with no

bypassing [9, 18], explicit timing control at the ISA level [13], time-triggered communication [15] with

global time synchronization [14], and high-level languages with explicit timing [12]. In this paper, we

propose an architecture that embodies many of these tenants, and demonstrate how it can be programmed.

In particular, we focus on integrating timing instructions to a thread-interleaved pipeline and a predictable
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memory system. We then show how to program such a predictable architecture.

3 Related Work

The Raw processor of Agarwal et al. [27] shares certain elements of the PRET philosophy. It, too, employs

a software-managed scratchpad instead of an instruction cache [20], and definitely takes communication

delay into account (the name “raw” is a reminder that its ISA is exposed to wire delay). However, it sports

multiple single-threaded pipelines with bypassing, a fairly traditional data cache, and focuses almost purely

on performance, as usual at the expense of predictability.

The Raw architecture is designed as a grid of single-threaded processors connected by a novel intercon-

nection network. While we envision a similar configuration for high-end PRET processors, the implementa-

tion we present here does not consider inter-core communication. We may adopt a Raw-like communication

network in the future.

The Java Optimized Processor [25] enables accurate worst-case execution time bounds, but does not

provide support for controlling execution time. The SPEAR [6] processor prohibits conditional branches,

which we find overly restrictive. The REMIC [24] and KIEL [19] are predictable in the PRET sense, but

they only allow Esterel an entry language. Again, we find this overly restrictive; a central goal of our work

was to provide a C development environment.

Ip and Edwards [13] first implemented the deadline instruction in a very simple non-pipelined processor

that did not have C compiler support. This deadline instruction allowed a programmable method to specify

the lower bound execution time on segments of program code. Our work extends theirs.

The Giotto language [12] is a novel approach to specifying system timing at the software level. However,

it relies on the usual RTOS infrastructure that assumes worst-case execution time is known to establish

schedulability [5]. Our PRET processor would be an ideal target for the Giotto programming environment;

constructing one is future work.

Thread-interleaved pipelines date to at least 1987 [18], probably much earlier. Thread-interleaving

reduces the area, power and complexity of a processor [9,16], but more importantly, it promotes predictable

execution of instructions in the pipeline. Access to main memory in thread-interleaved pipelines is usually

pipelined [9,16], but modern, large memories usually are not, so instead our approach presents each thread

with a window in which it can access main memory. This provides predictable access to memory and mutual
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exclusion between the threads. We call this a memory wheel.

The goal of the Virtual Simple Architecture of Mueller et al. [1] is to enable hard real-time operation of

unpredictable processors. They run real-time tasks on a fast, unpredictable processor and a slower, more-

predictable one simultaneously, and switch over if the slow ever overtakes the fast. The advantage is that the

faster processor will have time to run additional, non-time-critical tasks. By contrast, our PRET approach

guarantees detailed timing, not just task completion times, allowing timing to be used for synchronization.

Scratchpad memories have long been proposed for embedded systems because they consume less power

than caches [3], but here we adopt them purely because they enable better predictability. Since scratchpad

memories are software managed, the issue of memory allocation schemes become important. Our future

work is to build on top of the current PRET architecture and develop a memory allocation scheme.

4 Our Architecture

In this section, we present the design of the PRET processor, its memory system, and ISA extensions to

support deadline counters. We have prototyped the PRET architecture (block diagram shown in Figure 1)

with a cycle-accurate SystemC [21] model that executes programs written in C and compiled with the GNU

C compiler. Our simulator implements an extended SPARC v8 ISA [26].
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Figure 1: Block Diagram of PRET Architecture

The PRET PROCESSOR

component in Fig-

ure 1 implements

a six-stage thread-

interleaved pipeline

in which each stage

executes a separate

hardware thread to

avoid the need for

bypasses [9,18]. Each

hardware thread has its own register file, local on-chip memory, and assigned region of off-chip memory.

The THREAD CONTROLLER component is a simple round-robin thread scheduler—at any time, each thread

occupies exactly one pipeline stage. To handle the stalling of the pipeline predictably, we introduce a replay
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mechanism that simply repeats the same instruction until the operation completes. Thus, the stalling of one

thread does not affect any of the others. The round-robin execution of threads avoids memory consistency

issues.

The memory hierarchy follows a Harvard architecture [11] that consists of separate fast on-chip scratch-

pad memories (SPM) for instruction and data, and a large off-chip main memory. They are connected to a

direct memory access (DMA) controller responsible for moving data between main memory and the SPMs.

Currently, we assume program code fits entirely in the SPMs because we have not developed an automatic

program memory management scheme [2]. The DMA component currently only transfers the program code

and data for each thread from main memory to their respective SPMs at power on. As mentioned earlier,

memory reads and writes employ the replay mechanism. Each thread has its own access window managed

by the MEMORY WHEEL. If a thread misses its window, it blocks until it reaches the start of its window.

We incorporate a deadline instruction [13] into our SPARC-based ISA. Such an instruction blocks until

a software-programmable deadline counter reaches zero. Each counter is controlled by a thread-local phase-

locked loop, which can be programmed to count at a rational multiple of the system clock frequency.Below,

we describe our implementation in detail. We present the memory system, the memory wheel, the memory

map, the thread interleaved pipeline, extension of the timing instructions and the toolchain flow.

4.1 Memory System

Caches are known to be a major source of timing unpredictability [28], but simply removing them is unac-

ceptable. Instead, we use scratchpad memories for bridging the processor-memory gap. Scratchpad memo-

ries are software-managed on-chip memories often employed in hard real-time embedded processors. SPMs

are managed by software through DMA transfers, thus avoiding the unpredictability of (often subtle) hard-

ware replacement policies.

Each thread-local SPM is 64 KB with 1 cycle latency. We use a 16 MB main memory with a latency

of 13 cycles. All reads and writes to the main memory, such as shared data, must do so through our memory

wheel. Like the “hub” in the Parallax Propeller Chip [22], this wheel has a fixed round robin schedule for

determining which thread is allowed to access memory. Based on the fixed schedule and the time that a

thread requests access to main memory, the access can take between 13 and 90 cycles. Instead of blocking

the entire pipeline during a multi-cycle memory access, we use the replay mechanism as described in the
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pipeline section. A simple memory management unit selects among the SPMs, the main memory, and

memory-mapped I/O based on the address.

4.1.1 Memory Wheel

The memory wheel controls access to the off-chip main memory in a deterministic and predictable fashion.

Each thread is allocated a 13-cycle window in which it must complete its memory access; the wheel schedule

repeats every 78 cycles. If a thread starts its access on the first cycle of its window, the access takes exactly 13

cycles. Otherwise, the thread blocks until its window reappears, which may take up to 77 cycles. While this

mechanism can cause a thread to block, there is no inter-thread interaction and the behavior of the window

is predictable.

4.1.2 Memory Map

0x00000000

0x40000000

0x3F800000

0x80000000

0x00000FFF

0x405FFFFF

0xFFFFFFFF

Boot code  
This address space contains the boot code used by each thread on startup to 
initialize all the registers and jump to the start of the thread's program.

Shared data (8 MB)
This address range is reserved in our scheme for data that is shared between 
multiple threads.

 Thread-local instructions and data (1 MB per thread)
First thread starts at address 0x40000000.  512KB is reserved for instruction 
and the other 512KB for data. Each subsequent thread starts offset 0x100000 
bytes from its predecessor. meaning that the first thread encompasses 
addresses from 0x40000000- 0x400FFFFF, the second 0x40100000- 
0x401FFFFF, and so on.  This approach allows each byte of data in any 
memory location to be associated uniquely with an address.

Memory-mapped I/O
We reserve addresses above 0x80000000 for special purposes such as 
memory-mappings. In particular we follow the map address 0x80000200 to 
the UART, which is consistent with what our toolchain's GCC generates for 
printf or puts.

Figure 2: Memory Map

Figure 2 shows the system memory map

(addresses are 32 bits). Each piece of

memory in the system has a unique global

address (main memory and SPMs), but

each thread only has access to part of

the overall memory map. Addresses

0x3F800000–0x405FFFFF (14 MB)

are main memory, visible to every thread.

This layout allows for future expansion:

the shared data space can extend down-

ward; thread-local memory can extend up-

ward. Our current implementation has 512 bytes of boot code, 8 MB of shared data and 1 MB total for

SPMs. Peripherals start at 0x80000000; we placed a UART at 0x80000200.

4.2 Pipeline

Our architecture implements a six stage thread-interleaved pipeline that supports six independent hardware

threads. Each thread has its own set of registers. By design, we implemented one thread per pipeline stage

to eliminate dependencies among instructions in the same thread. Thus, it does not need any data hazard
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detection logic or bypassing.

The thread controller schedules the threads according to a round-robin policy and passes a thread iden-

tifier to the pipeline to index thread-specific registers and SPMs. In the fetch stage, the current PC is

fetched from the SPM. Because of the thread interleaving, we do not need to update the next PC for the

current thread since it will not be fetched until the current thread leaves the pipeline. This removes the need

for something like speculative execution because we are sure the PC is always correct when it is fetched.

The decode stage decodes the instruction and sets the corresponding pipeline controls. The regacc stage

reads the source operands from the register file and selects between immediate and registered data for the

operands. The execute stage performs ALU operations. The mem stage accesses either SPM or main

memory. The except stage catches exceptions and writes any results to the register file if there are no

exceptions. We also update the PC in this stage after determining its next value depending on stalls and

branches.

Even though we do not need data hazard detection, we do have to consider structural hazards. We

address them with a replay mechanism, which we elaborate below.

4.2.1 Stalls and the Replay Mechanism

Our pipeline only updates registers in the except stage. This stage writes data to the register file only if no

exception has occurred. This gives a single commit point for each thread. We decide at this commit point

whether an instruction needs to be replayed.

By replaying instructions, we ensure each thread stays in exactly one pipeline stage per cycle before

advancing, even for multi-cycle operations such as memory accesses. Replay thus provides a predictable

method for blocking a thread independently of the others, rather than stalling the whole pipeline. The

exception stage checks an instruction’s replay bit and commits only if the bit is clear. Otherwise, the fetch

stage checks and determines the next PC to be fetched. Therefore, the next iteration of that thread will re-run

the same instruction until the multi-cycle operation is complete.

4.3 Timing Instructions

To provide precise timing control to software, we add a “deadline” instruction that allows the programmer

to set and access cycle-accurate timers [13]. This instruction sets a lower bound deadline on the execution
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time of a segment of code. We provide two types of deadline timers that can be accessed by this instruction:

one group counts according to the main clock, the other counts according to a clock generated by a pro-

grammable phase-locked loop (PLL). These timers appear as additional registers (Figure 1) that can only be

accessed through the deadline instruction.

4.3.1 Syntax

We take the syntax of the deadline instruction from Ip and Edwards [13]. There is an immediate form,

deadi $ti,v, and a register form, dead $ti,$r j. Each thread has twelve deadline registers (t0–t11), eight

of which count instruction cycles, the other four are driven by the PLL; and 32 global registers (r0–r31). v is

a 13-bit immediate value.

4.3.2 Semantics

The deadline instruction can only enforce a lower bound on the execution time of code segment; using

replay, the deadline instruction blocks the thread whenever the deadline register ti being written is not yet

zero.

Unlike Ip and Edwards [13], our processor is pipelined, so we decrease each deadline register once

every six clock cycles, i.e., at the instruction execution rate, and the PLL registers at the rate set by the

PLL. When a deadline instruction attempts to set a deadline register, it blocks until the deadline register

reaches zero, at which point it reloads the register and passes control to the next instruction. Thus, an earlier

deadline instruction can set the minimum amount of time that can elapse before the next deadline instruction

terminates.

Currently, if a deadline expires (i.e., the register reaches zero before a deadline instruction reaches it),

we do nothing: the deadline instruction simply loads the new value immediately and continue. Later, we

plan to allow the architecture to throw an exception when a deadline is missed.

4.3.3 Implementation

To implement the deadline instruction, we chose an unused opcode and followed the usual SPARC in-

struction coding format, which allowed us to include both register and immediate forms of the instruction.

Figure 3 shows two concrete encodings.

Support for the deadline instruction requires some extra pipeline control logic and deadline registers.
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00010 01111111111111 101100 00000 1
op rs1 i simm13rd op3

00010  00001xxxxxxxx11 101100 00000 0
op rs1 i asi rs2rd op3

Figure 3: Encoding of dead $t2,0xFF and dead

$t2,$g1

In our pipeline, we check the deadline register in

the register access stage and use the replay mecha-

nism to block a deadline instruction until its dead-

line register is zero.

4.4 Compilation Flow

We adapted the SPARC toolchain used by the open-

source LEON3 implementation [10]. Figure 4

shows our compilation flow.

PRET 
ISS

PRET 
on FPGA

C Programs

thread5.c

thread4.c

thread3.c

thread2.c

thread1.c

thread0.c thread0.srec

thread1.srec

thread2.srec

thread3.srec

thread4.srec

thread5.srec
Compile Threads

setup.h setup.S

setup0.srec setup5.srec...

Figure 4: Compilation Flow for PRET Simulator

We require the user to pro-

vide a main() function for

each hardware thread in sepa-

rate files (e.g., thread0.c).

We compile each at locations

dictated by our memory map

by passing the -Ttext and

-Tdata options to the linker.

For example, thread0.c starts at address 0x40000000 and thread1.c at 0x40010000. We merge

the resulting object files with setup code and convert them to Motorola S-record (SREC) format. Our simu-

lator then initializes memory with the contents of the SREC files.

5 Basic PRET Programming

To illustrate how PRET timing precision can be used for synchronization, we present a simple producer/consumer

example with an observer that displays the transferred data. This is a classical mutual exclusion problem;

we must deal with the issue of shared resources. We address this using the deadline counters and precise

knowledge of the timing of instructions to synchronize access to a shared variable used for communica-

tion. We take on the role of a worst-case execution time (WCET) analysis tool to analyze the instructions

generated from the C programs and compute the exact values for the deadline counters to ensure correct

synchronization.
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int main() {
  DEAD(28); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26);
    *buf = i;
  }
  return 0;
}

Producer
int main() {
  DEAD(41);
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  int arr[8];
  for (i =0; i<8; i++)
    arr[i] = 0;
  for (i = 0; ; i++) {
    DEAD(26);
    register int tmp = *buf;
    arr[i%8] = tmp;
  }
  return 0;
}

Consumer
int main() {
  DEAD(41); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  volatile unsigned int * fd =  
 (unsigned int*)(0x80000600);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26); 
    *fd = *buf;
  }
  return 0;
}

Observer

Figure 5: Simple Producer/Consumer Example

5.1 Mutual Exclusion

A general approach to managing shared data across separate threads is to have mutually exclusive critical

sections that only a single thread can access at a time. Our memory wheel already guarantees that any

accesses to a shared word will be atomic, so we only need to ensure that these accesses occur in the correct

order.

Figure 5 shows the C code for the producer, consumer, and an observer all accessing a shared variable

(underlined). The producer iterates and writes an integer value to a shared data. The consumer reads this

value from this shared data and stores it in an array. For simplicity, our consumer does not perform any other

operations on the consumed data or overwrite the data after reading it. The observer also reads the shared

data and writes it to a memory-mapped peripheral. We use staggered deadlines to offset the threads to force

a thread ordering. The deadline instructions are marked in bold.

As Figure 5 shows, every loop iteration first executes the critical section of the producer, and then the

observer and the consumer in parallel. The offsets to achieve this are given by deadlines at the beginning of

the program. The offset of the producer loop is 28∗6 = 168 cycles, which is 78 cycles less than the offset of

41 ∗ 6 = 246 for the consumer and observer. Since this difference is the same as the frequency with which

the wheel schedule repeats, this guarantees the producer thread will access the data an earlier rotation of the

wheel. Once inside the loop, deadlines force each thread to run at the same rate, maintaining the memory

access schedule. It is important for this rate to be a multiple of the wheel rate to maintain the schedule. In

this example, each loop iteration takes 26∗6 = 156 cycles: exactly two rotations of the wheel.
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6 A Sample Application: A Video Game

Figure 6: Structure of the Video Game Example

Inspired by an example game sup-

plied with the Hydra development

board [17], we implemented a sim-

ple video game in C targeted to our

PRET architecture. Our example

centers on rendering graphics and is

otherwise fairly simple. The objec-

tive of the game is to avoid mov-

ing obstacles coming at the player’s

ship. The game ends when the

player’s ship collides with an obstacle. It uses multiple threads and both types of deadlines to meet its

real-time requirements.

Signal Time period Pixel periods

Vertical sync 64µs 1641

Vertical back-porch 1.02ms 26153

Drawing 480 lines 15.25ms

Vertical front-porch 350µs 8974

Horizontal sync 3.77µs 96

Horizontal back-porch 1.89µs 48

Drawing 640 pixels 25.17µs

Horizontal front-porch 0.94µs 32

Table 1: VGA Real-time Constraints

Our example consists of three main tasks (Figure 6)

running in separate threads: the video driver, which

sends pixels in a framebuffer to a VGA port; the graph-

ics controller, which is responsible for depositing pixels

in the framebuffer; and the game logic. To the PRET

simulator, we added a memory-mapped I/O interface to

a VGA controller. The simulator dumps the pixel stream

sent to this interface as PBM files for debugging. User

input is currently read from an array.

For safety, we use a double-buffered command

queue for communication between the game logic and

the graphics controller, and a double-buffered frame buffer to communicate between the graphics controller

and the video driver. During each frame, the game logic puts drawing commands into one of the command

queues and the graphics controller interprets those in the other queue and draws them into one of the frame-

buffers. At the same time, the video controller is displaying the contents of the other framebuffer. This
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avoids screen flicker and guarantees the contents of each displayed frame is deterministic.

6.1 The VGA Driver Thread

This thread sends groups of sixteen pixels to the VGA controller to display a raster. As mentioned above,

we double-buffer the image to avoid glitches: the VGA driver thread takes pixels from one buffer and the

graphics controller writes to the other. The timing requirements, listed in Table 1, must be met to produce a

stable image.

Our VGA driver displays four colors (black, white, red, and green) at 640×480 resolution with a 60 Hz

refresh rate. We set the PLL clock to the 25.175 MHz pixel rate and fill a 32-bit hardware shift register

every sixteen clocks. The VGA hardware takes a new pair of bits from this register at the pixel clock rate

and sends them to a video DAC connected to a display.

CPU Clock

VGA Clock

Vertical
Front-porch

64 us 1.02 ms 15.25 ms 0.25 ms

Drawing
480 lines

Vertical
Back-porch

Vertical
sync

Figure 7: VGA Vertical Timing

The VGA driver algorithm is a simple

loop: wait for the last pixels to be sent, read

color or control data, send these to the VGA

controller, and decide what to do next (typ-

ically repeat). In this context, control refers

to horizontal and vertical synchronization

signals. All of this happens at a rate dictated

by the pixel-speed PLL clock.

CPU Clock

VGA Clock

Horizontal
Sync

Horizontal
Back-Porch

Drawing 
640 pixels

Horizontal
Front-Porch

3.77 us 1.89 us 25.17 us 0.94 us

Figure 8: VGA Horizontal Timing

Synchronization requires careful timing.

During vertical synchronization (Figure 7),

vsync is asserted for 64 µs. The driver does

this by using the PLL deadline instruction to

wait 1641 pixel clocks after asserting vsync,

then de-asserting it. We also use a dead-

line instruction to time the vertical backporch

(1.02 ms) and the vertical frontporch (350 µs). The driver checks whether it should display the other buffer

during vertical sync, and informs the graphics thread if it was requested.
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CPU Clock

VGA Clock

Waiting for Previous 
Sixteen Pixels

Drawing

Reading Color
Data from Buffer

Image

Sending
Current Sixteen

Pixels

Preparing
for Next 

Step
16 VGA Clock Cycles

Figure 9: Timing of Sixteen Pixels

Horizontal synchronization deadlines

are more demanding. (Figure 8. Horizontal

sync is asserted for 3.77 µs (96 pixel times),

followed by a 1.89 µs frontporch (24 pixel

times). Finally, we use the deadline instruc-

tion to control the speed at which data is fed

to the video shift register. In a loop, we read

data from the framebuffer, wait for the deadline to expire, then write the data to the shift register and update

the fetch address.

Naturally, the inner pixel-drawing loop (Figure 9) is the most timing-critical. It requires six instructions:

.LOOP:
   ld     [%o5], %g1    // load color data
   add    %o5, 4, %o5   // go to the next pixel
   deadi  %t9, 16       // wait for the deadline
   st     %g1, [%o3]    // write to the VGA shift register
   cmp    %o5, %o4      // done with the line?
   bne,a  .LOOP         // if not, repeat

Pixel Drawing Routine

These six instructions must complete in under 16/25.175MHz = 635.6ns. Five of the instructions take

six cycles each. However, because it accesses main memory, the load instruction may take as many as 90

cycles, giving a total of 5×6+90 = 120 cycles overall. This requires a 5.3 ns clock period, or 188 MHz.

6.2 Graphics Thread

Following the example from the Hydra book, our graphics system is sprite-based: to draw to the framebuffer,

the graphics thread assembles the overall image starting with a 640×480 pixel background, then stacks five

64× 64 sprites on top of it. Each sprite may be placed at an arbitrary position on the screen. Figure 10

shows a typical image.

The graphics thread accepts three types of commands from the main thread through a double-buffered

queue: drawing on the background or sprite layer, changing the position of the sprites, and filling the

framebuffer according to the contents and position of the sprites and background image.
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Figure 10: A Screen Dump From Our

Video Game

Ultimately, each displayed pixel is one of only four col-

ors, but the pixels in our sprites can also be transparent. Such

transparent pixels take on the color of any sprite beneath it or

the background.

6.3 Game Logic Thread

The game logic thread takes user input, processes it, and sends

commands to the graphic thread. At the moment, we take “user

input” from an array; it should come from something like a

joystick controller.

The game logic ends the commands for each frame with a

screen update request. This prompts the graphics controller to redraw the framebuffer and also blocks the

game logic thread until the redraw is complete. This synchronizes the game logic thread to the frame refresh

rate, making it operate at a fixed rate.

6.4 Experience and Challenges with Programming for PRET

Since PRET’s programming model has timing constructs, we were able to ensure the real-time constraints of

the design with ease. The round-robing scheduling of the threads, predictable execution times of instructions

and the deadline instructions make reasoning about the execution time of code segments straightforward.

However, the lack of predictable synchronization primitives such as locks make inter-thread synchroniza-

tion more challenging. This is because ISAs generally lack timing-predictable synchronization methods. In

our game example, we synchronized the different threads by carefully investigating the timing and using

deadline instructions as also shown by the simple producer/consumer example. The main advantage from

this approach is that we can provide guarantees that the application meets its real-time requirements. We in-

tend to introduce additional instructions that provide timing-predictable synchronization methods for easier

programming of the PRET architecture.

7 Conclusions

In this paper, we described an architecture that delivers predictable timing and implemented it as a cycle-

accurate SystemC model that executes C programs. Our PRET architecture implements and extends the
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SPARC ISA with a precise timing control instruction called deadline. It presents a two-level memory hi-

erarchy composed of thread-local scratchpad memories and a shared main memory accessed through a

memory wheel. We illustrated the programming of a PRET architecture with a simple producer/consumer

example and a larger video game example.

We have an enormous amount of future work planned for PRET. One obvious extension is to improve

the scratchpad-to-main-memory link. Our current memory wheel, while a step in the right direction, is fairly

naive. First of all, modern DRAM is usually banked and designed for burst transfers, yet we treat it as having

uniform latency. It should be possible to give each thread a bank that it can access more quickly.

Modern large off-chip memories are set up for fast burst transfers designed to fill cache lines, yet our

current architecture does not take advantage of this. To make the most of shared memory, it would be nice

if the thread could move a block of memory to its scratchpad during each turn. The SPARC ISA does not

support this at the moment; we plan to add it.

How software is written can greatly affect how efficiently the memory is used. We plan to integrate many

of the algorithms that have been developed for managing scratchpad memory, both for code (traditionally

thought of as overlays) and for data. Integrating these with the particular memory movement mechanisms

we develop is one of our next projects.

The memory wheel is one example of what we will expect to be many time-triggered components in

a PRET system. An obvious challenge is how to make best use of it by choosing to try to access it at the

optimal time. We envision a compiler able to reason about when each instruction will execute (PRET, of

course, makes this possible) and thus about when best to attempt access to, say, main memory. This will

work something like Dean’s software thread integration [29], in which a compiler mindful of instruction

timing restructures the code to meet real-time deadlines. For periodic-access components in a PRET setting,

we would probably color each instruction with its phase relative to when the thread could access main

memory and attempt to reorder instructions to minimize waiting time.

A compiler for a PRET system would go one step beyond existing C compilers and perform WCET

analysis as a normal part of its operation. Perhaps with some user annotation support, it should be able to

determine things like loop bounds and see whether the code can meet every deadline. Our goal is to make a

timing error as easy to detect, understand, and correct as a syntax error.
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We presented a single-cored PRET machine in this paper, but we plan to extend PRET to multi-core

configurations. Much of the basic architecture—the scratchpads and timers—will remain unchanged in

this setting, but access to main memory and mechanisms for inter-core communication will have to be

added. We envision continuing to take a time-triggered approach in which access to a shared resource like a

communications network will be arbitrated periodically.

References
[1] Aravindh Anantaraman, Kiran Seth, Kaustubh Patil, Eric Rotenberg, and Frank Mueller. Virtual simple

architecture (VISA): Exceeding the complexity limit in safe real-time systems. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 350–361, San Diego, California,
June 2003.

[2] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation scheme for scratch-
pad-based embedded systems. Trans. Embedded Computing Sys., 1(1):6–26, 2002.

[3] Luca Benini, Alberto Macii, Enrico Macii, and Massimo Poncino. Increasing energy efficiency of
embedded systems by application-specific memory hierarchy generation. IEEE Design & Test of Com-
puters, 17(2):74–85, April-June 2000.
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